
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2021-05-27

Applications of and Algorithms for Genome Assembly and Applications of and Algorithms for Genome Assembly and

Genomic Analyses with an Emphasis on Marine Teleosts Genomic Analyses with an Emphasis on Marine Teleosts

Brandon D. Pickett
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Life Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Pickett, Brandon D., "Applications of and Algorithms for Genome Assembly and Genomic Analyses with an
Emphasis on Marine Teleosts" (2021). Theses and Dissertations. 8997.
https://scholarsarchive.byu.edu/etd/8997

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=scholarsarchive.byu.edu%2Fetd%2F8997&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8997?utm_source=scholarsarchive.byu.edu%2Fetd%2F8997&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

www.manaraa.com

Applications of and Algorithms for Genome Assembly

and Genomic Analyses with an Emphasis

on Marine Teleosts

Brandon D. Pickett

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Perry G. Ridge, Chair
John S. K. Kauwe, III

Stephen R. Piccolo
Dennis K. Shiozawa

Mark J. Clement

Department of Biology

Brigham Young University

Copyright © 2021 Brandon D. Pickett

All Rights Reserved

www.manaraa.com

ABSTRACT

Applications of and Algorithms for Genome Assembly
and Genomic Analyses with an Emphasis

on Marine Teleosts

Brandon D. Pickett
Department of Biology, BYU

Doctor of Philosophy

The burgeoning frequency of genome sequencing in recent years is a testament to both
the improvements in sequencing technologies and the utility of genomic analyses for biological
discovery. The rapid proliferation in technological advancements and availability of
complementary data types and techniques has obfuscated the optimal process of genome
assembly and raised the barrier to entry to unprecedented levels. In this dissertation, we describe
the genome assemblies performed for several marine teleosts and discuss the algorithms and
applications required for genome assembly, including some of our specific contributions to the
genome assembly and annotation space. In Chapter 1 and Chapter 2, we review the taxonomy,
life history, and biogeography of the Roundjaw Bonefish (Albula glossodonta) and describe its
genome assembly. The genome assemblies with some analyses are described for the Bluefin
(Caranx melampygus) and Giant (Caranx ignobilis) Trevallies in Chapter 3 and Chapter 4,
respectively. Chapter 5 and Chapter 6 define and assess algorithms for the annotation of simple
sequence repeats in genomic sequences. Publicly available annotations of carbapenem-resistance
plasmids were epidemiologically analyzed in Chapter 7. The resiliency of phylogenetic trees to
the removal of taxa is explored with a new nodal stability metric and algorithm, TANOS, in
Chapter 8. Finally, in Chapter 9, a review of and commentary on vertebrate genome assembly is
presented with recommendations for new projects. The aim of this dissertation, and the final
chapter in particular, is to explore genome assembly methods and reduce the barrier to entry for
new entrants.

Keywords: genome, genome assembly, genomics, assembly, annotation, algorithm, taxonomy,
bonefish, giant trevally, bluefin trevally, kingfish, SSR, SA-SSR, Kmer-SSR, kmer, suffix array,
ulua, ‘omilu, o‘io

www.manaraa.com

ACKNOWLEDGEMENTS

While my name is on this dissertation, the time, effort, money, and support of others was

instrumental in its completion over the last six years. I will list the specific names of groups and

individuals, but I must first acknowledge the unseen people who have contributed indirectly to

my success by ensuring the university runs smoothly or by anonymously donating to scholarship

funds and the university in general.

I was supported primarily by the Department of Biology (https://biology.byu.edu), and I

am grateful for both the availability of funds to support me and the people administering the

department. I am specifically grateful to the Department Chairs, Dennis K. Shiozawa, Ph.D.,

John S. K. Kauwe, III, Ph.D., and Richard A. Gill, Ph.D., the Graduate Coordinator, “Uncle”

Byron J. Adams, Ph.D., and the Graduate Secretary, Gentri Glaittli. Graduate Studies

(https://gradstudies.byu.edu) and the Department of Biology generously supported travel for

conferences and awards for competitions. Together, the DNA Sequencing Center (DNASC;

https://dnasc.byu.edu) and Illumina (https://www.illumina.com; San Diego, CA, USA) donated

short-read sequencing for one of our projects; thank you. The DNASC played a critical role in

my research, and I am particularly indebted to Edward R. Wilcox, Ph.D., for his expertise.

Similarly, I am grateful to the Office of Research Computing (https://rc.byu.edu) for their

support of the computing cluster and my work. I am also grateful to Fly Fishers International

(https://flyfishersinternational.org) for funding me with a Conservation Scholarship and to the

Society of Freshwater Science for providing funding in the form of a Systematics Award.

I owe my advisor and mentor, Perry G. Ridge, Ph.D., more gratitude than can be

effectively expressed. He not only taught my first official bioinformatics course as an

undergraduate, but also inspired much of my interest in the field. He convinced me to join his lab

when he was a new faculty member, and I am grateful for his instruction during that period of

www.manaraa.com

my academic career – instruction which continued as I returned to BYU for my doctorate. I am

grateful for his patience, flexibility, mentorship, support during personal times of strife,

friendship, and example as an excellent scientist and human being. From Perry, I have learned

the importance of hard work and persistence, as well as the importance of putting first things

first.

I am similarly grateful to John “Keoni” S. K. Kauwe, III, Ph.D., for encouraging my

initial interest in bioinformatics. I thank him for investing large amounts of his research budget

on sequencing fish genomes when I (initially) had no idea what I was doing. I am also grateful

for his time and energy spent collecting samples for sequencing. While fishing for incredible

sportfish sounds like a treat (because it is!), it also requires a lot of travel time away from family,

funding, days in the hot sun, and truly impressive skill. Keoni is also an exceptional example of

how to perform good science and how to treat others with respect. Mahalo!

My committee members, Stephen R. Piccolo, Ph.D., Dennis K. Shiozawa, Ph.D., and

Mark J. Clement, Ph.D., provided excellent counsel about my research and guidance on our

projects. They also taught well-organized, highly effective courses in bioinformatics and

computer science, allowed me to be a teaching assistant for them, provided specimens for DNA

sequencing and genome assembly, and/or travelled with me to conferences. Thank you for your

insights, your kindness, and your one-on-one counsel provided at various times.

I also am grateful to Mark. T. W. Ebbert, Ph.D., for his quick friendship and early

mentorship that started when I was a lowly undergrad, and he was a Ph.D. student and postdoc in

the lab. Mark has continued to counsel me in my career and life and provide friendship, despite

having moved across the country with his family in pursuit of his own career goals. I am grateful

to Justin B. Miller, Ph.D., for his close and enduring friendship beginning when we were in

www.manaraa.com

undergraduate classes together. I could not have asked for a better officemate or support through

the trials of a graduate program and other life events. Justin started his doctorate with me under

Dr. Ridge, and I was inspired by his ability to reason, innovate, and laugh. His family, especially

Elisandra Miller, were also exceptionally kind, and I appreciate their friendship and support.

I have also been privileged to work with and, in some cases, befriend others in various

departments at BYU and in other institutions. I am grateful to Jessica R. Glass, Ph.D., for her

expertise with carangoid fishes and population genomics and her friendship from across the

globe. I am indebted to Elizabeth M. Wallace, Ph.D., for her expertise in albulid fishes and

guidance navigating a new, complex subject. I thank my coauthors on miscellaneous projects,

Sheena Talma, Gareth S. Powell, and Galen E. Card, Ph.D., for the opportunity to collaborate

and try something new.

I am grateful to my wife, Alyssa E. Pickett, for her love and support during my program.

As a doctorate student herself, she understood my experience in a unique way. I am grateful for

her friendship, companionship, and time while she completed her master’s program and started a

rigorous doctorate program. I am also grateful to my daughter, Mara. They have brought me

great joy and purpose, and they have been endlessly encouraging in my pursuit of an education.

They also joined me in and often planned much-needed adventures outside the lab. I love you

both!

Similarly, my parents, Heather Rae Pickett and John R. Pickett, grandparents, Norman D.

Pickett, Roberta M. Pickett, Claudia A. Robertson, and Thomas A. Robertson, and siblings, Bret

E. Pickett, Kayla R. Rogler and Evan C. Rogler, and Cami R. Pickett, were supportive and

patient with my seemingly endless schooling. I am also grateful for the continued love and

encouragement received from many extended family members: Linda S. Mahlum and David J.

www.manaraa.com

Mahlum, Brigett A. Ingram and family, Mary E. Robertson and family, Lisa M. Mahlum, and

Jennifer M. Mahlum. Further, I would like to thank my new family through marriage for their

love and support: David B. and Loralee L. Evans, Heather E. and Daniel W. Shallenberger

family, Brooke E. and Devin R. Clark family, Laurel E. and Randy A. Francis family, Jonathan

P. and Mynette K. Evans, and Joseph P. and Joanne Livingston.

During my time at BYU, I was greatly advantaged by the love and support of family and

a few close friends living in the area who not only helped me, but also affected me in deeply

personal ways: Ashley and Nic Haws family, LeAnn and Steve Gourley and family, Lane and

Liz Livingston and family, Lee and Suzanna Livingston and family, Lance and Diane Livingston

and family, Karen and Dave Marcum and family, Lindsay and Cam Lee family, Scott N.

Gassaway, Tanner and Rachel Crandall and family, and Victoria Violette.

In my experience, the saying that “it takes a village” to raise a child is very true. I have

had many villages now, all of which have had unique impacts on my life. Many people had this

impact primarily before beginning my doctorate program and have not been included explicitly

here, but their impact and importance are, nonetheless, very real and treasured – without them, I

could not have made it to this point. To close, I would like to make two final acknowledgements.

First, as a religious person graduating from a religious institution, I have the unique opportunity

to publicly recognize the influence of my Heavenly Father and my Savior, Jesus Christ. They

have transformed my life and my nature. Among many other things, I owe Them my gratitude

for the opportunity to pursue knowledge and participate in the advancement of my chosen

scientific field. Second, I wish to acknowledge those who supported me in beginning my

graduate degree, but who were, unfortunately, unable to witness the completion of it:

in  memoriam, C. D. “Dan” P. Warren (1934-2017) and Hyrum W. Smith (1943-2019).

www.manaraa.com

vii

TABLE OF CONTENTS

Title Page .. i

Abstract ... ii

Acknowledgements ... iii

Table of Contents ... vii

List of Tables ... xxii

List of Figures .. xxvi

Chapter 1: Lingering Taxonomic Challenges Hinder Conservation and
Management of Global Bonefishes ..1

Abstract ...2

Background ...3

Ecology and Life History ...3

Population Declines ...6

Cryptic Species ..7

Taxonomic History ..8

Albula argentea complex ...9

Albula nemoptera complex .. 10

Albula vulpes complex ... 11

A. vulpes (Bonefish) .. 11

A. glossodonta (Roundjaw Bonefish) ... 12

A. esuncula (Eastern Pacific Bonefish) .. 12

A. sp. cf. vulpes ... 12

A. koreana (Korean Bonefish) .. 13

A. gilberti (Cortez Bonefish) .. 13

A. goreensis (Channel Bonefish) .. 13

A Note on Distribution Maps ... 14

www.manaraa.com

viii

Conservation and Management Implications ... 14

Future Directions ... 15

Acknowledgements ... 18

Tables & Figures ... 18

References ... 42

Chapter 2: Genome Assembly of the Roundjaw Bonefish (Albula glossodonta), a
Vulnerable Circumtropical Sportfish.. 53

Abstract ... 54

Introduction ... 55

Methods .. 56

Tissue Collection and Preservation .. 57

Sequencing .. 57

DNA Sequencing ... 57

mRNA Sequencing .. 58

Hi‑C Sequencing.. 58

ddRAD Library Preparation and Sequencing .. 58

Read Error Correction.. 60

Illumina DNA .. 60

Illumina RNA .. 60

PacBio CLRs ... 60

Genome Size Estimation .. 61

Genome Assembly, Polishing, and Scaffolding .. 61

Transcriptome Assembly ... 62

ddRAD Sequence Assembly and Filtering ... 62

Computational Annotation of Assembled Genome ... 63

Statistical Analysis of Population Genomic Data ... 64

www.manaraa.com

ix

Detection of Loci under Selection .. 64

Population Structure and Genetic Differentiation ... 65

Results  .. 66

Sequencing .. 66

DNA Sequencing ... 66

mRNA Sequencing .. 67

Hi‑C Sequencing.. 67

ddRAD sequencing .. 67

Read Error Correction.. 68

Illumina DNA .. 68

Illumina RNA .. 68

PacBio CLRs ... 68

Genome Size Estimation .. 68

Genome Assembly, Polishing, and Scaffolding .. 69

Transcriptome Assembly ... 71

Computational Annotation ... 71

Population Genomic Analysis .. 71

Discussion ... 72

Conclusions ... 75

Data Availability ... 75

Author Contributions ... 75

ORCIDs .. 76

Acknowledgements ... 76

Funding ... 77

Conflict of Interest .. 77

www.manaraa.com

x

Additional Files ... 78

Tables & Figures ... 78

References ... 86

Chapter 3: De novo genome assembly of the marine teleost, Bluefin Trevally
(Caranx melampygus) .. 99

Abstract ... 100

Introduction ... 101

Materials and Methods .. 102

Sample Acquisition & Sequencing ... 103

Sequence Assembly and Scaffolding ... 103

Computational Annotation ... 104

Demographic History .. 105

Data Availability ... 106

Results and Discussion .. 107

Sequencing .. 107

PacBio CLR Error Correction .. 107

Genome Assembly and Scaffolding ... 107

Transcriptome Assembly & Computational Annotation ... 109

Population Demography .. 109

Conclusion .. 110

Author Contributions ... 111

Acknowledgements ... 111

Funding ... 112

Conflict of Interest .. 112

ORCIDs .. 112

Tables & Figures ... 112

www.manaraa.com

xi

Literature Cited ... 119

Chapter 4: Genome assembly of the marine apex predator, Giant Trevally
(Caranx ignobilis) ... 124

Abstract ... 125

Background & Summary ... 126

Methods .. 127

Sample Acquisition & Sequencing ... 127

Sequence Assembly, Duplicate Purging, and Scaffolding .. 128

Genome Assembly Validation ... 129

Technical Validation ... 130

Sequencing .. 130

PacBio CLR Error Correction .. 131

Genome Assembly, Duplicate Purging, and Scaffolding .. 131

Comparison of Giant Trevally with Other Carangoid Genomes.................................... 133

Data Records ... 134

Code Availability .. 134

Author Contributions ... 134

Acknowledgements ... 135

Funding ... 135

Competing Interests ... 136

ORCIDs .. 136

Additional Information .. 136

Supplementary Information ... 136

Tables & Figures ... 136

References ... 147

www.manaraa.com

xii

Chapter 5: SA-SSR: a suffix array-based algorithm for exhaustive and efficient
SSR discovery in large genetic sequences .. 151

Abstract ... 152

1. Introduction ... 153

2. Algorithm .. 154

3. Results... 155

Acknowledgements ... 158

Funding ... 158

Conflict of Interest .. 158

Supplemental Materials ... 158

Tables    ... 158

References ... 160

Chapter 6: Kmer-SSR: A Fast and Exhaustive SSR Search Algorithm..................................... 161

Abstract ... 162

1. Introduction ... 163

2. Materials and Methods .. 163

2.1 Overview ... 164

2.2 Memory Requirements ... 164

2.3 SSR filters ... 166

3. Results... 168

4. Discussion ... 169

Acknowledgements ... 171

Funding ... 172

Conflict of Interest .. 172

Tables & Figures ... 172

References ... 177

www.manaraa.com

xiii

Chapter 7: Molecular epidemiology of carbapenem-resistance plasmids using
publicly available sequences .. 179

Abstract ... 180

Introduction ... 181

Carbapenemases .. 182

Klebsiella pneumoniae carbapenemase .. 182

New Delhi metallo-β-lactamase ... 183

Verona integron-encoded metallo-β-lactamase... 183

Imipenem-resistant metallo-β-lactamase .. 183

Materials and methods ... 184

Sequence acquisition ... 185

Plasmid gene composition ... 185

Incompatibility group/replicon typing and plasmid characterization 186

Nondiscrete plasmid groups ... 186

Statistical analyses ... 187

Results   ... 187

Plasmid gene composition ... 187

Plasmid incompatibility group/replicon typing ... 188

Geographic spread and species promiscuity of plasmids .. 189

Discussion ... 190

Conflict of interest statement ... 192

Acknowledgements ... 192

Tables & Figures ... 193

References ... 198

Chapter 8: TANOS: TAxon jackknife for NOdal Stability with genomic data 202

Abstract ... 203

www.manaraa.com

xiv

1. Introduction ... 204

1.1 Character Jackknife in Phylogeny .. 205

1.2 Taxon Jackknifing and the Taxon Influence Index ... 206

1.3 Needs in a genomics era... 207

2. Materials and Methods .. 208

2.1 Conceptual Examples... 208

2.1.1 Meta-Methods ... 212

2.2 Detailed Methods ... 212

2.2.1 Subsetting Alignments .. 213

2.2.2 Generating Trees ... 214

2.2.3 Calculating Nodal Stability ... 215

3. Results... 217

3.1 Computation .. 217

3.2 Case study in higher level classification of Insects ... 218

4. Discussion ... 219

4.1 Case Study ... 219

4.2 General implications .. 220

Author Contributions ... 222

Acknowledgements ... 222

Funding ... 222

Conflict of Interest .. 223

Tables & Figures ... 223

References ... 225

Chapter 9: Current state of and suggestions for vertebrate genome sequencing:
some assembly required ... 227

Abstract ... 228

www.manaraa.com

xv

Introduction ... 229

Review of Literature .. 231

A (Very) Brief History... 233

Short Read Sequencing and Assembly ... 234

Reference-guided Assembly .. 236

Scaffolding with Mate Pair Libraries.. 237

Scaffolding with RNA-seq Libraries .. 239

Synthetic Long Reads .. 241

Long Read Sequencing and Assembly ... 244

Oxford Nanopore Technologies Reads ... 245

Pacific Biosciences Reads .. 247

Continuous Long Reads (CLRs) ... 247

High-Fidelity (HiFi) Reads... 247

Long-Read Assembly Software .. 249

Diploid Assembly .. 250

Polishing Genome Assemblies ... 252

Scaffolding Genome Assemblies ... 254

Linkage Maps .. 255

Physical Maps .. 256

Optical Maps.. 256

Chromosome Conformation Capture (3C) .. 258

Other Physical Maps .. 260

Manual Inspection & Curation ... 260

Interoperability & Composite Softwares .. 261

++itr (Iterate, Iterate, Iterate).. 263

www.manaraa.com

xvi

Assessing Genome Assemblies .. 263

Contiguity .. 264

Completeness ... 265

Correctness .. 266

Annotating Genome Assemblies .. 267

Commentary & Guidance .. 269

Assembly with Long, Noisy Reads .. 269

Read Correction ... 270

Short Read Correction .. 271

Noisy Read Correction vs. Polishing .. 272

Genome Size Determination .. 273

Tips for Select Software Packages ... 274

(Hi)Canu .. 274

MAKER .. 275

purge_dups .. 276

Scaffolding Scaffolds .. 277

Recommendations for New Projects .. 278

Bioinformatics Best-practices for Genome Assembly .. 279

Conclusions & Future Directions ... 281

Abbreviations .. 282

Author Contributions ... 283

Acknowledgements ... 283

Funding ... 284

Conflict of Interests ... 284

Tables & Figures ... 284

www.manaraa.com

xvii

References ... 290

Appendix 1: Chapter 1 – Supplementary File 1 ... 318

Appendix 2: Chapter 2 – Additional File 1 .. 319

Supplementary Bioinformatics Methods .. 319

S.1 – Tissue Collection and Preservation ... 319

S.2 – Sequencing ... 319

S.3 – Read Error Correction ... 319

S.3.1 – Illumina DNA .. 319

S.3.2 – Illumina RNA .. 321

S.3.3 – PacBio CLRs ... 322

S.3.3.1 – Dual Correction Strategy ... 322

S.3.3.2 – Correction Experiments ... 324

S.4 – Genome Size Estimation ... 325

S.5 – Genome Assembly, Polishing, and Scaffolding ... 326

S.5.1 – Genome Assembly ... 326

S.5.2 – Polishing .. 326

S.5.3 – Scaffolding .. 328

S.5.3.1 – Hi-C Scaffolding ... 328

S.5.3.2 – RNA-seq Scaffolding .. 330

S.5.4 – Assembly Statistics .. 331

S.6 – Transcriptome Assembly .. 332

S.7 – Computational Annotation .. 333

S.7.1 – MAKER Round #1 .. 334

S.7.2 – ab initio Gene Prediction .. 337

S.7.2.1 – GeneMark-ES.. 337

www.manaraa.com

xviii

S.7.2.2 – AUGUSTUS ... 337

S.7.2.3 – SNAP .. 339

S.7.3 – MAKER Round #2 .. 340

S.7.4 – ab initio Gene Prediction .. 341

S.7.4.1 – gFACs Filtering ... 341

S.7.4.2 – AUGUSTUS ... 343

S.7.4.3 – SNAP .. 344

S.7.5 – MAKER Round #3 .. 345

S.7.6 – MAKER Post-processing and Functional Annotation 346

Supplemental References... 350

Appendix 3: Chapter 2 – Additional File 2 .. 353

Supplemental Tables ... 353

Appendix 4: Chapter 3 – Supplementary File 1 ... 357

Supplementary Bioinformatics Methods .. 357

Read Error Correction.. 357

Genome Assembly and Scaffolding ... 357

Genome Assembly ... 357

Scaffolding .. 358

Assembly Statistics .. 359

Transcriptome Assembly ... 360

Computational Annotation ... 360

MAKER Round #1 .. 361

ab initio Gene Prediction .. 364

GeneMark-ES .. 364

AUGUSTUS .. 365

www.manaraa.com

xix

SNAP     ... 367

MAKER Round #2 .. 368

ab initio Gene Prediction .. 368

gFACs Filtering ... 369

AUGUSTUS .. 370

SNAP     ... 371

MAKER Round #3 .. 373

MAKER Post-processing and Functional Annotation ... 373

Demographic History .. 376

Supplemental References... 377

Appendix 5: Chapter 4 – Supplementary File 1 ... 379

Supplementary Bioinformatics Methods .. 379

Read Error Correction.. 379

Genome Assembly and Scaffolding ... 379

Genome Assembly ... 379

Scaffolding and Mis-assembly Detection with Hi-C Data 380

Scaffolding with RNA-seq Data ... 382

Assembly Statistics .. 384

Genome Comparisons with Single-copy Orthologs .. 385

Supplemental References... 389

Appendix 6: Chapter 5 – Supplement .. 390

Supplementary Texts ... 390

Supplementary Text 1. Suffix and Longest Common Prefix Arrays 390

Supplementary Text 2. Calculating SSR Length and Position from Suffix
and Longest Common Prefix Arrays .. 391

Supplementary Figures .. 392

www.manaraa.com

xx

Supplementary Tables ... 399

Supplemental References... 426

Appendix 7: Chapter 7 – File S1 ... 427

Supplementary Bioinformatics Methods .. 427

Overview ... 427

Identical Plasmids .. 428

GenBank Metadata .. 428

GenBank Annotations .. 429

Incompatibility Groups .. 430

Detailed Methods .. 430

Summary ... 431

Outline of Steps ... 432

Step 1. Format Incompatibility Groups Fasta File .. 434

Step 2. Create Incompatibility Groups BLAST database .. 435

Step 3. Split Multi-Accession GenBank Files ... 436

Step 4. Extract ORIGIN Sequence from GB to Fasta.. 438

Step 5. Extract Group Lists .. 440

Step 6. BLAST Incompatibility Groups ... 441

Step 7. Subset BLAST Results by Coverage Cutoff of 60% 442

Step 8. Add Incompatibility Group as Column to BLAST Results.......................... 444

Step 9. Filter Best Matches in BLAST Results ... 446

Step 10. Extract Incompatibility Families ... 447

Step 11. Extract Sequencing Technologies ... 448

Step 12. Extract Source Information... 449

Step 13. Extract Plasmid Search Regions ... 450

www.manaraa.com

xxi

Step 14. Identify Plasmid Matches ... 451

Step 15. Summarize Plasmid Matches .. 453

Step 16. Drop Plasmids .. 455

Step 17. Create Plasmid BLAST Database ... 456

Step 18. BLAST Plasmid ... 457

Step 19. Extract Identical Plasmids with BLAST Result Coverage
Cutoff of 98% .. 458

Step 20. Fix Identical Plasmid Non-concordance ... 459

Step 21. Generate Plasmid CSVs ... 460

Step 22. Create Group CSVs from Plasmid CSVs .. 462

Step 23. Create Group Matches from Plasmid Matches .. 463

Step 24. Calculate Group Statistics from Group CSV ... 464

Step 25. Create Distance Matrix ... 467

Step 26. Create Distance Tree .. 469

Step 27. Add Leaf Labels to Tree ... 470

Step 28. Add Color to Leaf Labels ... 471

A comment on data availability ... 472

Supplemental References... 473

Appendix 8: Chapter – File S2 ... 474

Supplementary Tables ... 474

Appendix 9: Chapter 7 – File S3 ... 477

Supplementary Figures .. 477

============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

xxii

LIST OF TABLES

Chapter 1 .. 19

Table 1. Taxonomic and conservation statuses of each bonefish species 19

Table 2. Summary of other applied names and geographic distribution 20

Chapter 2 .. 79

Table 1. Sequencing Information ... 79

Table 2. Continuity Statistics ... 79

Table 3. Pairwise FST Comparisons by Island Group .. 79

Chapter 3 .. 113

Table 1. Sequencing Information ... 113

Table 2. RNA Sequencing Details per Tissue .. 113

Table 3. Continuity Statistics ... 114

Chapter 4 .. 137

Table 1. Sequencing Information ... 137

Table 2. RNA Sequencing Details per Tissue .. 137

Table 3. Continuity Statistics ... 138

Table 4. Summary BUSCO Results ... 139

Table 5. Database Information for Raw Sequences .. 140

Chapter 5 .. 159

Table 1. Summary of results from comparisons of SA-SSR with other SSR
detection algorithms ... 159

Chapter 6 .. 173

Table 1. Comparisons of all nine SSR-identification algorithms across six
genomes with period sizes of 1-7 and a minimum SSR length of 16
bases .. 173

Chapter 7 .. 194

www.manaraa.com

xxiii

Table 1. Predominant incompatibility group and carbapenemase prevalence in
countries with more than 10 representative plasmids .. 194

Chapter 9 .. 285

Table 1. Reviews of sequencing, assembly, and related topics ... 285

Appendix 3 (Chapter 2) ... 353

Table S1. Sampling sites for A glossodonta for population genomic analyses 354

Table S2. BUSCO statistics for the RNA transcripts and genomic assemblies 354

Table S3. Input parameters for ipyrad used to assemble ddRAD data to the A.
glossodonta reference genome ... 355

Table S4. Data filtering steps implemented in VCFtools and PLINK after
assembly in ipyrad ... 356

Table S5. Observed heterozygosity (HO) and expected heterozygosity (HS) for
each island group ... 356

Appendix 6 (Chapter 5) ... 399

Supplementary Table 1. Algorithms Included in Comparisons ... 399

Supplementary Table 2. Performance Comparisons ... 400

Supplementary Table 3. Features of Software for Finding SSRs .. 402

Supplementary Table 4. SA-SSR compared with GMATo for Arabidopsis
thaliana ... 403

Supplementary Table 5. SA-SSR compared with MREPS for Arabidopsis
thaliana ... 403

Supplementary Table 6. SA-SSR compared with ProGeRF for Arabidopsis
thaliana ... 404

Supplementary Table 7. SA-SSR compared with QDD for Arabidopsis
thaliana ... 405

Supplementary Table 8. SA-SSR compared with SSR-Pipeline for
Arabidopsis thaliana .. 406

Supplementary Table 9. SA-SSR compared with SSRIT for Arabidopsis
thaliana ... 407

www.manaraa.com

xxiv

Supplementary Table 10. SA-SSR compared with TRF for Arabidopsis
thaliana ... 408

Supplementary Table 11. SA-SSR compared with GMATo for
Caenorhabditis elegans.. 409

Supplementary Table 12. SA-SSR compared with MREPS for Caenorhabditis
elegans .. 410

Supplementary Table 13. SA-SSR compared with ProGeRF for
Caenorhabditis elegans.. 411

Supplementary Table 14. SA-SSR compared with QDD for Caenorhabditis
elegans .. 412

Supplementary Table 15. SA-SSR compared with SSR-Pipeline for
Caenorhabditis elegans.. 413

Supplementary Table 16. SA-SSR compared with SSRIT for Caenorhabditis
elegans .. 414

Supplementary Table 17. SA-SSR compared with TRF for Caenorhabditis
elegans .. 415

Supplementary Table 18. SA-SSR compared with GMATo for Drosophila
melanogaster ... 416

Supplementary Table 19. SA-SSR compared with MREPS for Drosophila
melanogaster ... 417

Supplementary Table 20. SA-SSR compared with ProGeRF for Drosophila
melanogaster ... 418

Supplementary Table 21. SA-SSR compared with QDD for Drosophila
melanogaster ... 419

Supplementary Table 22. SA-SSR compared with SSR-Pipeline for
Drosophila melanogaster ... 420

Supplementary Table 23. SA-SSR compared with SSRIT for Drosophila
melanogaster ... 421

Supplementary Table 24. SA-SSR compared with TRF for Drosophila
melanogaster ... 422

Supplementary Table 25. SA-SSR compared with GMATo for Escherichia
coli .. 423

www.manaraa.com

xxv

Supplementary Table 26. SA-SSR compared with MREPS for Escherichia
coli .. 423

Supplementary Table 27. SA-SSR compared with ProGeRF for Escherichia
coli .. 424

Supplementary Table 28. SA-SSR compared with QDD for Escherichia coli 424

Supplementary Table 29. SA-SSR compared with SSR-Pipeline for
Escherichia coli ... 425

Supplementary Table 30. SA-SSR compared with SSRIT for Escherichia coli 425

Supplementary Table 31. SA-SSR compared with TRF for Escherichia coli...................... 425

Appendix 8 (Chapter 7) ... 474

Supplementary Table 1. Full Dataset ... 475

Supplementary Table 2. Percent of plasmids belonging to each incompatibility
group ... 475

Supplementary Table 3. Relative abundance of incompatibility groups among
carbapenemase-carrying plasmids .. 476

============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

xxvi

LIST OF FIGURES

Chapter 1 .. 21

Figure 1. Illustration of Albula vulpes .. 21

Figure 2. Relationships among all species of Albula .. 21

Figure 3. Distribution map of each species complex in Albula ... 22

Figure 4. Distribution map of each species in the Albula argentea species
complex ... 23

Figure 5. Distribution map of species in the Albula nemoptera species
complex ... 24

Figure 6. Distribution map of the species in the Albula vulpes species complex 25

Supplementary Figure 1. Distribution map of the Albula argentea species
complex ... 26

Supplementary Figure 2. Distribution map of Albula argentea .. 27

Supplementary Figure 3. Distribution map of Albula oligolepis ... 28

Supplementary Figure 4. Distribution map of Albula virgata ... 29

Supplementary Figure 5. Distribution map of the Albula nemoptera species
complex ... 30

Supplementary Figure 6. Distribution map of Albula nemoptera .. 31

Supplementary Figure 7. Distribution map of Albula pacifica .. 32

Supplementary Figure 8. Distribution map of the Albula vulpes species
complex ... 33

Supplementary Figure 9. Distribution map of Albula vulpes .. 34

Supplementary Figure 10. Distribution map of Albula glossodonta 35

Supplementary Figure 11. Distribution map of Albula esuncula... 36

Supplementary Figure 12. Distribution map of Albula sp. cf. vulpes 37

Supplementary Figure 13. Distribution map of Albula koreana .. 38

Supplementary Figure 14. Distribution map of Albula gilberti ... 39

www.manaraa.com

xxvii

Supplementary Figure 15. Distribution map of Albula goreensis ... 40

Supplementary Figure 16. Distribution map of Albula esuncula and Albula
gilberti ... 41

Chapter 2 .. 80

Figure 1. Roundjaw Bonefish (Albula glossodonta) adult .. 80

Figure 2. Sampling localities for A. glossodonta population genomic analysis 81

Figure 3. Frequency of Pacific Biosciences Read Lengths ... 82

Figure 4. Hi-C Contact Matrix showing Scaffolding Correctness ... 83

Figure 5. Area Under the N-curve (auN) for each Assembly Step .. 84

Figure 6. Population Differentiation Analyses ... 85

Chapter 3 .. 115

Figure 1. Bluefin trevally (Caranx melampygus) adult and juvenile 115

Figure 2. Frequency of Pacific Biosciences Read Lengths ... 116

Figure 3. Area Under the NG-curve (auNG) for each Assembly Step................................. 117

Figure 4. MSMC Analysis of Demographic History .. 118

Chapter 4 .. 141

Figure 1. Giant trevally (Caranx ignobilis) adult and juvenile.. 141

Figure 2. Frequency of Pacific Biosciences Read Lengths ... 142

Figure 3. Area Under the NG-curve (auNG) for each Assembly Step................................. 143

Figure 4. Hi-C Contact Matrix ... 144

Figure 5. Dot Plot Comparisons with other Carangiformes (Carangoidei)
Genomes .. 145

Figure 6. Single-copy Ortholog Comparisons with other Carangiformes
(Carangoidei) Fishes .. 146

Chapter 6 .. 175

Figure 1. Conceptual Representation of Kmer-SSR ... 175

www.manaraa.com

xxviii

Figure 2. Pseudocode for the Kmer-SSR algorithm .. 176

Chapter 7 .. 195

Figure 1. Relative abundance of incompatibility groups among plasmids........................... 195

Figure 2. Relative abundance of incompatibility groups among bacterial
species ... 196

Figure 3. Indiscrete plasmid groups ... 197

Chapter 8 .. 224

Figure 1. ML topology adapted from Misof et al. (2014) ... 224

Chapter 9 .. 286

Figure 1. Cost of Genome Sequencing ... 286

Figure 2. Genome Statistics Available on NCBI .. 287

Figure 3. Flow chart showing the self-, hybrid-, and dual-correction strategies
on an Albula glossodonta genome .. 288

Figure 4. Comparison of self-, hybrid-, and dual-correction strategies on an
Albula glossodonta genome ... 289

Appendix 6 (Chapter 5) ... 392

Supplementary Figure 1. Suffix and Longest Common Prefix Arrays Example 393

Supplementary Figure 2. Arabidopsis thaliana Sequence Length Density Plot 394

Supplementary Figure 3. Caenorhabditis elegans Sequence Lengths Density
Plot .. 395

Supplementary Figure 4. Drosophila melanogaster Sequence Lengths Density
Plot .. 396

Supplementary Figure 5. Escherichia coli Sequence Lengths Density Plot 397

Supplementary Figure 6. Zaire ebolavirus Sequence Lengths Density Plot 398

Appendix 9 (Chapter 7) ... 477

Figure S1. Distribution of length for all 446 plasmid sequences in this study 477

Figure S2. Various characteristics of carbapenemase carrying plasmids............................. 478

============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

1

CHAPTER 1

Lingering Taxonomic Challenges Hinder
Conservation and Management of Global

Bonefishes

Brandon D. Pickett1, Elizabeth M. Wallace2, Perry G. Ridge1, John S. K. Kauwe1

1Department of Biology, Brigham Young University, Provo, Utah, USA

2Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St.

Petersburg, Florida, USA

A peer-reviewed, production version of this manuscript has been published in
Fisheries, 45(7):347-358, DOI: 10.1002/fsh.10438.

I hereby confirm that the use of this article is compliant with all publishing agreements.

https://doi.org/10.1002/fsh.10438

www.manaraa.com

 2

ABSTRACT

Despite expanding research on the popular recreational fishery, bonefish taxonomy
remains murky. The genus Albula, comprising these iconic circumtropical marine sportfishes,
has a complex taxonomic history driven by highly-conserved morphology. Presently, 12 putative
species are spread among three species complexes. The cryptic morphology hinders visual
identification, requiring genetic species identification in some cases. Unclear nomenclature can
have unintended consequences, including exacerbating taxonomic uncertainty and complicating
resolution efforts. Further, ignoring this reality in publications may erode management and
conservation efforts. In the Indian and Pacific oceans, ranges and areas of overlap are unclear;
precluding certainty about which species support the fishery and hindering conservation efforts.
Species overlap, at both broad and localized spatial scales, may mask population declines if one
is targeted primarily (as demonstrated in the western Atlantic fishery). Additional work is
necessary, especially to increase our understanding of spatiotemporal ecology across life history
stages and taxa. If combined with increased capacity to discern between cryptic species,
population structure may be ascertained, and fisheries stakeholders will be enabled to make
informed decisions. To assist in such efforts, we have constructed new range maps for each
species and species complex. For bonefishes, conservation genomic approaches may resolve
lingering taxonomic uncertainties, supporting effective conservation and management efforts.
These methods apply broadly to taxonomic groups with cryptic diversity, aiding species
delimitation and taxonomic revisions.

www.manaraa.com

 3

BACKGROUND

Bonefish (Albulidae) Albula spp. are tropical, marine, benthivorous fish found principally

in sand flats, sea grasses, and mangroves. They are characterized by an inferior mouth with the

snout extending beyond the mandible (Hildebrand 1963; Datovo and Vari 2014) (Figure 1).

Although bonefish are a source of food in some parts of the world (Breder 1948; Scott and Scott

1988), the principal interests to humans are fishing and tourism as bonefish are prized sportfish

since they are elusive and difficult to land. The sportfishing tourism industry for bonefish in the

Bahamas was estimated at $141 million USD (Fedler 2010), while the flats fishery (bonefish and

other flats species) in the Florida Keys was estimated at $465 million USD (Fedler 2013).

Despite a culture, sometimes enforced by law, of catch-and-release fishing (Adams and Cooke

2015; Adams 2016), bonefish catch rates appear to be declining around the globe (Friedlander

and Rodgers 2008; Santos et al. 2019a). Preserving bonefish diversity and the flats fisheries

depends on increasing our understanding of each species’ ecology and life history; however,

most research has focused on a single species, Albula vulpes (Linnaeus 1758). In part, this is a

result of the complicated taxonomy that is currently under revision. Much of the difficulty

emanates from several cryptic species – species that are effectively impossible to discern visually

due to high morphological similarity. After providing a brief background in bonefish life history

and ecology, global depletions of bonefish populations, and cryptic species, we discuss bonefish

taxonomic history and the resulting implications for conservation and management.

Ecology and Life History

Bonefish are circumtropical shorefish with an interesting life history. Although the bulk

of our knowledge comes from A. vulpes and is, in some cases, based on a single site or region,

www.manaraa.com

 4

most characteristics and behaviors may be similar across the genus, except perhaps for the

Albula nemoptera complex. Additional research for all species, including A. vulpes, is still

required to fill in the gaps in our understanding of bonefish spatiotemporal ecology.

Like all elopomorphs, bonefishes spend time in development as transparent, ribbon-like

larvae called leptocephali (Hollister 1939; Rasquin 1955; Inoue et al. 2004). The leptocephali

feed principally on plankton as they grow in length to about 6-9 cm (Hollister 1936; Pfeiler

1984; Vásquez-Yeomans et al. 2009). Exact pelagic larval duration may vary considerably across

taxa, however in A. vulpes ranges 41-71 days (Mojica et al. 1994; Adams and Cooke 2015). They

then undergo a fascinating metamorphosis in which they shrink to about two cm, resulting in

individuals reaching the same length three times during development. During the approximately

ten day metamorphosis, the leptocephalus transitions to a miniature of the adult form (Hollister

1936; Pfeiler 1984). Pre-metamorphic larvae have some swimming capacity; however,

considering ocean currents, they may disperse hundreds of km away from their spawning site

(Zeng et al. 2019).

Post-metamorphic larvae move into shallower water to utilize mangroves and estuaries as

nurseries for 2-4 years. Evidence from Florida (USA) and Cuba, based on A. vulpes and A. sp. cf.

vulpes (Wallace and Tringali 2010), suggests that juveniles prefer the less saline waters in

estuaries compared to the more saline environment of the flats where adults are typically found

(Santos et al. 2019b). However, A. goreensis (Cuvier and Valenciennes 1847; commonly,

Channel Bonefish) appears to also utilize more exposed beach habitat (Haak et al. 2019), and

preferred juvenile habitat for other species is unknown. The juvenile diet consists primarily of

amphipods and carideans, though diet analyses are limited (Griffin et al. 2019). Despite the

www.manaraa.com

 5

importance of early life history to population stability and resilience (Lefcheck et al. 2019),

relatively little is known of juvenile behavior and ecology.

Adults grow to lengths of 100 cm (Scott and Scott 1988) and up to 8 kg in weight

(Robins and Ray 1986), though size reports vary among species and locations; a typical adult is

probably half as long and heavy (Donovan et al. 2015; Kamikawa et al. 2015). Bonefish

lifespans can extend past 20 years, though they average less (Posada et al. 2008). Their diet

consists primarily of mollusks and crustaceans, but other benthic fauna is not unusual (Warmke

and Erdman 1963; Colton and Alevizon 1983; Liston et al. 2013). Some evidence suggest they

forage nomadically, changing location every few days (Ault et al. 2008), though they have high

site-fidelity for a general area (Murchie et al. 2013; Boucek et al. 2019; Moxham et al. 2019). In

A. vulpes, spawning migrations of varied distances (over 80 km documented) occur October

through May (Murchie et al. 2015), sometimes near the full or new moons (Adams et al. 2019).

Large pre-spawning aggregations with hundreds to thousands of fish form in relatively shallow

water, and then move to deep-water drop-offs at dusk to spawn (Danylchuk et al. 2011;

Danylchuk et al. 2019). Though other bonefishes may exhibit similar spawning behaviors to A.

vulpes, timing likely varies across taxa and reproductive ecology has not been evaluated in other

species. This information is important for conservation and management globally, as pre-

spawning aggregations are vulnerable to harvest and coastal migratory corridors are susceptible

to human disturbance.

Relative to A. vulpes, the literature on the ecology and life history of other bonefish

species is sparse. Differences have been identified between species complexes and some

individual species. Of particular importance is research to determine fishery species composition

at local scales in areas of known species overlap and further elucidate spawning behaviors and

www.manaraa.com

 6

locations for species supporting fisheries. Without this fundamental information, population

declines within a particular fishery (i.e., island or nation) may be masked due to the presence of

cryptics and conservation efforts may be confounded due to interspecific variability.

Population Declines

Decreases in bonefish catch rates and instances of shifting baselines have been reported

around the globe. However, accurate data from all relevant components of the fishery

(recreational catch and release, subsistence harvest, targeted and incidental commercial harvest)

are often lacking. Anthropogenic habitat loss is suspected as the primary contributor to

population declines in most areas, but exploitation in under-regulated fisheries is also a

significant problem (Bunce et al. 2008; Adams et al. 2012g; Filous et al. 2019a). Even in catch

and release fisheries, the negative impact to the target species may be larger than previously

thought (Dallas et al. 2010; Raby et al. 2014; Brownscombe et al. 2015; Cook et al. 2015), and

recent research has focused on understanding and mitigating the effects of catch-and-release

practices (Hannan et al. 2015; Adams 2016; Brownscombe et al. 2017). Regardless of the precise

cause, The International Union for the Conservation of Nature (IUCN) Red List of Threatened

Species™ reports A. glossodonta (Forsskål 1775; commonly, Roundjaw Bonefish) as

"Vulnerable", A. vulpes as "Near Threatened", and A. esuncula (Garman 1899; commonly,

Eastern Pacific Bonefish) as "Least Concern" (Nielsen et al. 2010; Adams et al. 2014). Five other

species are listed as “Data Deficient” and the remaining four have not yet been evaluated (see

Table 1). Insufficient data is clearly a bottleneck for ecological work with most bonefish species.

Yet, even for A. vulpes where information is relatively plentiful, data is still deficient to (a)

determine how much population decline is caused by overfishing as opposed to anthropogenic

www.manaraa.com

 7

habitat loss and (b) which species in the A. vulpes species complex may be most vulnerable

(Adams et al. 2014). Indeed, information is not available for many areas and species, but

available data does raise concerns: (a) catch rates are decreasing in the Southwestern Indian

Ocean and the Florida Keys (Florida, USA) according to fishers (Bunce et al. 2008; Frezza and

Clem 2015; Santos et al. 2019a) (b) demand from recreational tourist fishers is increasing in the

Bahamas (Danylchuk et al. 2008), (c) data from the National Oceanic and Atmospheric

Administration (NOAA) Marine Recreational Information Program (MRIP) suggest population

declines in the Western Atlantic Ocean (National Marine Fisheries Service, Fisheries Statistics

Division, pers. comm.), (d) data from Hawai‘i's Department of Land and Natural

Resources/Division of Aquatic Resources and the United States Fish Commission demonstrate

precipitous declines in landings in Hawaiian waters (Friedlander and Rodgers 2008), and (e)

unsustainable fishing practices and extirpation of spawning groups have been documented in the

South Pacific Ocean (Johannes and Yeeting, 2000; Ram-Bidesi, 2011; Ram-Bidesi and Petaia,

2010). The clear consensus is that population declines are occurring; the uncertainties are to what

extent they are occurring, specific causes, and which species are at the highest risk.

Cryptic Species

In bonefishes, the presence of morphologically cryptic species creates challenges to

conservation and management (Colborn et al. 2001; Pfeiler et al. 2002; Wallace and Tringali

2016). Correct identification of cryptic species is a prerequisite to examinations of biogeographic

and ecological processes as well as conservation applications (Jörger and Schrödl 2013). Cryptic

species are relatively widespread, and their recognition is generally considered nontrivial

(Bickford et al. 2007; Trontelj and Fišer 2009; Reist et al. 2013). Black basses (Micropterus

www.manaraa.com

 8

spp.) and Charrs (Salvelinus), iconic sportfishes themselves, are similarly under active taxonomic

revision (Reist et al. 2013; Taylor et al. 2019). The conservation and management challenges for

any group with cryptic species are inherently similar. In bonefishes, the presence of cryptic

species and broadly overlapping ranges make it very difficult to determine the species

composition in various fisheries. Occurrences of secondary contact (Pfeiler et al. 2008b) and

hybrids (Wallace and Tringali 2016; Rennert et al. 2019) have been documented among

bonefish. While the extent and frequency of hybrids are unknown, they further challenge efforts

to understand bonefish relationships and ecology. Unsurprisingly, Albula is too often described

as monotypic and placeholder names are perpetuated after formal descriptions have updated the

terms for a given species (Galdino Brandão et al. 2016; Joshi et al. 2016; Abdussamad 2017).

Without distinguishing between cryptic species of bonefish in areas of overlap, conservation and

management decisions will remain difficult. Increased understanding of spatiotemporal ecology

for the various life stages and ability to discriminate between the various cryptic species are

necessary to discern population structure and making effective policy decisions.

TAXONOMIC HISTORY

Bonefish were initially described by Linnaeus (1758) as Albula vulpes. Twenty-three

independent discoveries of bonefish were described under various names, but were eventually

synonymized into a circum-global A. vulpes by 1940 (Whitehead 1986; Colborn et al. 2001;

Bowen et al. 2008) as no significant characters were able to consistently delineate species

(Hildebrand 1963). However a second bonefish species, A. nemoptera (Fowler 1911; commonly,

Threadfin Bonefish), was recognized at this time; it is both rarely encountered by anglers due to

its deep-water habitat and easily distinguished by an elongated caudal ray of the dorsal fin

www.manaraa.com

 9

(Fowler 1911; Rivas and Warlen 1967). This new status quo was later broken by Shaklee and

Tamaru (1981) when they demonstrated by molecular analysis that two species of bonefish are

present in Hawaiian waters, A. glossodonta and A. neoguinaica (Cuvier and Valenciennes 1847).

A. neoguinaica was subsequently renamed to A. forsteri (Bloch and Schneider 1801) and then A.

argentea (Forster in Bloch and Schneider 1801) (see Bowen et al. (2008) for further details).

Colborn et al. (2001) confirmed and extended the results of Shaklee and Tamaru’s study with

additional molecular analyses, screening 174 specimens from 26 globally distributed sites for a

portion of the mtDNA cytochrome b gene. They concluded that the three species (A. vulpes, A.

glossodonta, and A. neoguinaica (now A. argentea)) are distinct and that up to five additional

species may be present, which they labeled as A. spp. A-E. Since then, these and additional

species have been described resulting in twelve putative species spread across three species

complexes (see Table 2 for a summary of species names and distributions and Figures 3-6 and

Supplementary Figures 1-16 for maps of their distributions).

Some morphological traits enable distinction between the complexes, but expertise is

usually required. The currently accepted phylogeny, based on portions of the mtDNA

cytochrome b gene, is represented in Figure 2. The three complexes form distinct clades, with the

A. vulpes and A. argentea complexes as sisters relative to the A. nemoptera complex. Given the

currently accepted relationships (Figure 2), we summarize each of the three complexes. Note that

we are not reviewing the two deep-water bonefish species in the genus Pterothrissus. See

Wallace (2014) for a discussion on whether Pterothrissus belongs in the order Albuliformes and

Hidaka et al. (2017) for more recent taxonomic reclassification.

Albula argentea complex

www.manaraa.com

 10

Bonefish in the A. argentea complex are distributed throughout the Indian and Western

and Central Pacific Oceans (Pfeiler et al. 2011; Wallace 2014) (Figure 4; Supplementary Figures

1-4). This species complex is well reviewed by Hidaka et al. (2008). In brief, the complex is

comprised of three species: A. argentea, A. oligolepis (Hidaka et al. 2008; commonly, Smallscale

Bonefish), and A. virgata (Jordan and Jordan 1922; commonly, Longjaw Bonefish). The species

in this complex were resurrected from synonymy with A. vulpes, beginning with Shaklee and

Tamaru’s study (1981). The Hawaiian specimens they identified as A. neoguinaica are now

known as A. virgata as a result of Hidaka et al. (2008); their work clarified A. forsteri as a junior

synonym of A. argentea, accounting for the non-endemic specimens that Shaklee and Tamaru

(1981) identified as A. neoguinaica. Albula oligolepis was described as a new species in the

same paper (Hidaka et al. 2008). These are distinct from A. glossodonta (in the A. vulpes

complex), whose range overlaps in the Indian and Western Pacific Oceans (Supplementary

Figure 10), due to molecular differences and because A. oligolepis has a more pointed lower jaw.

All species in the A. argentea complex share this trait relative to those in the A. vulpes complex.

Albula oligolepis is A. sp. D from Colborn et al. (2001).

Albula nemoptera complex

The threadfin bonefish, A. nemoptera, was first described by Fowler (1911) in the genus

Dixonina but later synonymized with Albula (Rivas and Warlen 1967). The range for the species

in this complex is the Western Atlantic and Eastern Pacific Oceans and they are typically found

in deeper water (often in estuaries (Robins and Ray 1986)) than bonefish in the A. argentea and

A. vulpes complexes (Bowen et al. 2008) (Figure 5; Supplementary Figures 5-7). Albula

nemoptera spp. (A. sp. E from Colborn et al. (2001)) are further distinguished by shorter total

www.manaraa.com

 11

length, elongated anal fin and caudal ray of the dorsal fin, mouth reaching a point below the eye,

small scales, and a few differences in dentition and meristic characters (Rivas and Warlen 1967;

Robins and Ray 1986). The Western Atlantic Ocean form is A. nemoptera and the Eastern

Pacific Ocean form is designated A. pacifica (Beebe 1942; commonly, Pacific Shafted Bonefish)

(Pfeiler et al. 2006; Pfeiler 2008). Based on cytochrome b sequence data, they were designated

sister species (Pfeiler 2008); additional nuclear gene sequence data supports this (Wallace 2014).

We will discuss neither A. nemoptera nor A. pacifica further in this review as they are easily

distinguished morphologically from other bonefish and not the target of a large sportfishing

industry.

Albula vulpes complex

Bonefish in the A. vulpes complex can be found around the globe (Figure 6;

Supplementary Figure 8). Presently, seven species are recognized: A. vulpes, A. glossodonta, A.

esuncula, A. sp. cf. vulpes, A. koreana (Kwun and Kim 2011; commonly, Korean Bonefish), A.

gilberti (Pfeiler et al. 2011; commonly, Cortez Bonefish), and A. goreensis.

A. vulpes (Bonefish)

This is the original bonefish, described by Linnaeus (1758), with which all other species

were synonymized by 1940 (Whitehead 1986; Colborn et al. 2001; Bowen et al. 2008). As

additional species were later recognized or resurrected, the range of this species has decreased

from worldwide to only the Caribbean, Gulf of Mexico, and Western Atlantic Ocean (Wallace

2014) (Supplementary Figure 9).

www.manaraa.com

 12

A. glossodonta (Roundjaw Bonefish)

Albula glossodonta was identified in Hawaiian waters by Shaklee and Tamaru (1981)

based on molecular data. It possesses the largest range of any bonefish species, encompassing the

Indian Ocean and Western and Central Pacific Ocean (Wallace 2014) (Supplementary Figure

10). Recent studies suggest that A. glossodonta individuals are larger, on average, than A. vulpes

(Donovan et al. 2015). They may also live half as long and spawn between March and

September, instead of between October and May as A. vulpes does (Filous et al. 2019b).

A. esuncula (Eastern Pacific Bonefish)

Albula esuncula occurs in the Eastern Pacific Ocean; it was previously identified as A. sp.

C in Colborn et al. (2001) and later clarified in Pfeiler et al. (2008a). Its range stretches south to

Panama and reaches north to Sinaloa, Mexico where it occurs sympatrically with A. gilberti

(Supplementary Figures 11 & 16). Albula gilberti (A. sp. A in Colborn et al. (2001)) is found

northward in the Gulf of California, stretching south to Sinaloa, Mexico. Thus, these two species

occur principally in parapatry, except in the southern Gulf of California, where they are found in

sympatry. Albula esuncula was formally described by Pfeiler et al. (2011) as a necessary step in

the description of A. gilberti. They are morphological cryptics; however, they may be

distinguished genetically (Pfeiler et al. 2008a; Díaz-Viloria et al. 2017).

A. sp. cf. vulpes

Continuing the nomenclature of Colborn et al. (2001), A. sp. F was postulated as another

species by Valdez-Moreno et al. (2010). Further identification was then provided by Wallace and

Tringali (2010) and the species is presently referred to by the placeholder A. sp. cf. vulpes. A

formal description is forthcoming. This species is a morphological cryptic of A. vulpes; its range

www.manaraa.com

 13

is the Western Atlantic Ocean, Gulf of Mexico, and Caribbean (Wallace and Tringali 2010;

Wallace 2014) (Supplementary Figure 12).

A. koreana (Korean Bonefish)

This species was described by Kwun and Kim (2011) after morphological and molecular

comparison with A. argentea; it has a restricted range in the southern Sea of Japan and East

China Sea (Supplementary Figure 13). They differ based on vertebrae count and tooth patch

distributions on the parasphenoid and mesopterygoid bones. Molecular differences (nuclear and

mitochondrial) were also identified (Kwun et al. 2011; Wallace 2014).

A. gilberti (Cortez Bonefish)

Albula gilberti occurs in the Eastern Pacific Ocean (previously A. sp. A from Colborn et

al. (2001)). Its range extends northward in the Gulf of California, stretching south around

Sinaloa, Mexico – where it is sympatric, likely through secondary contact, with A. esuncula

(Pfeiler et al. 2008b) (Supplementary Figures 14 & 16).

A. goreensis (Channel Bonefish)

Wallace (2014) resurrected A. goreensis, a morphological cryptic, from synonymy with

A. vulpes. Albula goreensis is A. sp. B from Colborn et al. (2001) and has previously been

referred to as A. garcia (Bowen et al. 2008; Valdez-Moreno et al. 2010; Galdino Brandão et al.

2016). Its range extends across the tropical Western and Eastern Atlantic Ocean, Gulf of Mexico,

and the Caribbean (Whitehead 1990; Bowen et al. 2008; Wallace 2014) (Supplementary Figure

15). Recent work suggests A. goreensis adults are smaller than A. vulpes and they may occupy a

different hydrodynamic niche (Haak et al. 2019; Rennert et al. 2019).

www.manaraa.com

 14

A Note on Distribution Maps

We generated new distribution maps for each of the bonefish species. Much of this

information was derived from the IUCN reports, when available. The remaining information

resulted from sieving the literature and the personal knowledge of the authors. Deviations from

IUCN reported ranges are based on genetically verified collections. While uncertainties exist,

these maps represent the best information currently available regarding bonefish species ranges.

The full extent of ranges remains unknown for many species – absence on a map indicates no

recorded and genetically verified collections. In areas with appropriate habitat, bonefish may

occur there – we simply lack data. Alternately, the coastline of a country may be indicated,

though appropriate bonefish habitat likely has a patchy distribution. Further, the exact width of

highlighted areas is not intended to carry meaning – highlighted areas are simply wide enough to

see easily. In some areas, the highlighted width is thinner to avoid overlapping other areas. All

maps were generated by hand using Adobe Illustrator CC 2019 (https://www.adobe.com/

creativecloud.html); native vector graphics files are available in multiple formats on The Open

Science Framework at the following DOI: 10.17605/OSF.IO/J4KSW.

CONSERVATION AND MANAGEMENT IMPLICATIONS

Pursuing the goals of conserving bonefish diversity and ensuring the long-term

sustainability of recreational fisheries is a complicated challenge. For the global fishery, a

primary impediment is the dearth of necessary biological and ecological information. Bonefish

taxonomy remains under active revision, many life history and ecological traits are unknown,

and the presence of cryptics creates additional conservation challenges. The focus of this review

www.manaraa.com

 15

has been the current state of the taxonomic revisions, which have been hampered by divergent

lineages with highly conserved morphology. The difficulties regarding species identification

have also impeded our understanding of basic life history characteristics and behaviors. Recent

research suggests differences between (a) cryptic species in the Western Atlantic Ocean and

Caribbean Sea (Adams et al. 2008; Haak et al. 2019; Rennert et al. 2019), (b) cryptic species in

the Pacific Ocean (Donovan et al. 2015), and (c) species in the Atlantic Ocean and the Indian and

Pacific Oceans (Filous et al. 2019b). However, life history traits for many taxa remain unknown.

Research efforts have broached topics such as juvenile habitat (Szekeres 2017; Santos et

al. 2019b), energy dynamics (Murchie et al. 2011; Szekeres et al. 2014; Nowell et al. 2015),

spawning (Luck et al. 2019; Mejri et al. 2019a; Mejri et al. 2019b), habitat use (Brownscombe et

al. 2019) and threats (Steinberg 2015; Cissell and Steinberg 2019; Sweetman et al. 2019),

migration (Murchie et al. 2015; Boucek et al. 2019; Perez et al. 2019), anthropogenic

exploitation (Filous et al. 2019a), leptocephalus larval dispersion (Zeng et al. 2019), gear

restriction (Donovan et al. 2016), light pollution (Szekeres et al. 2017), and local ecological

knowledge (Kamikawa et al. 2015; Rehage et al. 2019; Santos et al. 2019a). Research efforts

have begun to expand beyond A. vulpes, especially into A. glossodonta. Nevertheless, additional

research is still needed; of principle importance is understanding species composition of fisheries

at local scales.

Future Directions

The continuation of research efforts on the aforementioned variety of topics in fisheries

around the globe is crucial, as is clarifying the taxonomic status of bonefishes. The designation

of species and evolutionarily significant units (ESUs) provides the necessary foundation for

www.manaraa.com

 16

conservation efforts and protections afforded through the Endangered Species Act, IUCN Red

List, and Convention on International Trade in Endangered Species of Wild Fauna and Flora

(CITES). Taxonomic clarity can further aid prioritization of conservation and management

actions given the realities of increasing anthropogenic ecosystem alterations and limited

resources for conservation. Since relatively few morphological characters are capable of

distinguishing between only some species, bonefish research will continue to require a large

genetic component. Identification has routinely been accomplished based on mitochondrial

cytochrome b sequence identity (Colborn et al. 2001; Pfeiler et al. 2002; Pfeiler et al. 2006;

Pfeiler 2008; Valdez-Moreno et al. 2010; Kwun and Kim 2011; Kwun et al. 2011; Wallace 2014;

— 2015; Díaz-Viloria et al. 2017), though some bonefishes may also be identified using

microsatellite markers (Seyoum et al. 2008; Wallace 2015; Wallace and Tringali 2016). To

resolve interspecific relationships, a robust phylogenetic analysis of the family will require more

data as single-gene methods – especially from mtDNA – provide an incomplete picture of

evolutionary history (Pamilo and Nei 1988; Nichols 2001; Song et al. 2008). A multi-locus

approach, especially at the whole-genome or transcriptome scale, would improve confidence in

species delimitation and could provide higher-resolution insights into population structure.

In combination with other biological and ecological studies, genetic / genomic

approaches can illuminate a wide range of biodiversity issues necessary for conservation goals at

population, species, and higher taxonomic levels. Remaining information needs regarding how

bonefish species are distributed, such as ESUs, species delimitation, stock identification,

adaptation, bottlenecks, introgressive hybridization, and phylogenetic relationships, can be

addressed with advanced genomics techniques. To meet these needs, pooled sequencing of

specimens will allow the identification of orders of magnitude more markers and will help assess

www.manaraa.com

 17

variation and perform accurate identification. In addition, at least one assembled and annotated

genome from each species complex would be a valuable resource and would facilitate additional

research on Elopomorpha. Efforts are currently underway with the goal of improved ability to

identify species and further study the life history and ecology of the various bonefish species.

Further, protection of presumed endangered species of bonefish is impossible without a

multidisciplinary approach. Albula glossodonta, Red List Vulnerable and targeted by

consumptive fisheries, may be at greatest risk of regional extirpation and many others in the

genus remain data deficient. Larger-scale genetic or genomic analyses may provide key

information necessary to make important management decisions. Conservation of bonefishes

must include actions at multiple spatial and temporal scales. Effectively managed reserves (such

as for spawning sites) play an important role; however, additional consideration must be given to

migration corridors, as well as larval settlement and juvenile nursery habitats – all of which will

vary among species. These areas extend beyond the scale practical for formal reserve status and

will require proactive management largely focused on mitigation of coastal habitat degradation.

As we learn more about the distinct larval settlement and juvenile nursery habitat requirements

among sympatric bonefishes, it will aid comprehensive and proactive habitat protections and

mitigation efforts. Habitat conservation efforts will necessarily include limitations on coastal

development. In consumptive fisheries, determination of sustainable harvest levels and

enforcement of regulations remain high priorities. Clarification of taxonomic status, species

boundaries, and areas of overlap are foundational to all of these directed conservation efforts.

Ultimately, fisheries managers and conservationists remain in a quandary over bonefish

preservation until additional data are obtained. Presently, twelve putative species are distributed

across three species complexes. The geographic extent, size, and species composition of global

www.manaraa.com

 18

fisheries remains unelucidated. Studies with higher-density genetic variation data from

populations around the globe, will greatly aid clarification of relationships among these iconic

sportfishes. Such approaches are invaluable conservation tools, especially among sympatric

cryptic species. These methods will assist ongoing bonefish conservation efforts, and similar

genomic techniques will aid species and population delineation in other groups containing

morphological cryptics.

ACKNOWLEDGEMENTS

We thank Derek Olthuis, Dr. Jocelyn Curtis-Quick, and Dr. Christopher Haak for

providing photos. Suggestions that improved this manuscript were provided by two anonymous

reviewers. We also thank Diane Rome Peebles for providing the illustration. There is no conflict

of interest declared in this article.

TABLES & FIGURES
============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

 19

Table 1. Taxonomic and conservation statuses of each bonefish species. All species, except A. sp. cf. vulpes, are recognized in Eschmeyer’s Catalog of Fishes
(Fricke et al. 2019). Near Threatened, Vulnerable, Least Concern, and Data Deficient are formal classifications of the International Union for the Conservancy of
Nature (IUCN); the term Unevaluated indicates the IUCN has not yet evaluated the status of that species. Common names all include bonefish (e.g., smallscale
bonefish).

Scientific name Common name Taxonomic status Conservation
status

Albula argentea complex
A. argentea (Forster in Bloch and Schneider 1801) NA Described species Data Deficient
A. oligolepis (Hidaka et al. 2008) Smallscale Described species Data Deficient
A. virgata (Jordan and Jordan 1922) NA Described species Data Deficient
Albula nemoptera complex
A. nemoptera (Fowler 1911) Threadfin Described species Data Deficient
A. pacifica (Beebe 1942) Pacific Shafted Described species Unevaluated
Albula vulpes complex
A. vulpes (Linnaeus 1758) Bonefish Described species Near Threatened
A. glossodonta (Forsskål 1775) Roundjaw Described species Vulnerable
A. esuncula (Garman 1899) Eastern Pacific Described species Least Concern
A. sp. cf. vulpes (Wallace and Tringali 2010) NA Provisional species Unevaluated
A. koreana (Kwun and Kim 2011) Korean Described species Data Deficient
A. gilberti (Pfeiler et al. 2011) Cortez Described species Unevaluated
A. goreensis (Cuvier and Valenciennes 1847) Channel Described species Unevaluated

www.manaraa.com

 20

Table 2. Summary of other applied names and geographic distribution. See Figures 3-6 and Supplementary Figures 1-16 for maps of the geographic
distributions.

Species Other applied names Distribution
Albula argentea complex
Albula argentea (Forster in Bloch and Schneider 1801) A. forsteri, A. neoguinaica Western & Central Pacific
Albula oligolepis (Hidaka et al. 2008) A. sp. D Indian & Western Pacific
Albula virgata (Jordan and Jordan 1922) A. neoguinaica Hawai‘i, USA
Albula nemoptera complex
Albula nemoptera (Fowler 1911) A. sp. E, Dixonina nemoptera Western Atlantic & Caribbean
Albula pacifica (Beebe 1942) A. nemoptera Tropical Eastern Pacific
Albula vulpes complex
Albula vulpes (Linnaeus 1758) NA Western Atlantic & Caribbean
Albula glossodonta (Forsskål 1775) NA Indian, Western & Central Pacific
Albula esuncula (Garman 1899) A. sp. C, A. neoguinaica Tropical Eastern Pacific, Southern Gulf of California
Albula sp. cf. vulpes Wallace and Tringali (2010) A. sp. F Western Atlantic & Caribbean
Albula koreana (Kwun and Kim 2011) NA Western Pacific (East China Sea)
Albula gilberti (Pfeiler et al. 2011) A. sp. A Eastern Pacific, Gulf of California
Albula goreensis (Cuvier and Valenciennes 1847) A. sp. B, A. garcia, A. nova sp. Tropical Atlantic & Caribbean

*Amended from Wallace (2014)

www.manaraa.com

 21

Figure 1. Illustration of Albula vulpes – copyright Diane Rome Peebles, used with permission.

Figure 2. Relationships among all species of Albula. Tree topology was inferred using RAxML (Stamatakis 2014)
with a portion of the cytochrome b mitochondrial gene. Branch lengths represent sequence divergence between taxa,
and bootstrap support values are shown when above 90%. For additional details, see Wallace (2014). A text-based
version of the tree can be found in Supplementary File 1 (Appendix 1 herein).

www.manaraa.com

 22

Figure 3. Distribution map of each species complex in Albula. Individual maps for each complex can be found in
Supplementary Figures 1, 5, and 8. Please see the note on distribution maps.

www.manaraa.com

 23

Figure 4. Distribution map of species in the Albula argentea species complex. A non-specific map showing this
complex can be found in Supplementary Figure 1. Individual maps for each species can be found in Supplementary
Figures 2-4. Please see the note on distribution maps.

www.manaraa.com

 24

Figure 5. Distribution map of species in the Albula nemoptera species complex. A non-specific map showing this
complex can be found in Supplementary Figure 5. Individual maps for each species can be found in Supplementary
Figures 6 and 7. Please see the note on distribution maps.

www.manaraa.com

 25

Figure 6. Distribution map of species in the Albula vulpes species complex. A non-specific map showing this
complex can be found in Supplementary Figure 8. Individual maps for each species can be found in Supplementary
Figures 9-15. A subset of this map showing only Albula esuncula and Albula gilberti may be found in
Supplementary Figure 16. Please see the note on distribution maps.

www.manaraa.com

 26

Supplementary Figure 1. Distribution map of the Albula argentea species complex. A map showing each of the
species in this complex can be found in Figure 4. Individual maps for each species can be found in Supplementary
Figures 2-4. To see how the distribution of this complex compares with other complexes, see Figure 3. Please see
the note on distribution maps.

www.manaraa.com

 27

Supplementary Figure 2. Distribution map of Albula argentea. To see how the distribution of Albula argentea
compares with other species in the Albula argentea species complex, see Figure 4. Please see the note on
distribution maps.

www.manaraa.com

 28

Supplementary Figure 3. Distribution map of Albula oligolepis. To see how the distribution of Albula oligolepis
compares with other species in the Albula argentea species complex, see Figure 4. Please see the note on
distribution maps.

www.manaraa.com

 29

Supplementary Figure 4. Distribution map of Albula virgata. To see how the distribution of Albula virgata
compares with other species in the Albula argentea species complex, see Figure 4. Please see the note on
distribution maps.

www.manaraa.com

 30

Supplementary Figure 5. Distribution map of the Albula nemoptera species complex. A map showing each of
the species in this complex can be found in Figure 5. Individual maps for each species can be found in
Supplementary Figures 6 and 7. To see how the distribution of this complex compares with other complexes, see
Figure 3. Please see the note on distribution maps.

www.manaraa.com

 31

Supplementary Figure 6. Distribution map of Albula nemoptera. To see how the distribution of Albula
nemoptera compares with other species in the Albula nemoptera species complex, see Figure 5. Please see the note
on distribution maps.

www.manaraa.com

 32

Supplementary Figure 7. Distribution map of Albula pacifica. To see how the distribution of Albula pacifica
compares with other species in the Albula nemoptera species complex, see Figure 5. Please see the note on
distribution maps.

www.manaraa.com

 33

Supplementary Figure 8. Distribution map of the Albula vulpes species complex. A map showing each of the
species in this complex can be found in Figure 6. Individual maps for each species can be found in Supplementary
Figures 9-15. To see how the distribution of this complex compares with other complexes, see Figure 3. Please see
the note on distribution maps.

www.manaraa.com

 34

Supplementary Figure 9. Distribution map of Albula vulpes. To see how the distribution of Albula vulpes
compares with other species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution
maps.

www.manaraa.com

 35

Supplementary Figure 10. Distribution map of Albula glossodonta. To see how the distribution of Albula
glossodonta compares with other species in the Albula vulpes species complex, see Figure 6. Please see the note on
distribution maps.

www.manaraa.com

 36

Supplementary Figure 11. Distribution map of Albula esuncula. View Supplementary Figure 16 to see the areas
of sympatry and parapatry with Albula gilberti. To see how the distribution of Albula esuncula compares with other
species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution maps.

www.manaraa.com

 37

Supplementary Figure 12. Distribution map of Albula sp. cf. vulpes. To see how the distribution of Albula sp. cf.
vulpes compares with other species in the Albula vulpes species complex, see Figure 6. Please see the note on
distribution maps.

www.manaraa.com

 38

Supplementary Figure 13. Distribution map of Albula koreana. To see how the distribution of Albula koreana
compares with other species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution
maps.

www.manaraa.com

 39

Supplementary Figure 14. Distribution map of Albula gilberti. View Supplementary Figure 16 to see the areas of
sympatry and parapatry with Albula esuncula. To see how the distribution of Albula gilberti compares with other
species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution maps.

www.manaraa.com

 40

Supplementary Figure 15. Distribution map of Albula goreensis. To see how the distribution of Albula goreensis
compares with other species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution
maps.

www.manaraa.com

 41

Supplementary Figure 16. Distribution map of Albula esuncula and Albula gilberti. This map shows the
approximate areas of sympatry and parapatry between these two species. View Supplementary Figures 11 and 14 to
see individual maps for these species. To see how the distribution of Albula esuncula and Albula gilberti compares
with other species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution maps.

www.manaraa.com

 42

REFERENCES

Abdussamad, E. M. 2017. Common Pelagic Finfish Families and their Identification. ICAR -
Central Marine Fisheries Research Institute, Kerala, India.

Adams, A., K. Guindon, A. Horodysky, T. Macdonald, R. Mcbride, J. Shenker, and R. Ward.
2012a. Albula argentea. The IUCN Red List of Threatened Species™. The International
Union for Conservation of Nature. T194298A2310290.

Adams, A., K. Guindon, A. Horodysky, T. Macdonald, R. Mcbride, J. Shenker, and R. Ward.
2012b. Albula glossodonta, Shortjaw Bonefish. The IUCN Red List of Threatened
Species™. The International Union for Conservation of Nature. T194299A2310398.

Adams, A., K. Guindon, A. Horodysky, T. Macdonald, R. Mcbride, J. Shenker, and R. Ward.
2012c. Albula koreana. The IUCN Red List of Threatened Species™. The International
Union for Conservation of Nature. T199659A2608983.

Adams, A., K. Guindon, A. Horodysky, T. Macdonald, R. Mcbride, J. Shenker, and R. Ward.
2012d. Albula nemoptera, Caribbean Bonefish. The IUCN Red List of Threatened
Species™. The International Union for Conservation of Nature. T190357A1949274.

Adams, A., K. Guindon, A. Horodysky, T. Macdonald, R. Mcbride, J. Shenker, and R. Ward.
2012e. Albula oligolepis, Smallscale Bonefish. The IUCN Red List of Threatened
Species™. The International Union for Conservation of Nature. T194301A2310530.

Adams, A., K. Guindon, A. Horodysky, T. Macdonald, R. Mcbride, J. Shenker, and R. Ward.
2012f. Albula virgata, Longjaw Bonefish. The IUCN Red List of Threatened Species™.
The International Union for Conservation of Nature. T194302A2310633.

Adams, A., K. Guindon, A. Horodysky, T. Macdonald, R. Mcbride, J. Shenker, and R. Ward.
2012g. Albula vulpes, Bonefish. The IUCN Red List of Threatened Species™. The
International Union for Conservation of Nature. T194303A2310733.

Adams, A. J. 2016. Guidelines for evaluating the suitability of catch and release fisheries:
Lessons learned from Caribbean flats fisheries. Fisheries Research. 186:672-680.

Adams, A. J. and S. J. Cooke. 2015. Advancing the science and management of flats fisheries for
bonefish, tarpon, and permit. Environmental Biology of Fishes. 98:2123-2131.

Adams, A. J., A. Z. Horodysky, R. S. Mcbride, K. Guindon, J. Shenker, T. C. Macdonald, H. D.
Harwell, R. Ward, and K. Carpenter. 2014. Global conservation status and research needs
for tarpons (Megalopidae), ladyfishes (Elopidae) and bonefishes (Albulidae). Fish and
Fisheries. 15(2):280-311.

Adams, A. J., J. M. Shenker, Z. R. Jud, J. P. Lewis, E. Carey, and A. J. Danylchuk. 2019.
Identifying pre-spawning aggregation sites for bonefish (Albula vulpes) in the Bahamas

www.manaraa.com

 43

to inform habitat protection and species conservation. Environmental Biology of Fishes.
102(2):159-173.

Adams, A. J., R. K. Wolfe, M. D. Tringali, E. M. Wallace, and G. T. Kellison. 2008. Rethinking
the status of Albula spp. biology in the Caribbean and Western Atlantic. Pages 203-214
in J. S. Ault, Editor. Biology and management of the world Tarpon and Bonefish
fisheries.

Ault, J. S. 2008. Biology and management of the world Tarpon and Bonefish fisheries. CRC
Press, Boca Raton, FL, USA.

Ault, J. S., R. Humston, M. F. Larkin, E. Perusquia, N. A. Farmer, J. Luo, N. Zurcher, S. G.
Smith, L. R. Barbieri, and J. M. Posada. 2008. Population Dynamics and Resource
Ecology of Atlantic Tarpon and Bonefish. Pages 217-258 in J. S. Ault, Editor. Biology
and management of the world Tarpon and Bonefish fisheries.

Beebe, W. 1942. Eastern Pacific expeditions of the New York Zoological Society, XXX.
Atlantic and Pacific fishes of the genus Dixonina. Zoologica. 27:43-48.

Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram, and I.
Das. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology
& Evolution. 22(3):148-155.

Bloch, M. E. and J. G. Schneider. 1801. Systema Ichthyologiae: Iconibus CX Illustratum.
Sumtibus Auctoris Impressum et Bibliopolio Sanderiano Commissum, Berlin, Germany.

Boucek, R. E., J. P. Lewis, B. D. Stewart, Z. R. Jud, E. Carey, and A. J. Adams. 2019. Measuring
site fidelity and homesite-to-pre-spawning site connectivity of bonefish (Albula vulpes):
using mark-recapture to inform habitat conservation. Environmental Biology of Fishes.
102(2):185-195.

Bowen, B. W., S. A. Karl, and E. Pfeiler. 2008. Resolving Evolutionary Lineages and Taxonomy
of Bonefishes (Albula spp.). Pages 147-154 in J. S. Ault, Editor. Biology and
management of the world Tarpon and Bonefish fisheries. CRC Press, Boca Raton, FL,
USA.

Breder, C. M. J. 1948. The Bonefishes - Family Albulidae. Pages 60-61 in C. M. J. Breder,
Editor. Field Book of Marine Fishes of the Atlantic Coast, 10 Ed. New York, NY, USA
and London, England.

Breder, C. M. J. and D. E. Rosen. 1966. Order Clupeiformes. Pages 73-75. Modes of
Reproduction in Fishes. The American Museum of Natural History, New York, NY,
USA.

Brownscombe, J. W., A. J. Danylchuk, J. M. Chapman, L. F. G. Gutowsky, and S. J. Cooke.
2017. Best practices for catch-and-release recreational fisheries – angling tools and
tactics. Fisheries Research. 186:693-705.

www.manaraa.com

 44

Brownscombe, J. W., L. P. Griffin, T. Gagne, C. R. Haak, S. J. Cooke, and A. J. Danylchuk.
2015. Physiological stress and reflex impairment of recreationally angled bonefish in
Puerto Rico. Environmental Biology of Fishes. 98:2287-2295.

Brownscombe, J. W., L. P. Griffin, T. O. Gagne, C. R. Haak, S. J. Cooke, J. T. Finn, and A. J.
Danylchuk. 2019. Environmental drivers of habitat use by a marine fish on a
heterogeneous and dynamic reef flat. Marine Biology. 166(2):1-18.

Bunce, M., L. D. Rodwell, R. Gibb, and L. Mee. 2008. Shifting baselines in fishers' perceptions
of island reef fishery degradation. Ocean & Coastal Management. 51:285-302.

Chen, J.-N., S. Samadi, and W.-J. Chen. 2015. Elopomorpha (Teleostei) as a New Model Fish
Group for Evolutionary Biology and Comparative Genomics. Pages 329-344 in P.
Pontarotti, Editor. Evolutionary Biology: Biodiversification from Genotype to Phenotype.
Springer International Publishing, Switzerland.

Cissell, J. R. and M. K. Steinberg. 2019. Mapping forty years of mangrove cover trends and their
implications for flats fisheries in Ciénaga de Zapata, Cuba. Environmental Biology of
Fishes. 102(2):417-427.

Colborn, J., R. E. Crabtree, J. B. Shaklee, E. Pfeiler, and B. W. Bowen. 2001. The Evolutionary
Enigma of Bonefishes (Albula spp.): Cryptic Species and Ancient Separations in a
Globally Distributed Shorefish. Evolution. 55:807-820.

Colton, D. E. and W. S. Alevizon. 1983. Feeding Ecology of Bonefish in Bahamian Waters.
Transactions of the American Fisheries Society. 112(2A):178-184.

Cook, K. V., R. J. Lennox, S. G. Hinch, and S. J. Cooke. 2015. Fish Out of Water: How Much
Air is Too Much? Fisheries. 40:452-461.

Cuvier, G. and A. Valenciennes. 1847. Histoire naturelle des poissons, Volume 19. Levrault,
Paris.

Dallas, L. J., A. D. Shultz, A. J. Moody, K. A. Sloman, and A. J. Danylchuk. 2010. Chemical
excretions of angled bonefish Albula vulpes and their potential use as predation cues by
juvenile lemon sharks Negaprion brevirostris. Journal of Fish Biology. 77(4):947-962.

Danylchuk, A. J., S. J. Cooke, T. L. Goldberg, C. D. Suski, K. J. Murchie, S. E. Danylchuk, A.
D. Shultz, C. R. Haak, E. J. Brooks, A. Oronti, J. B. Koppelman, and D. P. Philipp. 2011.
Aggregations and offshore movements as indicators of spawning activity of bonefish
(Albula vulpes) in The Bahamas. Marine Biology. 158(9):1981-1999.

Danylchuk, A. J., S. E. Danylchuk, S. J. Cooke, T. L. Goldberg, J. B. Koppelman, and D. P.
Philipp. 2008. Ecology and management of Bonefish (Albula spp.) in the Bahamian
Archipelago. Pages 79-92 in J. S. Ault, Editor. Biology and management of the world
Tarpon and Bonefish fisheries. CRC Press, Boca Raton, FL, USA.

www.manaraa.com

 45

Danylchuk, A. J., J. Lewis, Z. Jud, J. Shenker, and A. Adams. 2019. Behavioral observations of
bonefish (Albula vulpes) during prespawning aggregations in the Bahamas: clues to
identifying spawning sites that can drive broader conservation efforts. Environmental
Biology of Fishes. 102(2):175-184.

Datovo, A. and R. P. Vari. 2014. The adductor mandibulae muscle complex in lower teleostean
fishes (Osteichthyes: Actinopterygii): comparative anatomy, synonymy, and phylogenetic
implications. Zoological Journal of the Linnean Society. 171:554-622.

Díaz-Viloria, N., L. Sánchez-Velasco, R. Perez-Enriquez, A. Zárate-Villafranco, M. J. Miller,
and S. P. A. Jiménez-Rosenberg. 2017. Morphological description of genetically
identified Cortez bonefish (Albula gilberti, Pfeiler and van der Heiden 2011) leptocephali
from the southern Gulf of California. Mitochondrial DNA Part A. 28:717-724.

Donovan, M. K., A. M. Friedlander, K. K. Harding, E. M. Schemmel, A. Filous, K. Kamikawa,
and N. Torkelson. 2015. Ecology and niche specialization of two bonefish species in
Hawai‘i. Environmental Biology of Fishes. 98:2159-2171.

Donovan, M. K., A. M. Friedlander, P. Usseglio, W. Goodell, I. Iglesias, E. M. Schemmel, K. A.
Stamoulis, A. Filous, J. Giddens, K. Kamikawa, H. Koike, K. Mccoy, and C. B. Wall.
2016. Effects of Gear Restriction on the Abundance of Juvenile Fishes along Sandy
Beaches in Hawai‘i. PLoS ONE. 11:e0155221.

Fedler, T. 2010. The Economic Impact of Flats Fishing in The Bahamas. The Bahamian Flats
Fishing Alliance.

Fedler, T. 2013. Economic Impact of the Florida Keys Flats Fishery. Bonefish and Tarpon Trust.

Filous, A., R. J. Lennox, E. E. G. Clua, and A. J. Danylchuk. 2019a. Fisheries selectivity and
annual exploitation of the principal species harvested in a data-limited artisanal fishery at
a remote atoll in French Polynesia. Ocean & Coastal Management. 178(1 August
2019):1-13.

Filous, A., R. J. Lennox, R. R. Coleman, A. M. Friedlander, E. E. G. Clua, and A. J. Danylchuk.
2019b. Life‐history characteristics of an exploited bonefish Albula glossodonta
population in a remote South Pacific atoll. Journal of Fish Biology. 95(2):562-574.

Forsskål, P. 1775. Descriptiones Animalium: Avium, Amphibiorum, Piscium, Insectorum,
Vermium. Hauniæ.

Fowler, H. W. 1911. A new albuloid fish from Santo Domingo. Proceedings of the Academy of
Natural Sciences of Philadelphia. 62:651-654.

Frezza, P. E. and S. E. Clem. 2015. Using local fishers’ knowledge to characterize historical
trends in the Florida Bay bonefish population and fishery. Environmental Biology of
Fishes. 98:2187-2202.

www.manaraa.com

 46

Fricke, R., W. N. Eschmeyer, and R. Van Der Laan (Editors). 2019. Eschmeyer’s Catalog of
Fishes: Genera, Species, References.
(http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp).
Electronic version accessed 15 May 2019.

Friedlander, A. M. and S. K. Rodgers. 2008. Coral Reef Fishes and Fisheries of South Moloka‘i.
Pages 59-66 in M. E. Field, S. A. Cochran, J. B. Logan, and C. D. Storlazzi, Editors. The
Coral Reef of South Moloka‘i, Hawai‘i – Portrait of a Sediment-Threatened Fringing
Reef. U.S. Department of the Interior, Reston, VA, USA.

Galdino Brandão, J. H. S., J. De Araújo Bitencourt, F. B. Santos, L. A. Watanabe, H. Schneider,
I. Sampaio, and P. R. a. D. M. Affonso. 2016. DNA barcoding of coastal ichthyofauna
from Bahia, northeastern Brazil, South Atlantic: High efficiency for systematics and
identification of cryptic diversity. Biochemical Systematics and Ecology. 65:214-224.

Garman, S. 1899. The Fishes. Memoirs of the Museum of Comparative Zoölogy, at Harvard
College, Cambridge, Mass. 24:1-431.

Griffin, L. P., C. R. Haak, J. W. Brownscombe, C. R. Griffin, and A. J. Danylchuk. 2019. A
comparison of juvenile bonefish diets in Eleuthera, The Bahamas, and Florida, U.S.
Environmental Biology of Fishes. 102(2):147-157.

Haak, C. R., M. Power, G. W. Cowles, and A. J. Danylchuk. 2019. Hydrodynamic and isotopic
niche differentiation between juveniles of two sympatric cryptic bonefishes, Albula
vulpes and Albula goreensis. Environmental Biology of Fishes. 102(2):129-145.

Hannan, K. D., Z. C. Zuckerman, C. R. Haak, and A. D. Shultz. 2015. Impacts of sun protection
on feeding behavior and mucus removal of bonefish, Albula vulpes. Environmental
Biology of Fishes. 98:2297-2304.

Hidaka, K., Y. Iwatsuki, and J. E. Randall. 2008. A review of the Indo-Pacific bonefishes of the
Albula argentea complex, with a description of a new species. Ichthyological Research.
55:53-64.

Hidaka, K., Y. Tsukamoto, and Y. Iwatsuki. 2017. Nemoossis, a new genus for the eastern
Atlantic long-fin bonefish Pterothrissus belloci Cadenat 1937 and a redescription of P.
gissu Hilgendorf 1877 from the northwestern Pacific. Ichthyological Research. 64:45-53.

Hildebrand, S. F. 1963. Family Albulidae. Pages 132-147 in H. B. Bigelow, Editor. Fishes of the
Western North Atlantic. Sears Foundation for Marine Research, Bingham Oceanographic
Laboratory, Yale University, New Haven, Connecticut, USA.

Hollister, G. 1936. A Fish Which Grows by Shrinking. Bulletin - New York Zoological Society.
39:104-109.

Hollister, G. 1939. Young Megalops cyprinoides from Batavia, Dutch East India, Including a
Study of the Caudal Skeleton and a Comparison with the Atlantic Species, Tarpon
atlanticus. Zoologica. 24:449-475.

www.manaraa.com

 47

Inoue, J. G., M. Miya, K. Tsukamoto, and M. Nishida. 2004. Mitogenomic evidence for the
monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the
leptocephalus larva. Molecular Phylogenetics and Evolution. 32:274-286.

Jordan, D. S. and E. K. Jordan. 1922. A list of the fishes of Hawai‘i, with notes and descriptions
of new species. Memoirs of the Carnegie Museum. 10:6-7.

Jörger, K. M. and M. Schrödl. 2013. How to describe a cryptic species? Practical challenges of
molecular taxonomy. Frontiers in Zoology. 10(1):59.

Joshi, K. K., M. P. Sreeram, P. U. Zacharia, E. M. Abdussamad, M. Varghese, O. M. M. J.
Mohamed Habeeb, K. Jayabalan, K. P. Kanthan, K. Kannan, K. M. Sreekumar, G.
George, and M. S. Varsha. 2016. Check list of fishes of the Gulf of Mannar ecosystem,
Tamil Nadu, India. Journal of the Marine Biological Association of India. 58:34-54.

Kamikawa, K. T., A. M. Friedlander, K. K. Harding, A. Filous, M. K. Donovan, and E.
Schemmel. 2015. Bonefishes in Hawai‘i and the importance of angler-based data to
inform fisheries management. Environmental Biology of Fishes. 98:2147-2157.

Kwun, H. J. and J. K. Kim. 2011. A new species of bonefish, Albula koreana (Albuliformes:
Albulidae) from Korea and Taiwan. Zootaxa. 63:57-63.

Kwun, H. J., J. K. Kim, R. Doiuchi, and T. Nakabo. 2011. Molecular and morphological
evidence for the taxonomic status of a newly reported species of Albula (Albuliformes:
Albulidae) from Korea and Taiwan. Animal Cells and Systems. 15:45-51.

Lefcheck, J. S., B. B. Hughes, A. J. Johnson, B. W. Pfirrmann, D. B. Rasher, A. R. Smyth, B. L.
Williams, M. W. Beck, and R. J. Orth. 2019. Are coastal habitats important nurseries? A
meta‐analysis. Conservation Letters. 12(4):e12645.

Linnaeus, C. 1758. Systema Naturæ, Volume 1, 10 Edition. Stockholm, Sweden.

Liston, S. E., P. E. Frezza, M. Robinson, and J. J. Lorenz. 2013. Assessment of Benthic Fauna
Communities on Florida Keys’ Shallow Banks as an Indicator of Prey Availability for
Bonefish (Albula vulpes). Bonefish and Tarpon Trust.

Luck, C., S. Mejri, J. Lewis, P. S. Wills, M. Riche, J. Shenker, A. Adams, and M. J. Ajemian.
2019. Seasonal and spatial changes in sex hormone levels and oocyte development of
bonefish (Albula vulpes). Environmental Biology of Fishes. 102(2):209-219.

Mejri, S., W. R. Halstead, C. A. Luck, C. Robinson, T. E. Van Leeuwen, A. J. Adams, J.
Shenker, M. J. Ajemian, and P. S. Wills. 2019a. A novel attempt at artificial spawning of
captive bonefish (Albula spp.). Aquaculture Research. 50(9):2718-2723.

Mejri, S., C. Luck, R. Tremblay, M. Riche, A. Adams, M. J. Ajemian, J. Shenker, and P. S.
Wills. 2019b. Bonefish (Albula vulpes) oocyte lipid class and fatty acid composition
related to their development. Environmental Biology of Fishes. 102(2):221-232.

www.manaraa.com

 48

Mojica, R. J., J. M. Shenker, C. W. Harnden, and D. E. Wagner. 1994. Recruitment of bonefish,
Albula vulpes, around Lee Stocking Island, Bahamas. Fishery Bulletin. 93(4):666-674.

Moxham, E. J., P. D. Cowley, R. H. Bennett, and R. G. Von Brandis. 2019. Movement and
predation: a catch-and-release study on the acoustic tracking of bonefish in the Indian
Ocean. Environmental Biology of Fishes. 102(2):365-381.

Murchie, K. J., S. J. Cooke, A. J. Danylchuk, S. E. Danylchuk, T. L. Goldberg, C. D. Suski, and
D. P. Philipp. 2013. Movement patterns of bonefish (Albula vulpes) in tidal creeks and
coastal waters of Eleuthera, The Bahamas. Fisheries Research. 147:404-412.

Murchie, K. J., S. J. Cooke, A. J. Danylchuk, and C. D. Suski. 2011. Estimates of field activity
and metabolic rates of bonefish (Albula vulpes) in coastal marine habitats using acoustic
tri-axial accelerometer transmitters and intermittent-flow respirometry. Journal of
Experimental Marine Biology and Ecology. 396:147-155.

Murchie, K. J., A. D. Shultz, J. A. Stein, S. J. Cooke, J. Lewis, J. Franklin, G. Vincent, E. J.
Brooks, J. E. Claussen, and D. P. Philipp. 2015. Defining adult bonefish (Albula vulpes)
movement corridors around Grand Bahama in the Bahamian Archipelago. Environmental
Biology of Fishes. 98:2203-2212.

National Marine Fisheries Service, Fisheries Statistics Division. Personal Communication on 17
January 2019.

Nelson, J. S., T. C. Grande, and M. V. H. Wilson. 2016. Cohort Elopomorpha. Pages 133-153 in
Fishes of the World, 5 Ed. John Wiley & Sons, Ltd.

Nichols, R. 2001. Gene trees and species trees are not the same. Trends in Ecology and
Evolution. 16:358-364.

Nielsen, J. G., T. Monroe, T. Iwamoto, I. Harrison, W. Eschmeyer, B. Smith-Vaniz, R.
Robertson, B. Collette, J. Tyler, A. Dominici-Arosemena, W. Bussing, M. Lopez, H.
Molina, E. Salas, L. Sierra, and R. Viquez. 2010. Albula esuncula, Eastern Pacific
Bonefish. The IUCN Red List of Threatened Species™. The International Union for
Conservation of Nature. T178043A7489678.

Nowell, L. B., J. W. Brownscombe, L. F. G. Gutowsky, K. J. Murchie, C. D. Suski, A. J.
Danylchuk, A. Shultz, and S. J. Cooke. 2015. Swimming energetics and thermal ecology
of adult bonefish (Albula vulpes): a combined laboratory and field study in Eleuthera,
The Bahamas. Environmental Biology of Fishes. 98:2133-2146.

Pamilo, P. and M. Nei. 1988. Relationships between Gene Trees and Species Trees. Molecular
Biology and Evolution. 5(5):568-583.

Perez, A. U., J. J. Schmitter-Soto, A. J. Adams, and W. D. Heyman. 2019. Connectivity
mediated by seasonal bonefish (Albula vulpes) migration between the Caribbean Sea and
a tropical estuary of Belize and Mexico. Environmental Biology of Fishes. 102(2):197-
207.

www.manaraa.com

 49

Pfeiler, E. 1984. Inshore migration, seasonal distribution and sizes of larval bonefish, Albula, in
the Gulf of California. Environmental Biology of Fishes. 10(1/2):117-122.

Pfeiler, E. 2008. Resurrection of the name Albula pacifica (Beebe, 1942) for the shafted bonefish
(Albuliformes: Albulidae) from the eastern Pacific. Revista de Biología Tropical
(International Journal of Tropical Biology). 56:839-844.

Pfeiler, E., B. G. Bitler, and R. Ulloa. 2006. Phylogenetic Relationships of the Shafted Bonefish
Albula Nemoptera (Albuliformes: Albulidae) from the Eastern Pacific Based on
Cytochrome B Sequence Analyses. Copeia. 2006:778-784.

Pfeiler, E., B. G. Bitler, R. Ulloa, A. M. Van Der Heiden, and P. A. Hastings. 2008a. Molecular
Identification of the Bonefish Albula esuncula (Albuliformes: Albulidae) from the
Tropical Eastern Pacific, with Comments on Distribution and Morphology. Copeia.
2008:763-770.

Pfeiler, E., J. Colborn, M. R. Douglas, and M. E. Douglas. 2002. Systematic status of bonefishes
(Albula spp.) from the eastern Pacific Ocean inferred from analyses of allozymes and
mitochondrial DNA. Environmental Biology of Fishes. 63:151-159.

Pfeiler, E., M. A. Mendoza, and F. A. Manrique. 1988. Premetamorphic bonefish (Albula sp.)
leptocephali from the Gulf of California with comments on life history. Environmental
Biology of Fishes. 21(4):241-249.

Pfeiler, E., A. M. Van Der Heiden, R. S. Ruboyianes, and T. Watts. 2011. Albula gilberti, a new
species of bonefish (Albuliformes: Albulidae) from the eastern Pacific, and a description
of adults of the parapatric A. esuncula. Zootaxa. 3088(1):1-14.

Pfeiler, E., T. Watts, J. Pugh, and A. M. Van Der Heiden. 2008b. Speciation and demographic
history of the Cortez bonefish, Albula sp. A (Albuliformes: Albulidae), in the Gulf of
California inferred from mitochondrial DNA. Journal of Fish Biology. 73:382-394.

Posada, J. M., D. Debrot, and C. Weinberger. 2008. Aspects of the Biology and Recreational
Fishery of Bonefish (Albula vulpes) from Los Roques Archipelago National Park,
Venezuela. Pages 103-114 in J. S. Ault, Editor. Biology and management of the world
Tarpon and Bonefish fisheries. CRC Press, Boca Raton, FL, USA.

Raby, G. D., J. R. Packer, A. J. Danylchuk, and S. J. Cooke. 2014. The understudied and
underappreciated role of predation in the mortality of fish released from fishing gears.
Fish and Fisheries. 15:489-505.

Rasquin, P. 1955. Observations on the metamorphosis of the bonefish, Albula vulpes (Linnaeus).
Journal of Morphology. 97:77-117.

Rehage, J. S., R. O. Santos, E. K. N. Kroloff, J. T. Heinen, Q. Lai, B. D. Black, R. E. Boucek,
and A. J. Adams. 2019. How has the quality of bonefishing changed over the past 40
years? Using local ecological knowledge to quantitatively inform population declines in
the South Florida flats fishery. Environmental Biology of Fishes. 102(2):285-298.

www.manaraa.com

 50

Reist, J. D., M. Power, and J. B. Dempson. 2013. Arctic charr (Salvelinus alpinus): a case study
of the importance of understanding biodiversity and taxonomic issues in northern fishes.
Biodiversity. 14(1):45-56.

Rennert, J. J., J. M. Shenker, J. A. Angulo-Valdés, and A. J. Adams. 2019. Age, growth, and age
at maturity of bonefish (Albula species) among Cuban habitats. Environmental Biology
of Fishes. 102:253-265.

Rivas, L. R. and S. M. Warlen. 1967. Systematics and biology of the bonefish Albula Nemoptera
(Fowler). Fishery Bulletin U.S. Fish and Wildlife Services. 66:251-258.

Robins, C. R. and G. C. Ray. 1986. Bonefishes: Family Albulidae. Page 48 in C. R. Robins and
G. C. Ray, Editors. A Field Guide to Atlantic Coast Fishes of North America. Houghton
Mifflin Company, Boston, MA, USA.

Santos, R. O., J. S. Rehage, E. K. N. Kroloff, J. E. Heinen, and A. J. Adams. 2019a. Combining
data sources to elucidate spatial patterns in recreational catch and effort: fisheries-
dependent data and local ecological knowledge applied to the South Florida bonefish
fishery. Environmental Biology of Fishes. 102:299-317.

Santos, R. O., R. Schinbeckler, N. Viadero, M. F. Larkin, J. J. Rennert, J. M. Shenker, and J. S.
Rehage. 2019b. Linking bonefish (Albula vulpes) populations to nearshore estuarine
habitats using an otolith microchemistry approach. Environmental Biology of Fishes.
102:267-283.

Scott, W. B. and M. G. Scott. 1988. Family Albulidae / Bonefishes. Page 74. Atlantic Fishes of
Canada. University of Toronto Press, Toronto, Canada.

Seyoum, S., E. M. Wallace, and M. D. Tringali. 2008. PERMANENT GENETIC RESOURCES:
Twelve polymorphic microsatellite markers for the bonefish, Albula vulpes and two
congeners. Molecular ecology resources. 8:354-356.

Shaklee, J. B. and C. S. Tamaru. 1981. Biochemical and Morphological Evolution of Hawaiian
Bonefishes (Albula). Systematic Zoology. 30:125.

Song, H., J. E. Buhay, M. F. Whiting, and K. A. Crandall. 2008. Many species in one: DNA
barcoding overestimates the number of species when nuclear mitochondrial pseudogenes
are coamplified. Proceedings of the National Academy of Sciences. 105(36):13486-
13491.

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
large phylogenies. Bioinformatics. 30(9):1312-1313.

Steinberg, M. K. 2015. A nationwide assessment of threats to bonefish, tarpon, and permit stocks
and habitat in Belize. Environmental Biology of Fishes. 98:2277-2285.

www.manaraa.com

 51

Sweetman, B. M., J. R. Foley, and M. K. Steinberg. 2019. A baseline analysis of coastal water
quality of the port Honduras marine reserve, Belize: a critical habitat for sport fisheries.
Environmental Biology of Fishes. 102:429-442.

Szekeres, P. 2017. Exploring the Behaviour and Physiology of Juvenile Bonefish (Albula
vulpes): Fundamental and Applied Perspectives. Master’s thesis. Carleton University,
Ottawa, Ontario, Canada.

Szekeres, P., J. W. Brownscombe, F. Cull, A. J. Danylchuk, A. D. Shultz, C. D. Suski, K. J.
Murchie, and S. J. Cooke. 2014. Physiological and behavioural consequences of cold
shock on bonefish (Albula vulpes) in The Bahamas. Journal of Experimental Marine
Biology and Ecology. 459:1-7.

Szekeres, P., A. Wilson, C. Haak, A. Danylchuk, J. Brownscombe, C. Elvidge, A. Shultz, K.
Birnie-Gauvin, and S. Cooke. 2017. Does coastal light pollution alter the nocturnal
behavior and blood physiology of juvenile bonefish (Albula vulpes)? Bulletin of Marine
Science. 93:491-505.

Taylor, A. T., J. M. Long, M. D. Tringali, and B. L. Barthel. 2019. Conservation of Black Bass
Diversity: An Emerging Management Paradigm. Fisheries. 44(1):20-36.

Trontelj, P. and C. Fišer. 2009. Perspectives: Cryptic species diversity should not be trivialised.
Systematics and Biodiversity. 7(1):1-3.

Valdez-Moreno, M., L. Vásquez-Yeomans, M. Elías-Gutiérrez, N. V. Ivanova, and P. D. N.
Hebert. 2010. Using DNA barcodes to connect adults and early life stages of marine
fishes from the Yucatan Peninsula, Mexico: potential in fisheries management. Marine
and Freshwater Research. 61:655.

Vásquez-Yeomans, L., E. Sosa-Cordero, M. R. Lara, A. J. Adams, and J. A. Cohuo. 2009.
Patterns of distribution and abundance of bonefish larvae Albula spp. (Albulidae) in the
western Caribbean and adjacent areas. Ichthyological Research. 56(3):266-275.

Wallace, E. M. 2014. Assessing Biodiversity, Evolution, and Biogeography in Bonefishes
(Albuliformes): Resolving Relationships and Aiding Management. Doctoral dissertation.
University of Minnesota, St. Paul, MN, USA.

Wallace, E. M. 2015. High intraspecific genetic connectivity in the Indo-Pacific bonefishes:
implications for conservation and management. Environmental Biology of Fishes.
98:2173-2186.

Wallace, E. M. and M. D. Tringali. 2010. Identification of a novel member in the family
Albulidae (bonefishes). Journal of Fish Biology. 76:1972-1983.

Wallace, E. M. and M. D. Tringali. 2016. Fishery composition and evidence of population
structure and hybridization in the Atlantic bonefish species complex (Albula spp.).
Marine Biology. 163:142.

www.manaraa.com

 52

Warmke, G. L. and D. S. Erdman. 1963. Records of marine mollusks eaten by bonefish in Puerto
Rican waters. The Nautilus. 76(4):115-120.

Whitehead, P. J. P. 1986. The Synonymy of Albula vulpes (Linnaeus, 1758) (Teleostei,
Albulidae). Cybium. 10:211-230.

Whitehead, P. J. P. 1990. Albulidae. Pages 122-124 in J. C. Quéro, J. C. Hureau, C. Karrer, A.
Post, and L. Saldanha, Editors. Check-list of the fishes of the eastern tropical Atlantic.
UNESCO, Paris, France.

Zeng, X., A. Adams, M. Roffer, and R. He. 2019. Potential connectivity among spatially distinct
management zones for Bonefish (Albula vulpes) via larval dispersal. Environmental
Biology of Fishes. 102:233-252.

www.manaraa.com

 53

CHAPTER 2

Genome Assembly of the Roundjaw Bonefish
(Albula glossodonta), a Vulnerable

Circumtropical Sportfish

Brandon D. Pickett1*, Sheena Talma2*, Jessica R. Glass3, Daniel Ence4, Paul D. Cowley3, Perry

G. Ridge1, John S. K. Kauwe1,5

1Department of Biology, Brigham Young University, Provo, Utah, USA

2Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa

3South African Institute for Aquatic Biodiversity, Makhanda, South Africa

4School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, USA

5Brigham Young University - Hawai‘i, Laie, Hawai‘i, USA

*These authors contributed equally to this work

www.manaraa.com

 54

ABSTRACT

Background: Bonefishes are cryptic species indiscriminately targeted by subsistence and
recreational fisheries worldwide. The roundjaw bonefish, Albula glossodonta is the most
widespread bonefish species in the Indo-Pacific and is listed as vulnerable to extinction by the
IUCN’s Red List due to anthropogenic activities. Whole-genome datasets allow for improved
population and species delimitation, which – prior to this study – were lacking for Albula
species.

Results: We generated a high-quality genome assembly of an A. glossodonta individual from
Hawai‘i, USA. The assembled contigs had an NG50 of 4.75 Mbp and a maximum length of 28.2
Mbp. Scaffolding yielded an NG50 of 14.49 Mbp, with the longest scaffold reaching 42.29 Mbp.
Half the genome was contained in 20 scaffolds. The genome was annotated with 28.3 K protein-
coding genes. We then analyzed 66 A. glossodonta individuals and 38,355 SNP loci to evaluate
population genetic connectivity between six atolls in Seychelles and Mauritius in the Western
Indian Ocean. We observed genetic homogeneity between atolls in Seychelles and evidence of
reduced gene flow between Seychelles and Mauritius. The South Equatorial Current could be
one mechanism limiting gene flow of A. glossodonta populations between Seychelles and
Mauritius.

Conclusions: Quantifying the spatial population structure of widespread fishery species such as
bonefishes is necessary for effective transboundary management and conservation. This
population genomic dataset mapped to a high-quality genome assembly allowed us to discern
shallow population structure in a widespread species in the Western Indian Ocean. The genome
assembly will be useful for addressing the taxonomic uncertainties of bonefishes globally.

www.manaraa.com

 55

INTRODUCTION

Bonefishes (Albula spp.) are popular and economically important sportfishes found in the

tropics around the globe. In the Florida Keys (Florida, USA) alone, $465 million of the annual

economy is attributed to sportfishing tourism for bonefish and other fishery species inhabiting

coastal flats [1]. Considering only bonefish, the sportfishing industry generates $169 million

annually in the Bahamas [2, 3]. Unfortunately, population declines of bonefish have been

observed around the globe, raising questions about how best to conserve bonefish and manage

the associated fisheries [4]. Albula contains many morphological cryptic species, which, when

combined with baseline data gaps, creates a significant hurdle to effective management [5-7].

All bonefish species were historically synonymized to a single species, Albula vulpes

(Linnaeus 1758) [8], by 1940 [9-11], except for the threadfin bonefish, A. nemoptera (Fowler

1911) [12], which is morphologically distinct [12, 13]. Molecular testing in the last several

decades has enabled specific distinctions that were not previously possible [6, 9, 14-16].

Presently, three species complexes (A. argentea, A. nemoptera, and A. vulpes complexes) contain

the twelve putative albulid species, although identification remains difficult in most cases [4].

The roundjaw bonefish (Fig. 1), A. glossodonta (Forsskål 1775) [17], is one of seven species in

the A. vulpes complex.

Most of the species in the A. vulpes complex can be found in the Caribbean Sea and

Atlantic Ocean. By contrast, A. glossodonta can be found throughout the Indian and Pacific

Oceans; this range overlaps slightly with A. koreana (Kwun and Kim 2011) [18] from the A.

vulpes complex and drastically with each species in the A. argentea complex [4]. Albula

glossodonta may be distinguished genetically from other species, but morphological

identification based on its more-rounded jaw and larger average size is difficult for non-experts

www.manaraa.com

 56

[4, 19]. This difficulty, alongside underregulated fisheries and anthropogenic habitat loss, poses

significant threats to the future of this species. In point of fact, A. glossodonta has been evaluated

as “Vulnerable” on the International Union for the Conservation of Nature’s (IUCN) Red List of

Threatened Species™ [7], and several incidents of overexploitation, including regional

extirpation, have been reported [20-24].

The threat to A. glossodonta and other bonefish species will persist unless identification

is made easier and population genomics techniques are employed to understand and identify

evolutionarily significant units, areas of overlap between species, presence and extent of

hybridization, and life-history traits, especially migration and spawning [4]. Genetic

identification has hitherto been accomplished using only a portion of the mitochondrial

cytochrome b gene and some microsatellite markers [6, 9, 15, 18, 25-32], which likely provide

an insufficient taxonomic history [4, 33-35]. To contribute to a more robust capacity for

identification and enable more complex genomics-based analyses, we present a high-quality

genome assembly of an A. glossodonta individual. A transcriptome assembly was also created

and was used alongside computational annotation methods to create structural and functional

annotations for the genome assembly. Additionally, we present results from a population

genomic analysis of A. glossodonta populations in Seychelles and Mauritius, two island nations

that support lucrative bonefish fly fishing industries. The raw data, assembly, and annotations are

available on the National Center for Biotechnology Information (NCBI) website under

BioProject Accessions PRJNA668352 and PRJNA702254.

METHODS

www.manaraa.com

 57

An overview of the methods used in this study is provided here. Where appropriate,

additional details, such as the code for custom scripts and the commands used to run software,

are provided in the Supplementary Bioinformatics Methods [see Additional File 1].

Tissue Collection and Preservation

Blood, gill, heart, and liver tissues from one A. glossodonta individual were collected off

the coast of Moloka‘i (near Kaunakakai, Hawai‘i, USA) in February 2016. Heart tissue from a

second individual was also collected at the same location in September 2017. Tissue samples

were flash-frozen in liquid nitrogen, and blood samples were preserved in EDTA. All samples

were packaged in dry ice for transportation to Brigham Young University (BYU; Provo, Utah,

USA) and stored at ‑80°C until sequencing. The blood sample from the first individual was used

for short-read DNA sequencing. The gill, heart, and liver samples from the same individual were

used for short-read RNA sequencing. The heart sample from the second individual was used for

long-read sequencing and Hi‑C sequencing.

For population genomic analyses, tissues (dorsal muscle samples or fin clips) were

collected by fly fishing charter operators from 96 individuals of A. glossodonta from six coral

atolls in the Southwest Indian Ocean (SWIO; Fig 1; Table S1 [Additional File 2]). All tissues

were preserved in 95% EtOH at -20℃ until sequencing, and thereafter cataloged and preserved

in -80℃ in the tissue biobank of South African Institute for Aquatic Biodiversity (Makhanda,

South Africa) [36].

Sequencing

DNA Sequencing

www.manaraa.com

 58

DNA was prepared for long-read sequencing with Pacific Biosciences (PacBio; Menlo

Park, California, USA) [37] SMRTbell Library kits, following the protocol “Procedure &

Checklist – Preparing >30 kb SMRTbell Libraries Using Megaruptor Shearing and BluePippin

Size-Selection for PacBio RS II and Sequel Systems”. Continuous long-read (CLR) sequencing

was performed on thirteen SMRT cells for a 10-hour movie on the PacBio Sequel at the BYU

DNA Sequencing Center (DNASC) [38], a PacBio Certified Service Provider. Short-read

sequencing was performed in Rapid Run mode for 250 cycles in one lane on the Illumina (San

Diego, California, USA) [39] Hi-Seq 2500 at the DNASC after sonication with Covaris

(Woburn, Massachusetts, USA) [40] Adaptive Focus Acoustics technology and preparation with

New England Biolabs (Ipswich, Massachusetts, USA) [41] NEBNext Ultra II End Repair and

Ligation kits with adapters from Integrated DNA Technologies (Coralville, Iowa, USA) [42].

mRNA Sequencing

RNA was prepared with Roche (Basel, Switzerland) [43] KAPA Stranded RNA-Seq kit,

following manufacturer recommendations. Paired-end sequencing was performed in High Output

mode for 125 cycles on the three samples together in one lane on the Illumina Hi-Seq 2500 at the

DNASC.

Hi‑C Sequencing

DNA was prepared with Phase Genomics (Seattle, Washington, USA) [44] Proximo Hi‑C

Kit (Animal) using the Sau3AI restriction enzyme (cut site: GATC) following recommended

protocols. Paired-end sequencing was performed in Rapid Run mode for 250 cycles in one lane

on the Illumina Hi-Seq 2500 at the DNASC.

ddRAD Library Preparation and Sequencing

www.manaraa.com

 59

We employed double digest restricted site-associated (ddRAD) sequencing to measure

intraspecific genetic variation across six sampling localities in the SWIO. We extracted total

DNA using Qiagen DNeasy Tissue kits per the manufacturer’s protocol (Qiagen, Inc., Valencia,

California, USA) [45]. We examined the quality of DNA extractions visually using gel

electrophoresis and by quantifying isolated DNA using a Qubit fluorometer (Life Technologies,

Carlsbad, California, USA) [46].

We modified a protocol developed by Peterson et al. [47] to prepare samples for ddRAD

sequencing. We used the rare cutter PstI (5´-CTGCAG-3´ recognition site) and common cutter

MspI (5´-CCGG-3´ recognition site). We carried out double digests of 150 – 200 ng total DNA

per sample using the two enzymes in the manufacturer’s supplied buffer (New England Biolabs)

for 8 hours at 37℃. We randomly distributed samples from different localities across the

sequencing plate to minimize bias during library preparation. We visually examined samples

using gel electrophoresis to determine digestion success and then ligated barcoded Illumina

adapters to DNA fragments [47]. After ligation, we pooled samples into 12 libraries and

performed a clean-up using the QIAquick PCR Purification Kit. We then performed PCR using

Phusion Taq (New England Biolabs) and Illumina indexed primers [47]. Library DNA

concentration was checked using a Qubit fluorometer, followed by normalization, a second

round of pooling into four libraries, and an additional QIAquick cleanup step. We then re-

measured DNA concentration using a Qubit and combined equal amounts from each of the four

pools into one. We analyzed this final pool using a BioAnalyzer (Agilent, Santa Clara,

California, USA) [48] and performed size-selection using a Pippin Prep (Sage Science, Beverly,

Massachusetts, USA) [49], selecting for fragments between 300 – 500 bp. This was followed by

a final measure of concentration using a BioAnalyzer. We sent the library to the University of

www.manaraa.com

 60

Oregon Genomics and Cell Characterization Core Facility [50] where concentrations were

verified via qPCR before 100 bp single-end sequencing on an Illumina Hi-Seq 4000.

Read Error Correction

Illumina DNA

Illumina whole-genome sequencing (WGS) reads were corrected using Quake v0.3.5

[51], which depended upon old versions of R (v3.4.0) [52] and the R package VGAM (v0.7-8)

[53, 54]. Quake attempts to automatically choose a k‑mer cutoff, traditionally based on k‑mer

counts provided by Jellyfish [55]. To generate q‑mer counts instead of k‑mer counts, BFCounter

v0.2 [56] was used. Quake suggested a q‑mer cutoff of 2.33, which was subsequently used by the

correction phase of Quake. Unlike the WGS reads, the Illumina DNA reads created with the

Hi‑C library preparation were not corrected.

Illumina RNA

Illumina RNA-seq reads underwent a correction procedure using Rcorrector v1.0.2 [57].

Rcorrector automatically chooses a k‑mer cutoff based on k‑mer counts provided by Jellyfish

[55], which Rcorrector runs automatically for the user. Alternately, Jellyfish can be run

externally or bypassed with an alternate k‑mer counting program, and counts can subsequently

be provided to Rcorrector, which may be started at what it calls “stage 3”. We bypassed Jellyfish

by using BFCounter v0.2 [56] to count k‑mers. Note that Rcorrector made no changes to the

reads.

PacBio CLRs

Several methods were attempted for the correction of the PacBio CLRs. The corrected

reads from each method that did not fail were assembled, and the assembly results were used to

www.manaraa.com

 61

choose the correction strategy. Ultimately, a hybrid correction strategy was employed. First, the

reads were self-corrected using Canu v1.6 [58]. Second, the self-corrected reads were further

corrected using Illumina short-reads (previously corrected with Quake) using CoLoRMap

downloaded April 2018 [59].

Genome Size Estimation

Genome size was estimated using a k‑mer analysis on the corrected Illumina WGS reads.

First, the k‑mer coverage was estimated using ntCard v1.0.1 [60]. The k‑mer coverage histogram

was computationally processed to calculate the area under the curve and identify the peak to

determine genome size according to the following equation: a / p = s, where a is the area under

the curve, p is the number of times the k‑mers occur (the x-value) at the peak, and s is the

genome size.

Genome Assembly, Polishing, and Scaffolding

Multiple assemblies were generated from various correction strategies. The final

assembly was based on a hybrid correction strategy as described in the previous section “PacBio

CLRs”. The assembly was created using Canu v1.6 [58]. The assembly underwent two rounds of

polishing with the corrected Illumina WGS reads using RaCon v1.3.1 [61]. The polished contigs

were scaffolded in a stepwise fashion using two types of long-range information: Hi-C and

RNA-seq reads. Both scaffolding steps required read mapping to the contigs before determining

how to order and orient contigs. The Hi-C data alignments were performed following the Arima

Genomics (San Diego, California, USA) [62] Mapping Pipeline [63], which relied on bwa

v0.7.17-r1998 [64], Picard v2.19.2 [65], and SAMtools v1.6 [66]. BEDTools v2.28.0 [67] was

www.manaraa.com

 62

used to prepare the Hi-C alignments for scaffolding. The RNA-seq data were aligned using HiSat

v0.1.6-beta [68]. Scaffolding was performed for the Hi-C and RNA-seq data, respectively, with

SALSA, downloaded 29 May 2019 [69, 70], and Rascaf, downloaded June 2018 [71]. Assembly

continuity statistics, e.g., N50 and auN [72], were calculated with caln50 downloaded 10 April

2020 [73] and a custom Python [74] script. Assembly correctness was assessed using single-copy

orthologs with BUSCO v4.0.6 [75] and OrthoDB v10 [76] (Table S2 [Additional File 2]).

Transcriptome Assembly

The transcriptome was assembled from Illumina RNA-seq reads from all three tissues

(i.e., gill, heart, and liver). The raw reads were used because Rcorrector did not modify any

bases, thus making the raw reads and the “corrected” reads identical. The transcripts were

assembled using Trinity v2.6.6 [77]. Assembly correctness was assessed using single-copy

orthologs with BUSCO v4.0.6 [75] and OrthoDB v10 [76] (Table S2 [Additional File 2]).

ddRAD Sequence Assembly and Filtering

We assembled all ddRAD data using the program ipyrad v0.9.31 [78]. The input

parameters for ipyrad are included in the supplementary materials (Table S3 [Additional File 2]).

All A. glossodonta reads were mapped to the genome assembly. In step one of the ipyrad

workflow, we demultiplexed sequences by identifying individual sample barcode sequences and

restriction overhangs. During step two, we trimmed barcodes and adapters from reads, which

were then hard-masked using a q-score threshold of 20 and filtered for a maximum number of

undetermined bases per read. In step three we clustered reads with a minimum depth of coverage

of six to retain clusters in the ddRAD assembly. During step four, we jointly estimated

sequencing error rate and heterozygosity from site patterns across the clustered reads assuming a

www.manaraa.com

 63

maximum of two consensus alleles per individual. In step five, we determined consensus base

calls for each allele using the parameters from step four and filtered for a maximum number of

undetermined sites per locus. During step six, we clustered consensus sequences and aligned

reads for each sample. During step seven, we filtered the data by the maximum number of alleles

per locus, the maximum number of shared heterozygous sites per locus, and other criteria [78]

and formatted output files for downstream analyses. We included all loci shared by at least 10

individuals.

We performed additional filtering steps after running ipyrad to account for missing data

and rare alleles. Using VCFtools v0.1.16 [79] and BCFtools v1.6 [66], we removed individuals

missing more than 98% of genotype calls. We retained only biallelic single nucleotide

polymorphisms (SNPs) and removed (i) indels, (ii) loci with minor allele frequencies < 0.05 to

exclude singletons and false polymorphic loci due to potential sequencing errors, (iii) alleles with

a minimum count < 2, and (iv) loci with high mean depth values (> 100). We then implemented

an iterative series of filtering steps based on missing data and genotype call rates to maximize

genomic coverage per individual (Table S4 [Additional File 2]) [80]. Thereafter, we removed

loci out of Hardy-Weinberg Equilibrium to filter for excess heterozygosity. We then used PLINK

v1.9 [81] to perform linkage disequilibrium pruning by calculating the squared coefficient of

correlation (r2) on all SNPs within a 1 kb window [82]. We removed all SNPs with an r2 value

greater than 0.6.

Computational Annotation of Assembled Genome

The MAKER v3.01.02-beta [83] pipeline was used to annotate the assembly. With minor

modifications (see Supplementary Bioinformatics Methods, Additional File 1), annotation

proceeded according to the process described in the most recent Maker Wiki tutorial [84]. A

www.manaraa.com

 64

custom repeat library was created using RepeatModeler v1.0.11 [85]. The transcriptome

assembly, genome assembly, and proteins from UniProtKB Swiss-prot [86, 87] were used as

input to MAKER to create initial annotations. Gene models based on these annotations were

used to train the following ab initio gene predictors: AUGUSTUS v3.3.2 [88, 89] and SNAP

downloaded 3 June 2019 [90]. AUGUSTUS was trained using BUSCO [75] as a wrapper; SNAP

was trained without a wrapper. Genemark-ES v4.38 [91-93] was also trained on the assembled

genome. These models were all provided to MAKER for a second round of structural annotation.

The gene models based on those annotations were filtered with gFACs v1.1.1 [94] and again

provided to AUGUSTUS and SNAP. As Genemark-ES does not accept initial gene models, it

did not need to be run again. The gene models from the ab initio gene predictors were again

provided to MAKER for a third and final round of annotation. Functional annotations were

added using MAKER accessory scripts, the BLAST+ Suite v2.9.0 [95, 96], and InterProScan

v5.45-80.0 [97, 98]. The annotations in GFF3 format were validated with GenomeTools v1.6.1

[99] and manually curated to adhere to GenBank submission guidelines.

Statistical Analysis of Population Genomic Data

Detection of Loci under Selection

Before conducting population genomic analyses, we performed outlier tests to identify

loci putatively under selection, which are generally identified by a significant difference in allele

frequencies between populations [100]. Specifically, we implemented two outlier detection

methods that accommodate missing data: pcadapt v4.1.0 [100] and BayeScan v2.1 [101]. The

assumption behind pcadapt is that loci associated with population structure, ascertained via

principal component analysis (PCA), are under selection [100]. pcadapt is advantageously fast

and able to handle large numbers of loci. The number of principal components (K) was chosen

www.manaraa.com

 65

based on visualization of a scree plot of the eigenvalues of a covariance matrix. Once the K-

value was chosen, the Mahalanobis distance (D test statistic) was calculated using multiple linear

regression of the number of SNPs versus K [100, 102]. To account for false discovery rates, the

p-values generated using the Mahalanobis distance D were transformed to q-values using the R

v3.6.3 [52] q-value package v2.15.0 [103] with the cut-off point (α) set to 10% (0.1).

BayeScan measures allele frequencies between different populations and identifies loci

that are perceived to be undergoing natural selection based on their FST values [104, 105]. The

method applies linear regression to generate population- and locus-specific FST estimates and

calculates subpopulation FST coefficients by taking the difference in allele frequency between

each population and the common gene pool. BayeScan incorporates uncertainties in allele

frequencies due to small sample sizes, as well as imbalances in the number of samples between

populations [101]. We assigned each of the six sampling localities as a population. Our analyses

were based on 1:50 prior odds and included 100,000 iterations and a false discovery rate of 10%.

We used the default values for the remaining parameters and visualized results in R v3.6.3

following the developer’s manual [106]. After running both pcadapt and BayeScan, we used R to

assess the number of outliers identified by both programs and subsequently removed outlier loci

to generate a neutral dataset for downstream analyses.

Population Structure and Genetic Differentiation

To examine population structure, we used a model-based clustering method to reconstruct

the genetic ancestry of individuals using sparse nonnegative matrix factorization (sNMF) and

least-squares optimization. Model-based analyses were performed using the package LEA v2.6.0

[107] in R. The sNMF function in LEA estimates the number of ancestral populations and the

probability of the number of gene pools from which each individual originated by calculating an

www.manaraa.com

 66

ancestry coefficient and investigating the model’s fit through cross-entropy criterion [108]. We

calculated and visualized cross-entropy scores of K population clusters ranging from 1–10 with

10 replicates. To complement sNMF, we also used principal component analysis (PCA), a

distance-based approach based on variation in allele distributions, implemented in VCFtools

v0.1.16 [79]. For sNMF and PCA analyses, no populations were assigned a priori. We assigned

each of the six sampling localities as populations for subsequent visualization, grouped into four

“island groups” based on the proximity of some of the atolls that comprised our sampling

localities (Fig. 2). The five Seychelles atolls we sampled were spread amongst three separate

clusters of islands that are commonly referred to as the “outer island groups” due to the

geographic locations of these outlying coralline islands relative to the densely-populated, granitic

“inner islands” of the Seychelles Archipelago. The island groups consisted of (i) Amirantes (St.

Joseph’s Atoll), (ii) Farquhar (Farquhar and Providence Atolls), (iii) Aldabra (Aldabra and

Cosmoledo Atolls), as well as (iv) Mauritius (St. Brandon’s Atoll; Table S1 [Additional File 2]).

We computed summary statistics in R v3.6.3, including pairwise FST estimates (StAMPP v1.6.1

[109]), isolation by distance via the Mantel Rand test (adegenet v2.1.3 [110]), and expected and

observed heterozygosity (hierfstat v0.5-7 [111]) to compare genetic diversity and differentiation

between the four island groups.

RESULTS 

Sequencing

DNA Sequencing

Paired-end, short-read sequencing (Illumina) yielded 109.5M pairs of reads comprised of

53.86Gbp. The mean and N50 read lengths were 245.981 and 250, respectively. Continuous

www.manaraa.com

 67

long-read sequencing (PacBio) generated 9.5M reads with a total of 69.85Gbp. The mean and

N50 read lengths were 7,352.726 and 13,831, respectively. The longest read was 103,889bp. The

read length distribution is plotted in Figure 2. Result summaries for both sequencing runs are

available in Table 1.

mRNA Sequencing

RNA-seq from the three tissues (i.e., gill, heart, and liver) generated 270.7M pairs of

reads totaling 67.2Gbp. The gill tissue yielded 107.7M pairs of reads, with a total of 26.7Gbp.

The heart tissue generated 19.6Gbp across 78.8M pairs of reads. The 84.2M pairs of reads from

the liver tissue were comprised of 20.9Gbp. Across all three tissues, the mean and N50 read

lengths were 124.122 and 125, respectively. The combined results from all three tissues are

summarized in Table 1.

Hi‑C Sequencing

Sequencing yielded 88.7M pairs of reads comprised of 44.28Gbp. The mean and N50

read lengths were 249.493 and 250, respectively. A summary of these results is presented in

Table 1.

ddRAD sequencing

After data processing using ipyrad, we recovered a mean of 114,324 reads per individual

for A. glossodonta and an average of 107,105 loci per individual. Following filtering for missing

data, minor allele frequency, and linkage disequilibrium, the dataset contained 66 individuals and

38,355 SNPs. BayeScan, being a more conservative outlier detection method than pcadapt, did

not identify any outliers; we thus used only outlier detection results from pcadapt. Subsequent

www.manaraa.com

 68

removal of pcadapt outliers (N = 155) resulted in a neutral dataset containing 38,200 SNPs with

9% missing data.

Read Error Correction

Illumina DNA

When Quake corrects paired-end reads, three outcomes are possible for each pair of

reads: (i) both reads are either already correct or correctable, (ii) one read is either correct or

correctable and the other is low-quality, or (iii) both reads are low-quality. Of the original

218.96M reads (109.5M pairs of reads), Quake corrected 62.7M of them and removed 51.6M of

them. 5.97M pairs of reads were discarded because both reads were rated as erroneous. 39.6M

pairs of reads had one read that was correct or correctable and one read that was low-quality;

these were also discarded. The remaining 63.88M pairs of reads were either correct or

correctable and were kept in the final read set containing 29.11Gbp of sequence.

Illumina RNA

No corrections were made to the RNA-seq reads by the error correction software.

PacBio CLRs

The dual-correction strategy (self-correction followed by hybrid-correction) reduced the

number of reads from 9.5M to 2.79M and the total number of bases from 69.85Gbp to 36.79Gbp.

The mean and N50 read lengths were changed from 7,354 and 13,831 to 13,193 and 15,483,

respectively. The longest read was 63,271 bases. The distribution of read lengths can be viewed

in Fig. 3.

Genome Size Estimation

www.manaraa.com

 69

The genome size was estimated to be approximately 0.933Gbp as a result of the k‑mer

analysis, which was consistent with the authors’ expectations based on two closely related

elopomorph species [112, 113].

Genome Assembly, Polishing, and Scaffolding

The initial assembly from Canu was comprised of 3.8K contigs with a total assembly size

of 1.05Gbp. The mean contig length, N50, NG50, and maximum contig length were 276.2Kbp,

3.6Mbp, 4.7Mbp, and 28.2Mbp, respectively. The L50 was 57, and the LG50 was 43. The auN

was 8.17M. After two rounds of polishing these contigs with the corrected Illumina WGS reads

using RaCon, the assembly statistics changed only marginally. The number of contigs, L50, and

LG50 were unchanged. The assembly size decreased by 318.7Kbp (0.03%). The mean contig

length, N50, NG50, and maximum contig length were reduced by 83.8bp (0.03%), 1.3Kbp

(0.04%), 1.5Kbp (0.03%), and 3.8Kbp (0.01%), respectively. The auN decreased by 2Kbp

(0.02%).

The scaffolding with the Hi-C data joined some polished contigs together, reducing the

sequence count to 3.6K (-4.69%). The number of bases, excluding unknown bases (Ns), was

unchanged; however, it is important to note that when SALSA creates gaps while ordering and

orienting contigs, it always uses a gap size of 500bp. The result, in this case, was adding 116Kbp

of Ns, which means 232 gaps were created. These gaps were spread across 113 scaffolds. No

scaffold had more than six gaps (seven contigs ordered and oriented together). The mean

scaffold length, scaffold N50, scaffold NG50, and maximum scaffold length increased by

13.6Kbp (4.92%), 3.8Mbp (106.25%), 5.79Mbp (121.90%), and 14.1Mbp (49.85%),

respectively. Coupled with these increases were decreases of 29 (50.88%) and 22 (51.16%) in

the L50 and LG50, respectively. The auN increased to 14.1M (+72.81%). The quality of the

www.manaraa.com

 70

Hi‑C scaffolding can be visualized (Fig. 4) via a contact matrix generated by PretextMap [114]

and PretextView [115].

The genome assembly was further improved by scaffolding with RNA-seq data. As

expected, the magnitude of the changes between sets of scaffolds was smaller than what was

observed between contigs and scaffolds. The total number of sequences was reduced by 176 to

3.4K (-4.69%). The number of known bases was again unchanged; however, it is important to

note that when Rascaf orders and orients contigs (or other scaffolds) it always inserts a gap of

17bp to represent gaps of unknown size. Rascaf added 179 new gaps (3,043 unknown bases)

across 148 sequences. Three gaps (1,500 unknown bases) from SALSA were removed, but the

rest remained unchanged. The most gaps added to a single sequence by Rascaf was five. The

sequence with the most total gaps (from either source) had seven gaps (six from Hi-C), thus eight

contigs were joined together.

This resulting set of scaffolds (which also includes all the contigs that were not joined to

another contig in some way) had a mean length of 304.5Kbp (+5.11% from the Hi-C only value)

and a maximum length of 42.29Mbp (+0.08%). The N50 and NG50 increased to 7.97Mbp

(+7.04%) and 14.49Mbp (+37.58%), respectively. Decreases to 26 (-7.14%) and 20 (-4.76%)

were observed for L50 and LG50, respectively. The auN increased to 14.7M (+4.37%). Table 2

summarizes the assembly continuity statistics, and the area under the N-curve (auN) is visualized

in Fig. 5.

The assembly correctness, as assessed with single-copy orthologs, was also evaluated at

each stage (Table S2 [Additional File 2]). The results suggest that the modifications made to the

primary Canu-based assembly from polishing and scaffolding did not significantly impact the

correct assembly of single-copy orthologs. The final set of scaffolds had 3,481 complete single-

www.manaraa.com

 71

copy orthologs (95.6% of 3,640 from the ODB10 Actinopterygii set). Of these 88.4% (3,076)

were present in the assembly only once, and 11.6% (405) were present more than once. Twenty-

five (0.7%) and 135 (3.7%) single-copy orthologs were fragmented in and missing from the

assembly, respectively.

Transcriptome Assembly

The transcriptome assembly generated by Trinity was comprised of 455K sequences with

a mean sequence length of 1,177bp. The N50 and L50 were 2.6Kbp and 56K, respectively. The

N90 and L90 were, respectively, 410bp and 270K. Of the 3,640 single-copy orthologs in the

ODB10 Actinopterygii set, 86.4% (3,144) were complete; 39.5% (1,241) of which were present

only once in the transcript set. 128 (3.5%) single-copy orthologs were fragmented in the

transcript set, 368 (10.1%) were missing. (See Table S2 [Additional File 2])

Computational Annotation

Computational structural and functional annotation yielded 28.3K protein-coding genes.

Of these, 17.2K and 15.6K have annotated 5′ and 3′ UTRs, respectively. 1.8K tRNA genes were

also identified. The annotations are available with the assembly on GenBank.

Population Genomic Analysis

Cross-entropy scores generated by the model-based population differentiation analysis,

sNMF, provided support for a single population of A. glossodonta across all localities. However,

individual ancestry plots generated by sNMF showed evidence of genetic differentiation in

individuals from Mauritius (St. Brandon’s Atoll), compared to the Seychelles sites (Fig. 6A).

This differentiation was corroborated by PCA visualization of the first two principal

www.manaraa.com

 72

components, where St. Brandon’s Atoll individuals clustered separately from the four Seychelles

island groups (Fig. 6B). Together, both population differentiation analyses indicated weak

geographic population structure across all sampling localities, with reduced gene flow between

St. Brandon’s Atoll and the Seychelles sites.

Pairwise FST results also indicated greater genetic differentiation between St. Brandon’s

Atoll and all other island groups (Table 3). Estimates of observed and expected heterozygosity

were similar across island groups (Table S5 [Additional File 2]), suggesting no differences in

genetic diversity between sampling localities and providing no evidence for distinguishing

metapopulation processes such as inbreeding. A test of isolation by distance between sampling

sites was not significant (p = 0.1501).

DISCUSSION

Albula glossodonta is an important fishery species in the Indo-Pacific for both

subsistence and recreational purposes [20, 30, 116, 117]. Given this species’ current

“Vulnerable” IUCN status [7, 118] amidst recent taxonomic uncertainties [4], understanding

patterns of gene flow and population structure in A. glossodonta is important for fisheries

management [30, 119].

We observed a genetically homogenous population of A. glossodonta across five island

atolls in the Seychelles Archipelago, with limited gene flow between Seychelles and Mauritius.

Unlike highly migratory species such as eels (Anguillidae), which are close relatives of

bonefishes, adult bonefishes are known for high site fidelity with relatively short migrations

(~10-100 km) [117, 120, 121]. We hypothesized that adult bonefishes would not migrate

between the Seychelles islands, or between the Seychelles and St. Brandon’s Atoll in Mauritius,

www.manaraa.com

 73

since these distances span 400–2,000 km. Consequently, the observed trend of genetic

homogeneity across the Seychelles is likely not a result of adult long-distance migrations, but

rather pelagic larval dispersal, the primary dispersal mechanism for bonefishes [32, 121-123].

Bonefish larvae, also referred to as leptocephali, have a long pelagic larval duration ranging from

41–72 days, which enables them to drift long distances with ocean currents [21, 124]. The

estimated pelagic larval duration for A. glossodonta is 57 days, based on observations of

individuals from French Polynesia in the South Pacific [21]. The Seychelles islands are located

in the South Equatorial Current, which flows westwards from the Indian Ocean towards the

eastern coast of continental Africa, enabling larvae to be transported across the Seychelles

islands, even across depths exceeding 4000 m (Fig. 2) [125, 126].

Genetic homogeneity is not always an outcome of long pelagic larval duration, as

demonstrated by Anguilla marmorata, for which 2–5 stocks were identified in the Indo-Pacific

[127, 128], and A. glossodonta, where putative stocks between the Indian and Pacific Oceans

were suggested [119]. Indeed, we found evidence of restricted gene flow between the Seychelles

sampling sites and St. Brandon’s Atoll, Mauritius, which is ~1500–2000 km from the Seychelles

Islands (Fig. 2). This genetic structuring was unexpected, given the long pelagic larval duration

of A. glossodonta. However, there is evidence of limited gene flow between Seychelles and

Mauritius in other marine fish species with pelagic larvae, such as Lutjanid kasmira [129],

Lethrinus nebulosus [130], and Pristipomoides filamentous [131].

We attribute the observed genetic structure between Seychelles and St. Brandon’s Atoll

to the ocean currents in the southwestern Indian Ocean and their role in larval transport [132,

133]. St. Brandon’s Atoll is in the direct path of one of the bifurcated arms of the South

Equatorial Current as it passes through the Mascarene Plateau [125, 134]. The South Equatorial

www.manaraa.com

 74

Current pushes water westward, which may create a barrier to gene flow to islands south of

Seychelles such as Mauritius and Réunion [130, 131, 134]. Although there are currently no

bonefish – or even elopomorph – larval dispersal models for the Indian Ocean, pelagic larval

dispersal simulation models of coral species in the southwestern Indian Ocean corroborate the

biogeographic break between Seychelles and Mauritius, suggesting connectivity is limited even

when the pelagic larval duration is between 50–60 days [125, 134]. However, these models

considered coral larvae, which are completely reliant on currents for their dispersal [122, 134,

135]. Whilst the dispersal behavior of A. glossodonta larvae is unknown, we speculate that,

similar to eels (Anguillidae; which also have long pelagic larval durations), bonefishes could

disperse greater distances than passive corals by having the ability to swim (e.g., Anguilla

japonica [136]) or may even take part in vertical migrations (e.g., Anguilla japonica [137, 138]).

While officially undescribed, swimming ability in bonefish leptocephali has been observed

[139], and vertical migrations have previously been theorized [122, 140].

Genome-wide datasets have enabled researchers to better-delineate population

connectivity across seascapes for marine species where conventional markers (e.g., mtDNA,

microsatellites) have not provided sufficient genomic resolution [127, 141, 142]. Such advances

in genomic sequencing have altered our view of population connectivity in other marine fishes

such as yellowfin tuna (Thunnus albacores [143]) and the American eel (Anguilla rostrata

[144]). These studies, including ours, highlight the power of large genomic datasets for

investigating connectivity in open-ocean environments containing few, if any, natural barriers

that were traditionally thought to drive population structure. Although there has been a rapid

increase in the number of studies using next-generation sequencing datasets for marine fishes,

www.manaraa.com

 75

few studies to date have employed the use of genomic datasets on elopomorphs, and none on

bonefish [144-146].

Conclusions

This is the first genome assembly and annotation for an albulid species, as well as the

first use of a genome-wide single-nucleotide polymorphism dataset to investigate population

structure for Albula glossodonta or any bonefish species in the Indian Ocean. Individuals of A.

glossodonta were genetically homogenous across four coralline island groups in the Seychelles

Archipelago, but they showed evidence of genetic differentiation between the Seychelles and

Mauritius (St. Brandon’s Atoll). These patterns of connectivity are likely facilitated by pelagic

larval dispersal, which is presumed to be strongly shaped by currents in the southwestern Indian

Ocean. Only with high-resolution genomic data were we able to discern this pattern of

population structure between Seychelles and Mauritius. Our dataset serves as a valuable resource

for future genomic studies of bonefishes to facilitate their management and conservation.

DATA AVAILABILITY

The raw reads, genome assembly, and annotations are available under BioProject

PRJNA668352 and BioSamples SAMN16516506-SAMN16516510 and SAMN17284271. The

ddRAD reads are available under BioProject PRJNA702254, BioSamples SAMN18012541-

SAMN18012606.

AUTHOR CONTRIBUTIONS

www.manaraa.com

 76

PDC: Conceptualization; Funding Acquisition; Investigation; Supervision; Resources;

Writing - Review & Editing. DE: Methodology; Validation; Writing - Original Draft

Preparation; Writing - Review & Editing. JRG: Conceptualization; Formal Analysis;

Investigation; Supervision; Methodology; Visualization; Writing - Original Draft Preparation;

Writing - Review & Editing. JSKK: Conceptualization; Funding Acquisition; Investigation;

Supervision; Resources; Writing - Review & Editing. BDP: Conceptualization; Data Curation;

Formal Analysis; Investigation; Methodology; Software; Visualization; Writing - Original Draft

Preparation; Writing - Review & Editing. PGR: Funding Acquisition; Supervision; Resources;

Writing - Review & Editing. ST: Investigation; Resources; Writing - Original Draft Preparation;

Writing - Review & Editing.

ORCIDS

Paul D. Cowley, Ph.D.: 0000-0003-1246-4390

Daniel Ence, Ph.D.: 0000-0001-6099-9985

Jessica R. Glass, Ph.D.: 0000-0002-9843-1786

John S. K. Kauwe III, Ph.D.: 0000-0001-8641-2468

Brandon D. Pickett: 0000-0001-8235-4440

Perry G. Ridge, Ph.D.: 0000-0001-6944-2753

Sheena Talma: 0000-0003-2971-6523

ACKNOWLEDGEMENTS

www.manaraa.com

 77

We thank the artist, Tim Johnson [147], for creating the beautiful illustration (Fig. 1). We

thank the Brigham Young University DNA Sequencing Center [38] and Office of Research

Computing [148] for their continued support of our research. We thank Elizabeth M. Wallace,

Clayton Ching, Josiah Ching, Derek Olthuis, Zachary Emig, Weston Gleave, and the fly fishing

guides from FlyCastaway [149] and Alphonse Fishing Company [150], especially Daniel

Hoenings and Matthieu Cosson, for the collection of samples in Hawai‘i and the western Indian

Ocean. We are grateful to Taryn Bodill and Martinus Scheepers of the South African Institute for

Aquatic Biodiversity [36] for laboratory assistance and Thomas Near of Yale University [151]

for the use of laboratory space, funding, and equipment. We also thank the Seychelles Fishing

Authority [152], the Island Conservation Society [153], the Islands Development Company Ltd.

[154], the Seychelles Islands Foundation [155], the Ministry of Agriculture, Climate Change and

Environment [156], and Shane and Hafiza Talma for their logistical support.

FUNDING

BDP was supported by a Conservation Scholarship [157] from Fly Fishers International

[158]. ST was supported by the South African Institute for Aquatic Biodiversity [36], the

Mandela Rhodes Foundation [159], the Marine Research Grant [160] from the Western Indian

Ocean Marine Science Association [161], and the Yale University Department of Ecology and

Evolutionary Biology [162].

CONFLICT OF INTEREST

None declared.

www.manaraa.com

 78

ADDITIONAL FILES

Additional File 1: Supplementary Bioinformatics Methods. Herein as Appendix 2.

Additional File 2: Supplementary Tables. Herein as Appendix 3.

TABLES & FIGURES
============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

 79

Table 1. Sequencing Information. The
results from each type of DNA and RNA
sequencing from Albula glossodonta. PE=
Paired-end reads. SMRT=Single-Molecule,
Real-Time sequencing. CLR=Continuous
Long-reads.

Company Illumina Illumina Illumina PacBio

Instrument

Hi-Seq
2500

Hi-Seq
2500

Hi-Seq
2500 Sequel I

Mode

Rapid
Run

High
Output

Rapid
Run NA

Sequencing
Type

PE PE Hi-C,

PE
SMRT,

CLR

Duration

250
cycles

125
cycles

250
cycles

30
hours

Specimen 1 1 2 2

Tissues

Blood
Gill,

Heart,
Liver

Heart Heart

Molecule DNA RNA DNA DNA

Millions of
Read(Pair)s

109.5 270.7 88.7 9.5

Mean Read
Length

246 124 245 7,353

Read N50 250 125 250 13,831

Nucleotides
(Gb)

53.86 67.2 44.28 69.85

Table 2. Continuity Statistics. Continuity statistics
for the Albula glossodonta genome assembly at
various stages. Note that the auN value is the area
under the NG curve, not the N curve. Also note that
when submitted to GenBank, the gaps were all
converted to a length of 100 bp.

 Contigs
Polished
Contigs

Scaffolds
(Hi‑C)

Scaffolds
(Hi‑C +

RNA‑seq)

Sequences 3,799 3,799 3,621 3,445

Known
Bases 1.04935 Gb 1.04903 Gb 1.04903 Gb 1.04903 Gb

Mean
Length 276,217.073 276,133.196 289,707.267 304,507.986

Max.
Length 28,203,290 28,199,443 42,256,846 42,290,388

NG50 4,747,926 4,746,442 10,532,420 14,490,288

NG90 503,090 503,135 739,806 827,489

LG50 43 43 21 20

LG90 289 289 181 162

auN 8,165,188 8,163,173 14,106,761 14,723,001

Sequences
with Gaps - - 133 236

Gaps - - 232 408

Unknown
Bases - - 116,000 117,543

Mean
Gap

Length
- - 500.000 288.096

Table 3. Pairwise FST Comparisons by
Island Group.

 Amirantes Farquhar Aldabra

Farquhar 0.0014*
Aldabra 0.0005 0.0020*

Mauritius 0.0034* 0.0043* 0.0040*

www.manaraa.com

 80

Figure 1. Roundjaw Bonefish (Albula glossodonta) adult. Quantitative morphological data for this illustration of
A. glossodonta were obtained primarily from two articles: Hidaka et al. 2008 [163] and Shaklee and Tamaru 1981
[14]. These were then evaluated by the artist, with assistance and input from the authors, to select specific values for
details such as the number of pored lateral line scales (76) and the number of rays in the pectoral (18), dorsal (16),
pelvic (10), and anal fins (9). Each of these was portrayed in the illustration to be at or near the middle of the ranges
reported in the aforementioned articles. While some limited information was found in the literature describing
coloration and general shape, the artist found particular benefit in some excellent, detailed photographs by Derek
Olthuis of samples that were both personally caught in Hawai‘i and later genetically identified as A. glossodonta by
Dr. J. S. K. Kauwe. Illustration Copyright: Tim Johnson, used with permission.

www.manaraa.com

 81

Figure 2. Sampling localities for A. glossodonta population genomic analysis. The upper panel shows the marine
boundaries for the Seychelles and Mauritius in light blue. Locations of sampling sites are indicated by dark blue
ovals. The lower panel shows the atolls comprising the four island groups: Amirantes, Farquhar, Aldabra, and
Mauritius.

www.manaraa.com

 82

Figure 3. Frequency of Pacific Biosciences Read Lengths. The change in read length distribution is demonstrated
as reads are corrected. The dramatic shift from raw to corrected reads is evident. The self-corrected (purple) data
points are slightly larger than the dual-corrected (yellow) data points to make the purple distribution visible, the size
has no meaning.

www.manaraa.com

 83

Figure 4. Hi-C Contact Matrix showing Scaffolding Correctness. In the context of scaffolding, Hi-C contact
matrices show how correct the scaffolds are. Off-diagonal marks, especially those that are bright and large, are
evidence of mis-assembly and/or incorrect scaffolding. The interpretations of the lighter and smaller off-diagonal
marks in this image are ambiguous because the assembly is unphased with some relatively short contigs/scaffolds.
Additional detail may be viewed by zooming in on the high-resolution image.

www.manaraa.com

 84

Figure 5. Area Under the N-curve (auN) for each Assembly Step. The N-curve and the area under it are plotted
for each major step of the assembly: contigs, polished contigs, scaffolds from only Hi-C data, and scaffolds from
both Hi-C and RNA-seq data. The auN for the polished contigs (green) is very similar to the contigs (yellow). Most
of the curve was completely blocked by the contigs (yellow) curve. To show that the polished contigs (green) share
nearly the same curve, the line was plotted more thickly so it can just barely be seen. Similarly, the Hi-C + RNA-seq
scaffolds (purple) curve is very similar to the Hi-C only scaffolds (blue) curve. In this case, differences are more
apparent. In certain places, e.g., at the highest peak, the Hi-C + RNA-seq scaffolds (purple) are plotted more thickly
so it can be seen behind the Hi-C only scaffolds (blue).

www.manaraa.com

 85

Figure 6. Population Differentiation Analyses. Weak geographic population structure is present across all
sampling localities, with reduced gene flow between St. Brandon’s Atoll and the Seychelles sites. Island groups are
colored as in Fig. 2. (A) Individual ancestry plots generated using sNMF, indicating K = 2 putative populations. (B)
Principal component analysis biplot showing the first two principal components.

www.manaraa.com

 86

REFERENCES

1. Fedler T. Economic Impact of the Florida Keys Flats Fishery. 2013. Vero Beach, FL,
USA: The Bonefish and Tarpon Trust.

2. Fedler T. The Economic Impact of Flats Fishing in The Bahamas. 2010. The Bahamian
Flats Fishing Alliance.

3. Fedler T. The 2018 Economic Impact of Flats Fishing in The Bahamas. 2019. Miami,
FL, USA: The Bonefish and Tarpon Trust.

4. Pickett BD, Wallace EM, Ridge PG and Kauwe JSK. Lingering Taxonomic Challenges
Hinder Conservation and Management of Global Bonefishes. Fisheries. 2020; 45 7:347-
58. doi:10.1002/fsh.10438.

5. Jörger KM and Schrödl M. How to describe a cryptic species? Practical challenges of
molecular taxonomy. Frontiers in Zoology. 2013; 10 1:59. doi:10.1186/1742-9994-10-59.

6. Wallace EM. Assessing Biodiversity, Evolution, and Biogeography in Bonefishes
(Albuliformes): Resolving Relationships and Aiding Management. Doctoral dissertation,
University of Minnesota, St. Paul, MN, USA, 2014.

7. Adams AJ, Horodysky AZ, McBride RS, Guindon K, Shenker J, MacDonald TC, et al.
Global conservation status and research needs for tarpons (Megalopidae), ladyfishes
(Elopidae) and bonefishes (Albulidae). Fish and Fisheries. 2014; 15 2:280-311.
doi:10.1111/faf.12017.

8. Linnaeus C. Systema Naturæ. 10 ed. Stockholm, Sweden 1758.

9. Colborn J, Crabtree RE, Shaklee JB, Pfeiler E and Bowen BW. The Evolutionary Enigma
of Bonefishes (Albula spp.): Cryptic Species and Ancient Separations in a Globally
Distributed Shorefish. Evolution. 2001; 55:807-20. doi:10.1111/j.0014-
3820.2001.tb00816.x.

10. Bowen BW, Karl SA and Pfeiler E. Resolving Evolutionary Lineages and Taxonomy of
Bonefishes (Albula spp.). In: Ault JS, editor. Biology and management of the world
Tarpon and Bonefish fisheries. Boca Raton, FL, USA: CRC Press; 2008. p. 147-54.

11. Whitehead PJP. The Synonymy of Albula vulpes (Linnaeus, 1758) (Teleostei, Albulidae).
Cybium. 1986; 10:211-30.

12. Fowler HW. A new albuloid fish from Santo Domingo. Proc Acad Nat Sci Philadelphia.
1911; 62:651-4.

13. Rivas LR and Warlen SM. Systematics and biology of the bonefish Albula Nemoptera
(Fowler). Fishery Bulletin US Fish and Wildlife Services. 1967; 66 2:251-8.

www.manaraa.com

 87

14. Shaklee JB and Tamaru CS. Biochemical and Morphological Evolution of Hawaiian
Bonefishes (Albula). Syst Zool. 1981; 30:125. doi:10.2307/2992412.

15. Seyoum S, Wallace EM and Tringali MD. PERMANENT GENETIC RESOURCES:
Twelve polymorphic microsatellite markers for the bonefish, Albula vulpes and two
congeners. Mol Eco Res. 2008; 8:354-6. doi:10.1111/j.1471-8286.2007.01954.x.

16. Wallace EM and Tringali MD. Identification of a novel member in the family Albulidae
(bonefishes). J Fish Biol. 2010; 76:1972-83. doi:10.1111/j.1095-8649.2010.02639.x.

17. Forsskål P. Descriptiones Animalium: Avium, Amphibiorum, Piscium, Insectorum,
Vermium. Hauniæ 1775.

18. Kwun HJ and Kim JK. A new species of bonefish, Albula koreana (Albuliformes:
Albulidae) from Korea and Taiwan. Zootaxa. 2011; 63:57-63.

19. Donovan MK, Friedlander AM, Harding KK, Schemmel EM, Filous A, Kamikawa K, et
al. Ecology and niche specialization of two bonefish species in Hawai‘i. Environmental
Biology of Fishes. 2015; 98:2159-71. doi:10.1007/s10641-015-0427-z.

20. Filous A, Lennox RJ, Clua EEG and Danylchuk AJ. Fisheries selectivity and annual
exploitation of the principal species harvested in a data-limited artisanal fishery at a
remote atoll in French Polynesia. Ocean & Coastal Management. 2019; 178 1 August
2019:1-13. doi:10.1016/j.ocecoaman.2019.104818.

21. Filous A, Lennox RJ, Coleman RR, Friedlander AM, Clua EEG and Danylchuk AJ. Life‐

history characteristics of an exploited bonefish Albula glossodonta population in a remote
South Pacific atoll. J Fish Biol. 2019; 95 2:562-74. doi:10.1111/jfb.14057.

22. Johannes RE and Yeeting B. I-Kiribati knowledge and management of Tarawa's Lagoon
resources. Atoll Research Bulletin. 2000; 489:1-24. doi:10.5479/si.00775630.489.1.

23. Ram-Bidesi V. An economic assessment of destructive fishing methods in Kiribati: A
case study of te ororo fishing in Tarawa. SPC Fisheries Newsletter. 2011; 135
May/August:21-7.

24. Ram-Bidesi V and Petaia S. Socio-economic assessment of fishing practices by North and
South Tarawa fishers in Kiribati. 2010.

25. Pfeiler E, Colborn J, Douglas MR and Douglas ME. Systematic status of bonefishes
(Albula spp.) from the eastern Pacific Ocean inferred from analyses of allozymes and
mitochondrial DNA. Environmental Biology of Fishes. 2002; 63:151-9.
doi:10.1023/A:1014263528547.

26. Pfeiler E. Resurrection of the name Albula pacifica (Beebe, 1942) for the shafted
bonefish (Albuliformes: Albulidae) from the eastern Pacific. Rev Biol Trop. 2008;
56:839-44.

www.manaraa.com

 88

27. Pfeiler E, Bitler BG and Ulloa R. Phylogenetic Relationships of the Shafted Bonefish
Albula Nemoptera (Albuliformes: Albulidae) from the Eastern Pacific Based on
Cytochrome B Sequence Analyses. Copeia. 2006; 2006:778-84. doi:10.1643/0045-
8511(2006)6[778:PROTSB]2.0.CO;2.

28. Kwun HJ, Kim JK, Doiuchi R and Nakabo T. Molecular and morphological evidence for
the taxonomic status of a newly reported species of Albula (Albuliformes: Albulidae)
from Korea and Taiwan. Animal Cells and Systems. 2011; 15:45-51.
doi:10.1080/19768354.2011.555151.

29. Valdez-Moreno M, Vásquez-Yeomans L, Elías-Gutiérrez M, Ivanova NV and Hebert
PDN. Using DNA barcodes to connect adults and early life stages of marine fishes from
the Yucatan Peninsula, Mexico: potential in fisheries management. Marine and
Freshwater Research. 2010; 61:655. doi:10.1071/MF09222.

30. Wallace EM. High intraspecific genetic connectivity in the Indo-Pacific bonefishes:
implications for conservation and management. Environmental Biology of Fishes. 2015;
98:2173-86. doi:10.1007/s10641-015-0416-2.

31. Díaz-Viloria N, Sánchez-Velasco L, Perez-Enriquez R, Zárate-Villafranco A, Miller MJ
and Jiménez-Rosenberg SPA. Morphological description of genetically identified Cortez
bonefish (Albula gilberti, Pfeiler and van der Heiden 2011) leptocephali from the
southern Gulf of California. Mitochondrial DNA Part A. 2017; 28:717-24.
doi:10.3109/24701394.2016.1174226.

32. Wallace EM and Tringali MD. Fishery composition and evidence of population structure
and hybridization in the Atlantic bonefish species complex (Albula spp.). Mar Biol. 2016;
163:142. doi:10.1007/s00227-016-2915-x.

33. Pamilo P and Nei M. Relationships between Gene Trees and Species Trees. Mol Biol
Evol. 1988; 5 5:568-83. doi:0.1093/oxfordjournals.molbev.a040517.

34. Nichols R. Gene trees and species trees are not the same. Trends Eco Evol. 2001; 16:358-
64. doi:10.1016/S0169-5347(01)02203-0.

35. Song H, Buhay JE, Whiting MF and Crandall KA. Many species in one: DNA barcoding
overestimates the number of species when nuclear mitochondrial pseudogenes are
coamplified. Proceedings of the National Academy of Sciences. 2008; 105 36:13486-91.
doi:10.1073/pnas.0803076105.

36. The South African Insitute for Aquatic Biodiversity (SAIAB). https://www.saiab.ac.za.
Accessed 1 February 2021.

37. Pacific Bioscienes. https://www.pacb.com. Accessed 1 February 2021.

38. Brigham Young University DNA Sequencing Center. https://dnasc.byu.edu. Accessed 1
February 2021.

www.manaraa.com

 89

39. Illumina. https://www.illumina.com. Accessed 1 February 2021.

40. Covaris. https://www.covaris.com. Accessed 1 February 2021.

41. New England Biolabs. https://www.neb.com. Accessed 1 February 2021.

42. Integrated DNA Technologies. https://www.idtdna.com. Accessed 1 February 2021.

43. Roche. https://sequencing.roche.com. Accessed 1 February 2021.

44. Phase Genomics. https://phasegenomics.com. Accessed 1 February 2021.

45. Qiagen. https://www.qiagen.com/. Accessed 1 February 2021.

46. Life Technologies. https://www.thermofisher.com. Accessed 1 February 2021.

47. Peterson BK, Weber JN, Kay EH, Fisher HS and Hoekstra HE. Double Digest RADseq:
An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-
Model Species. PLoS ONE. 2012; 7 5:e37135. doi:10.1371/journal.pone.0037135.

48. Agilent. https://www.agilent.com. Accessed 1 February 2021.

49. Sage Science. https://sagescience.com. Accessed 1 February 2021.

50. University of Oregon Genomics and Cell Characterization Core Facility.
https://gc3f.uoregon.edu. Accessed 1 February 2021.

51. Kelley DR, Schatz MC and Salzberg SL. Quake: quality-aware detection and correction
of sequencing errors. Genome Biol. 2010; 11:R116. doi:10.1186/gb-2010-11-11-r116.

52. R Core Team. R: A language and environment for statistical computing. Vienna, Austria:
R Foundation for Statistical Computing, 2021. https://www.r-project.org.

53. Yee TW and Wild CJ. Vector Generalized Additive Models. Journal of Royal Statistical
Society, Series B. 1996; 58 3:481-93. doi:10.1111/j.2517-6161.1996.tb02095.x.

54. Yee TWM, Cleve. VGAM: Vector Generalized Additive Models. The Comprehensive R
Archive Network. 2009; v0.7-8.

55. Marcais G and Kingsford C. A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics. 2011; 27 6:764-70.
doi:10.1093/bioinformatics/btr011.

56. Melsted P and Pritchard JK. Efficient counting of k-mers in DNA sequences using a
bloom filter. BMC Bioinform. 2011; 12 333 doi:10.1186/1471-2105-12-333.

57. Song L and Florea L. Rcorrector: efficient and accurate error correction for Illumina
RNA-seq reads. GigaScience. 2015; 4 48 doi:10.1186/s13742-015-0089-y.

www.manaraa.com

 90

58. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH and Phillippy AM. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
separation. Genome Res. 2017; 27 5:722-36. doi:10.1101/gr.215087.116.

59. Haghshenas E, Hach F, Sahinalp SC and Chauve C. CoLoRMap: Correcting Long Reads
by Mapping short reads. Bioinformatics. 2016; 32:i545-i51.
doi:10.1093/bioinformatics/btw463.

60. Hamid M, Khan H and Birol I. ntCard: a streaming algorithm for the cardinality
estimation of genomics data. Bioinformatics. 2017; 33 9:1324-30.
doi:10.1093/bioinformatics/btw832.

61. Vaser R, Sović I, Nagarajan N and Šikić M. Fast and accurate de novo genome assembly
from long uncorrected reads. Genome Res. 2017; 27 5:737-46.
doi:10.1101/gr.214270.116.

62. Arima Genomics. https://arimagenomics.com. Accessed 1 February 2021.

63. Arima Genomics Mapping Pipeline.
https://github.com/ArimaGenomics/mapping_pipeline. Accessed 1 February 2021.

64. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
arXiv. 2013; 1303.3997.

65. Broad Institute. Picard Toolkit. Broad Institute, GitHub repository: Broad Institute, 2019.
http://broadinstitute.github.io/picard.

66. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics. 2009; 25 16:2078-9.
doi:10.1093/bioinformatics/btp352.

67. Quinlan AR and Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics. 2010; 26 6:841-2. doi:10.1093/bioinformatics/btq033.

68. Kim D, Langmead B and Salzberg SL. HISAT: a fast spliced aligner with low memory
requirements. Nat Methods. 2015; 12 4:357-60. doi:10.1038/nmeth.3317.

69. Ghurye J, Pop M, Koren S, Bickhart D and Chin C-S. Scaffolding of long read
assemblies using long range contact information. BMC Genomics. 2017; 18 1:1-11.
doi:10.1186/s12864-017-3879-z.

70. Ghurye J, Rhie A, Walenz BP, Schmitt A, Selvaraj S, Pop M, et al. Integrating Hi-C links
with assembly graphs for chromosome-scale assembly. PLoS Comput Biol. 2019; 15
8:e1007273. doi:0.1371/journal.pcbi.1007273.

71. Song L, Shankar DS and Florea L. Rascaf: Improving Genome Assembly with RNA
Sequencing Data. Plant Genome. 2016; 9 3:1-12. doi:10.3835/plantgenome2016.03.0027.

www.manaraa.com

 91

72. Li H. auN: a new metric to measure assembly contiguity. Heng Li’s Blog. 2020.
http://lh3.github.io/2020/04/08/a-new-metric-on-assembly-contiguity.

73. Li H: calN50 GitHub Repository. https://github.com/lh3/calN50. Accessed 10 April
2020.

74. Python Programming Language. https://www.python.org. Accessed 1 February 2021.

75. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV and Zdobnov EM. BUSCO:
assessing genome assembly and annotation completeness with single-copy orthologs.
Bioinformatics. 2015; 31 19:3210-2. doi:10.1093/bioinformatics/btv351.

76. Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, et al.
OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral
genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res.
2019; 47 D1:D807-D11. doi:10.1093/nar/gky1053.

77. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length
transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol.
2011; 29 7:644-52. doi:10.1038/nbt.1883.

78. Eaton DAR. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses.
Bioinformatics. 2014; 30 13:1844-9. doi:10.1093/bioinformatics/btu121.

79. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo MA, et al. The variant
call format and VCFtools. Bioinformatics. 2011; 27 15:2156-8.
doi:10.1093/bioinformatics/btr330.

80. O'Leary SJ, Puritz JB, Willis SC, Hollenbeck CM and Portnoy DS. These aren’t the loci
you’e looking for: Principles of effective SNP filtering for molecular ecologists. Mol
Ecol. 2018; 27 16:3193-206. doi:10.1111/mec.14792.

81. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK:
A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The
American Journal of Human Genetics. 2007; 81 3:559-75. doi:10.1086/519795.

82. Hill WG and Robertson A. Linkage disequilibrium in finite populations. Theoretical and
Applied Genetics. 1968; 38 6:226-31. doi:10.1007/BF01245622.

83. Holt C and Yandell M. MAKER2: an annotation pipeline and genome-database
management tool for second-generation genome projects. BMC Bioinform. 2011; 12:491.
doi:10.1186/1471-2105-12-491.

84. Holt C and Yandell M: MAKER Tutorial for WGS Assembly and Annotation Winter
School 2018.
http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/MAKER_Tutorial_for_WGS
_Assembly_and_Annotation_Winter_School_2018 (2018). Accessed 1 March 2018.

www.manaraa.com

 92

85. Smit AFA and Hubley R. RepeatModeler Open-1.0. 2008.

86. The Uniprot Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids
Res. 2019; 47 D1:D506-D15. doi:10.1093/nar/gky1049.

87. Boutet E, Lieberherr D, Tognolli M, Schneider M and Bairoch A. UniProtKB/Swiss-Prot:
The Manually Annotated Section of the UniProt KnowledgeBase. In: Edwards D, editor.
Plant Bioinformatics: Methods and Protocols. Totowa, NJ: Humana Press; 2007. p. 89-
112.

88. Stanke M, Schöffmann O, Morgenstern B and Waack S. Gene prediction in eukaryotes
with a generalized hidden Markov model that uses hints from external sources. BMC
Bioinform. 2006; 7:62. doi:10.1186/1471-2105-7-62.

89. Stanke M and Waack S. Ggene prediction with a hidden Markov model and a new intron
submodel. Bioinformatics. 2003; 19 Suppl. 2:ii215-ii25.
doi:10.1093/bioinformatics/btg1080.

90. Korf I. Gene finding in novel genomes. BMC Bioinform. 2004; 5:59.

91. Lomsadze A, Ter-Hovhannisyan V, Chernoff YO and Borodovsky M. Gene
identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res.
2005; 33 20:6964-506. doi:10.1093/nar/gki937.

92. Brůna T, Lomsadze A and Borodovsky M. GeneMark-EP+: eukaryotic gene prediction
with self-training in the space of genes and proteins. NAR Genom Bioinform. 2020; 2
2:lqaa026. doi:10.1093/nargab/lqaa026.

93. Lomsadze A, Burns PD and Borodovsky M. Integration of mapped RNA-Seq reads into
automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 2014; 42
15:e119. doi:10.1093/nar/gku557.

94. Caballero M and Wegrzyn J. gFACs: Gene Filtering, Analysis, and Conversion to Unify
Genome Annotations Across Alignment and Gene Prediction Frameworks. Genomics
Proteomics Bioinformatics. 2019; 17 3:305-10. doi:10.1016/j.gpb.2019.04.002.

95. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+:
architecture and applications. BMC Bioinform. 2009; 10:421. doi:Artn 421\nDoi
10.1186/1471-2105-10-421.

96. Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ. Basic Local Alignment
Search Tool. J Mol Biol. 1990; 215:403-10. doi:10.1016/S0022-2836(05)80360-2.

97. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5:
genome-scale protein function classification. Bioinformatics. 2014; 30 9:1236-40.
doi:10.1093/bioinformatics/btu031.

www.manaraa.com

 93

98. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, et al. InterPro in
2019: improving coverage, classification and access to protein sequence annotations.
Nucleic Acids Res. 2019; 47 D1:D351-D60. doi:10.1093/nar/gky1100.

99. Gremme G, Steinbiss S and Kurtz S. GenomeTools: A Comprehensive Software Library
for Efficient Processing of Structured Genome Annotations. IEEE/ACM Trans Comput
Biol Bioinform. 2013; 10 3:645-56. doi:10.1109/TCBB.2013.68.

100. Luu K, Bazin E and Blum MGB. pcadapt: an R package to perform genome scans for
selection based on principal component analysis. Mol Eco Res. 2017; 17 1:67-77.
doi:10.1111/1755-0998.12592.

101. Foll M and Gaggiotti O. A Genome-Scan Method to Identify Selected Loci Appropriate
for Both Dominant and Codominant Markers: A Bayesian Perspective. Genetics. 2008;
180 2:977-93. doi:10.1534/genetics.108.092221.

102. Martins H, Caye K, Luu K, Blum MGB and François O. Identifying outlier loci in
admixed and in continuous populations using ancestral population differentiation
statistics. Mol Ecol. 2016; 25 20:5029-42. doi:10.1111/mec.13822.

103. Storey JD, Bass AJ, Dabney A and Robinson D. qvalue: Q-value estimation for false
discovery rate control. The Comprehensive R Archive Network. 2017; v2.15.0.

104. Beaumont MA and Balding DJ. Identifying adaptive genetic divergence among
populations from genome scans. Mol Ecol. 2004; 13 4:969-80. doi:10.1111/j.1365-
294x.2004.02125.x.

105. Vitalis R, Dawson K and Boursot P. Interpretation of Variation Across Marker Loci as
Evidence of Selection. Genetics. 2001; 158 4:1811-23. doi:10.1093/genetics/158.4.1811.

106. Foll M: BayeScan v2.1User Manual.
http://cmpg.unibe.ch/software/BayeScan/files/BayeScan2.1_manual.pdf (2012).
Accessed 1 February 2021.

107. Frichot E and François O. LEA: An R package for landscape and ecological association
studies. Methods in Ecology and Evolution. 2015; 6 8:925-9. doi:10.1111/2041-
210x.12382.

108. Shryock DF, Havrilla CA, Defalco LA, Esque TC, Custer NA and Wood TE. Landscape
genetic approaches to guide native plant restoration in the Mojave Desert. Ecological
Applications. 2017; 27 2:429-45. doi:10.1002/eap.1447.

109. Pembleton LW, Cogan NOI and Forster JW. StAMPP: an R package for calculation of
genetic differentiation and structure of mixed‐ploidy level populations. Mol Eco Res.
2013; 13 5:946-52. doi:10.1111/1755-0998.12129.

110. Jombart T and Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP
data. Bioinformatics. 2011; 27 21:3070-1. doi:10.1093/bioinformatics/btr521.

www.manaraa.com

 94

111. Goudet J. hierfstat, a package for r to compute and test hierarchical F-statistics.
Molecular Ecology Notes. 2005; 5 1:184-6. doi:10.1111/j.1471-8286.2004.00828.x.

112. Hardie DC and Hebert PDN. Genome-size evolution in fishes. Canadian Journal of
Fisheries and Aquatic Sciences. 2004; 61 9:1636-46. doi:10.1139/F04-106.

113. Hinegardner RR, Donn Eric. Cellular DNA Content and the Evolution of Teleostean
Fishes. The American Naturalist. 1972; 106 951:621-44.

114. High Performance Assembly Group - Wellcome Sanger Institute. PretextMap. 2020;
0.1.4.

115. High Performance Assembly Group - Wellcome Sanger Institute. PretextView. 2019;
0.0.1.

116. Kamikawa KT, Friedlander AM, Harding KK, Filous A, Donovan MK and Schemmel E.
Bonefishes in Hawai‘i and the importance of angler-based data to inform fisheries
management. Environmental Biology of Fishes. 2015; 98:2147-57. doi:10.1007/s10641-
015-0421-5.

117. Moxham EJ, Cowley PD, Bennett RH and von Brandis RG. Movement and predation: a
catch-and-release study on the acoustic tracking of bonefish in the Indian Ocean.
Environmental Biology of Fishes. 2019; 102 2:365-81. doi:10.1007/s10641-019-00850-1.

118. Adams A, Guindon K, Horodysky A, MacDonald T, McBride R, Shenker J, et al. Albula
glossodonta, Shortjaw Bonefish. Report no. T194299A2310398, 2012. The International
Union for Conservation of Nature.

119. Williams CT, Mcivor AJ, Wallace EM, Lin YJ and Berumen ML. Genetic diversity and
life‐history traits of bonefish Albula spp. from the Red Sea. J Fish Biol. 2020:1-10.
doi:10.1111/jfb.14638.

120. Larkin MF. Assessment of South Florida’s Bonefish Stock. Dissertation, University of
Miami, Coral Gables, Florida, USA, 2011.

121. Perez AU, Schmitter-Soto JJ, Adams AJ and Heyman WD. Connectivity mediated by
seasonal bonefish (Albula vulpes) migration between the Caribbean Sea and a tropical
estuary of Belize and Mexico. Environmental Biology of Fishes. 2019; 102 2:197-207.
doi:10.1007/s10641-018-0834-z.

122. Zeng X, Adams A, Roffer M and He R. Potential connectivity among spatially distinct
management zones for Bonefish (Albula vulpes) via larval dispersal. Environmental
Biology of Fishes. 2019; 102:233-52. doi:10.1007/s10641-018-0826-z.

123. Danylchuk AJ, Cooke SJ, Goldberg TL, Suski CD, Murchie KJ, Danylchuk SE, et al.
Aggregations and offshore movements as indicators of spawning activity of bonefish
(Albula vulpes) in The Bahamas. Mar Biol. 2011; 158 9:1981-99. doi:10.1007/s00227-
011-1707-6.

www.manaraa.com

 95

124. Friedlander A, Caselle JE, Beets J, Lowe CG, Bowen BW, Ogawa TK, et al. Biology and
Ecology of the Recreational Bonefish Fishery at Palmyra Atoll National Wildlife Refuge
with Comparisons to Other Pacific Islands. In: Ault JS, editor. Biology and management
of the world Tarpon and Bonefish fisheries. Boca Raton, FL, USA: CRC Press; 2008. p.
27-56.

125. Crochelet E, Roberts J, Lagabrielle E, Obura D, Petit M and Chabanet P. A model-based
assessment of reef larvae dispersal in the Western Indian Ocean reveals regional
connectivity patterns — Potential implications for conservation policies. Regional
Studies in Marine Science. 2016; 7 September:159-67. doi:10.1016/j.rsma.2016.06.007.

126. Badal MR, Rughooputh S, Rydberg L, Robinson IS and Pattiaratchi C. Eddy formation
around South West Mascarene Plateau (Indian Ocean) as evidenced by satellite ‘global
ocean colour’ data. Western Indian Ocean Journal of Marine Science. 2010; 8 2:139-45.
doi:10.4314/wiojms.v8i2.56969.

127. Gagnaire P-A, Minegishi Y, Zenboudji S, Valade P, Aoyama J and Berrebi P. Within-
population structure highlighted by differential introgression across semipermeable
barriers to gene flow in Anguilla marmorata. Evolution. 2011; 65 12:3413-27.
doi:10.1111/j.1558-5646.2011.01404.x.

128. Donovan S, Pezold F, Chen Y and Lynch B. Phylogeography of Anguilla marmorata
(Teleostei: Anguilliformes) from the eastern Caroline Islands. Ichthyological Research.
2012; 59 1:70-6. doi:10.1007/s10228-011-0245-z.

129. Muths D, Gouws G, Mwale M, Tessier E and Bourjea J. Genetic connectivity of the reef
fish Lutjanus kasmira at the scale of the western Indian Ocean. Canadian Journal of
Fisheries and Aquatic Sciences. 2012; 69 5:842-53. doi:10.1139/f2012-012.

130. Healey AJE, Gouws G, Fennessy ST, Kuguru B, Sauer WHH, Shaw PW, et al. Genetic
analysis reveals harvested Lethrinus nebulosus in the Southwest Indian Ocean comprise
two cryptic species. ICES Journal of Marine Science. 2018; 75 4:1465-72.
doi:10.1093/icesjms/fsx245.

131. Mzingirwa FA, Mkare TK, Nyingi DW and Njiru J. Genetic diversity and spatial
population structure of a deepwater snapper, Pristipomoides filamentosus in the south-
west Indian Ocean. Mol Biol Rep. 2019; 46 5:5079-88. doi:10.1007/s11033-019-04962-
w.

132. Muths D, Grewe P, Jean C and Bourjea J. Genetic population structure of the Swordfish
(Xiphias gladius) in the southwest Indian Ocean: Sex-biased differentiation, congruency
between markers and its incidence in a way of stock assessment. Fish Res. 2009; 97
3:263-9. doi:10.1016/j.fishres.2009.03.004.

133. Obura D. The Diversity and Biogeography of Western Indian Ocean Reef-Building
Corals. PLoS ONE. 2012; 7 9:e45013. doi:10.1371/journal.pone.0045013.

www.manaraa.com

 96

134. Gamoyo M, Obura D and Reason CJC. Estimating Connectivity Through Larval
Dispersal in the Western Indian Ocean. Journal of Geophysical Research:
Biogeosciences. 2019; 124 8:2446-59. doi:10.1029/2019JG005128.

135. Otwoma LM, Reuter H, Timm J and Meyer A. Genetic connectivity in a herbivorous
coral reef fish (Acanthurus leucosternon Bennet, 1833) in the Eastern African region.
Hydrobiologia. 2018; 806 1:237-50. doi:10.1007/s10750-017-3363-4.

136. Chang Y-LK, Miller MJ, Tsukamoto K and Miyazawa Y. Effect of larval swimming in
the western North Pacific subtropical gyre on the recruitment success of the Japanese eel.
PLoS ONE. 2018; 13 12:e0208704. doi:10.1371/journal.pone.0208704.

137. Kudo K. Larval vertical-migration strategy of Japanese eel. In: MTS/IEEE Oceans 2001
An Ocean Odyssey Honolulu, HI, USA, 5-8 November 2001 2001, pp.870-5. Escondido,
CA, USA: Marine Technology Society.

138. Shinoda A, Aoyama J, Miller MJ, Otake T, Mochioka N, Watanabe S, et al. Evaluation of
the larval distribution and migration of the Japanese eel in the western North Pacific.
Reviews in Fish Biology and Fisheries. 2011; 21 3:591-611. doi:10.1007/s11160-010-
9195-1.

139. Pfeiler E. Inshore migration, seasonal distribution and sizes of larval bonefish, Albula, in
the Gulf of California. Environmental Biology of Fishes. 1984; 10 1/2:117-22.
doi:10.1007/BF00001668.

140. Mojica RJ, Shenker JM, Harnden CW and Wagner DE. Recruitment of bonefish, Albula
vulpes, around Lee Stocking Island, Bahamas. Fish Bull. 1994; 93 4:666-74.

141. Lemopoulos A, Prokkola JM, Uusi‐Heikkilä S, Vasemägi A, Huusko A, Hyvärinen P, et
al. Comparing RADseq and microsatellites for estimating genetic diversity and
relatedness — Implications for brown trout conservation. Ecol Evol. 2019; 9 4:2106-20.
doi:10.1002/ece3.4905.

142. Willette DA, Allendorf FW, Barber PH, Barshis DJ, Carpenter KE, Crandall ED, et al.
So, you want to use next-generation sequencing in marine systems? Insight from the Pan-
Pacific Advanced Studies Institute. Bull Mar Sci. 2014; 90 1:79-122.
doi:10.5343/bms.2013.1008.

143. Mullins RB, McKeown NJ, Sauer WHH and Shaw PW. Genomic analysis reveals
multiple mismatches between biological and management units in yellowfin tuna
(Thunnus albacares). ICES Journal of Marine Science. 2018; 75 6:2145-52.
doi:10.1093/icesjms/fsy102.

144. Babin C, Gagnaire P-A, Pavey SA and Bernatchez L. RAD-Seq Reveals Patterns of
Additive Polygenic Variation Caused by Spatially-Varying Selection in the American Eel
(Anguilla rostrata). Genome Biology and Evolution. 2017; 9 11:2974-86.
doi:10.1093/gbe/evx226.

www.manaraa.com

 97

145. Benestan L, Quinn BK, Maaroufi H, Laporte M, Clark FK, Greenwood SJ, et al.
Seascape genomics provides evidence for thermal adaptation and current-mediated
population structure in American lobster (Homarus americanus). Mol Ecol. 2016; 25
20:5073-92. doi:10.1111/mec.13811.

146. Valenzuela-Quiñonez F. How fisheries management can benefit from genomics?
Briefings in Functional Genomics. 2016; 15 5:352-7. doi:10.1093/bfgp/elw006.

147. Johnson T: Tim Johnson Gallery. https://timjohnsongallery.com. Accessed 8 March
2021.

148. Brigham Young University Office of Research Computing. https://rc.byu.edu. Accessed
1 February 2021.

149. FlyCastaway. https://www.flycastaway.com. Accessed 1 February 2021.

150. Alphonse Fishing Company. https://www.alphonsefishingco.com. Accessed 1 February
2021.

151. Yale University. https://www.yale.edu. Accessed 1 February 2021.

152. Seychelles Fishing Authority. http://www.sfa.sc. Accessed 1 February 2021.

153. Island Conservation Society. http://www.islandconservationseychelles.com. Accessed 1
February 2021.

154. Islands Development Company Ltd. https://www.idcseychelles.com. Accessed 1
February 2021.

155. Seychelles Islands Foundation. https://www.sif.sc. Accessed 1 February 2021.

156. Ministry of Agriculture, Climate Change and Environment. https://pcusey.sc/about-
meecc. Accessed 1 February 2021.

157. Fly Fishers International Conservation Scholarship.
https://flyfishersinternational.org/Conservation/Projects-Programs/Scholarship-Program.
Accessed 1 February 2021.

158. Fly Fishers International. https://flyfishersinternational.org. Accessed 1 February 2021.

159. The Mandela Rhodes Foundation. https://www.mandelarhodes.org. Accessed 1 February
2021.

160. The Western Indian Ocean Marine Science Association Marine Research Grant.
https://www.wiomsa.org/research-support/marg. Accessed 1 February 2021.

161. The Western Indian Ocean Marine Science Association. https://www.wiomsa.org.
Accessed 1 February 2021.

www.manaraa.com

 98

162. Yale University Department of Ecology and Evolutionary Biology. https://eeb.yale.edu.
Accessed 1 February 2021.

163. Hidaka K, Iwatsuki Y and Randall JE. A review of the Indo-Pacific bonefishes of the
Albula argentea complex, with a description of a new species. Ichthyological Research.
2008; 55:53-64. doi:10.1007/s10228-007-0010-5.

www.manaraa.com

 99

CHAPTER 3

De novo genome assembly of the marine
teleost, Bluefin Trevally (Caranx

melampygus)

Brandon D. Pickett1, Jessica R. Glass2, Perry G. Ridge1, John S. K. Kauwe1,3

1Department of Biology, Brigham Young University, Provo, Utah, USA

2South African Institute for Aquatic Biodiversity, Makhanda, South Africa

3Brigham Young University - Hawai‘i, Laie, Hawai‘i, USA

www.manaraa.com

 100

ABSTRACT

The bluefin trevally, Caranx melampygus, also known as the bluefin kingfish or bluefin
jack, is known for its remarkable, bright-blue fins. This marine teleost is a widely-prized
sportfish, but few resources have been devoted to the genomics and conservation of this species
because it is not targeted by large-scale commercial fisheries. Population declines from
recreational and artisanal overfishing have been observed in Hawai‘i, USA, resulting in both an
interest in aquaculture and concerns about the long-term conservation of this species. Most
research to-date has been performed in Hawai‘i, raising questions about the status of bluefin
trevally populations across its Indo-Pacific range. Genomic resources allow for expanded
research on stock status, genetic diversity, and population demography. We present a high-
quality nuclear genome assembly of a Hawaiian bluefin trevally from noisy long-reads with a
contig NG50 of 1.2Mbp. Some of the contigs were arranged into scaffolds using RNA-seq data
from eight tissues from the same individual. This is the first whole-genome assembly for the
carangoid clade Carangini. Using this assembled genome, a multiple sequentially Markovian
coalescent model was implemented to assess population demography. Estimates of effective
population size suggest population expansion has occurred since the Late Pleistocene. This
genome will be a valuable resource for comparative phylogenomic studies of carangoid fishes
and will help elucidate demographic history and delineate stock structure for bluefin trevally
populations throughout the Indo-Pacific.

www.manaraa.com

 101

INTRODUCTION

The bluefin trevally (Caranx melampygus; Cuvier 1833) is a marine teleost fish

(Carangiformes: Carangoidei) inhabiting coastal environments throughout the tropical and

subtropical Indo-Pacific (Fig. 1). C. melampygus is a top predator on coral and rocky reef

ecosystems, reaching up to 117 cm in length and feeding predominantly on shallow-water fishes

and invertebrates (Sudekum et al. 1991; Meyer et al. 2001). In the Northwestern Hawaiian

Islands, for example, bluefin trevallies consume an estimated 11,000 metric tons of prey per

year, confirming their role as important predators in this region (Sudekum et al. 1991). Caranx

melampygus is also targeted by small-scale and recreational fisheries in Hawai‘i, where it is

known by its Native Hawaiian name, ‘omilu (Meyer et al. 2001). In recent decades, the C.

melampygus population in Hawai‘i has been impacted by overharvesting and habitat destruction

(Friedlander and Dalzell 2004). For this reason, there has been significant interest in Hawai‘i in

captive breeding for aquaculture (Moriwake et al. 2001; Zhao and Lu 2006). Because the bulk of

research on the bluefin trevally has been conducted in Hawai‘i, observations of population

declines raise concerns for populations in other parts of its range, where abundance and biomass

estimates remain unknown.

Recent genomic evidence suggests C. melampygus comprises a unique population in

Hawai‘i compared to several localities sampled across the Indo-Pacific (Glass et al. In Press),

and an analysis of complete mitochondrial genomes suggests individuals from Guam are also

genetically distinct (Genomic Resources Development Consortium et al. 2014). Given

population declines and evidence of unique stock structure in Hawai‘i, whole genome data for C.

melampygus would provide unprecedented value for inferring demographic history, estimating

effective population size, and testing for selection and local adaptation. Juvenile and adult

www.manaraa.com

 102

individuals frequently utilize estuarine habitats, for example, and have a strong tolerance for

freshwater in coastal locations where estuaries are present (Blaber and Cyrus 1983). Studying the

evolution and physiology of C. melampygus in a genomic context is valuable to the broader

scientific and reef fish community, especially given interest in the genomic mechanisms of

adaptation of marine and anadromous fishes to freshwater (Kültz 2015). Furthermore, whole

genome data provide baseline biological information for delineating wild stocks, a critical

component of transboundary fisheries management, while also serving as an important reference

for the aquaculture industry to examine genomic signatures of growth in captivity and

susceptibility to disease (Zhao and Lu 2006). At present, published whole genome data are

available for only seven out of approximately 150 carangoid species: Echeneis naucrates

(Linnaeus 1758) (Koepfli et al. 2015) , Trachinotus ovatus (Linnaeus 1758) (Zhang et al. 2019),

Selene dorsalis (Gill 1863) (Malmstrøm et al. 2017) , and four Seriola sp. (Purcell et al. 2015;

Araki et al. 2018; Ozaki and Araki 2017; Yasuike et al. 2018), all of which diverged from C.

melampygus approximately 48–50 Mya (Harrington et al. 2016). Here, we present an annotated

de novo genome assembly of C. melampygus to facilitate future research for aquaculture

development and expand the genomic resources of carangoid fishes for comparative

phylogenomic analysis.

MATERIALS AND METHODS

An overview of the methods used in this study is provided here. Where appropriate,

additional details, such as the code for custom scripts and the commands used to run software,

are provided in the Supplementary Bioinformatics Methods (Supplementary File 1; Appendix 4

herein).

www.manaraa.com

 103

Sample Acquisition & Sequencing

One C. melampygus individual was captured in 3-9 m of water <1 km off the coast of

O‘ahu (near Kaneohe, Hawai‘i, USA: 21°26'45.3"N 157°48'07.5"W) in April 2018. The

specimen was caught using a Shimano (Sakai, Osaka, Japan) ocean rod outfitted with a Daiwa

(Cypress, California, USA) Saltiga 6500 reel and a white feather jig. Brain, eye, fin, gill, heart,

kidney, liver, and muscle tissue samples were collected immediately upon capture, flash-frozen

in liquid nitrogen, and packaged in dry ice for transportation to Brigham Young University

(BYU; Provo, Utah, USA) for storage at ‑80° until sequencing. All tissue samples were used for

short-read RNA sequencing. The heart tissue was also used for long-read DNA sequencing.

DNA was prepared for long-read sequencing with a Pacific Biosciences (PacBio; Menlo

Park, California, USA; https://www.pacb.com) SMRTbell Library kit, adhering to the following

protocol: “Procedure & Checklist – Preparing >30 kb SMRTbell Libraries Using Megaruptor

Shearing and BluePippin Size-Selection for PacBio RS II and Sequel Systems”. Continuous

long-read (CLR) sequencing was performed on ten SMRT cells for a 10-hour movie on the

PacBio Sequel at the BYU DNA Sequencing Center (DNASC; https://dnasc.byu.edu), a PacBio

Certified Service Provider. RNA was prepared with Roche (Basel, Switzerland;

https://sequencing.roche.com) KAPA Stranded RNA-Seq kit, following recommended protocols.

Paired-end sequencing was performed in Rapid Run mode for 250 cycles with the eight samples

across two lanes on the Illumina (San Diego, California, USA; https://www.illumina.com) Hi-

Seq 2500 at the DNASC.

Sequence Assembly and Scaffolding

www.manaraa.com

 104

The PacBio CLR reads were self-corrected and assembled with Canu v1.6 (Koren et al.

2017). The contigs were scaffolded using RNA-seq reads. The scaffolding step required read

mapping to the contigs before determining how to order and orient contigs. The RNA-seq reads

were aligned using HiSat v0.1.6-beta (Kim et al. 2015). Scaffolding was performed with RNA-

seq data using the latest (June 2018) commit of Rascaf (Song et al. 2016). Assembly continuity

statistics, e.g., N50 and auNG (Li 2020), were calculated with caln50 downloaded April 2020

(https://github.com/lh3/calN50) and a custom Python (https://www.python.org) script. The

genome size provided to Canu and used for assembly statistics was based on values recorded in

the Animal Genome Size Database (Gregory 2018). A C-value was not listed in the database for

C. melampygus; we used 0.8 (782.4 Mbp) as an upper limit based on recorded genome size

values for other Caranx species.

The transcriptome was assembled from Illumina RNA-seq reads from all eight tissues

(i.e., brain, eye, fin, gill, heart, kidney, liver, and muscle). The transcripts were assembled using

Trinity v2.6.6 (Grabherr et al. 2011). Both the genome and transcriptome assemblies were

assessed for correctness using single-copy orthologs with BUSCO v4.0.6 (Simão et al. 2015) and

the Actinopterygii subset of OrthoDB v10 (Kriventseva et al. 2019).

Computational Annotation

The MAKER v3.01.02-beta (Holt and Yandell 2011) pipeline was used to annotate the

genome assembly. Generally speaking, annotation proceeded according to the process described

in the most recent Maker Wiki tutorial (Holt and Yandell 2018). A custom repeat library was

created using RepeatModeler v1.0.11 (Smit and Hubley 2008). The transcriptome assembly,

genome assembly, and proteins from UniProtKB Swiss-prot (The Uniprot Consortium 2019;

www.manaraa.com

 105

Boutet et al. 2007) were used as input to MAKER to create initial annotations. Gene models

based on these annotations were used to train the following ab initio gene predictors:

AUGUSTUS v3.3.2 (Stanke et al. 2006; Stanke and Waack 2003) and SNAP downloaded 3 June

2019 (Korf 2004). AUGUSTUS was trained using BUSCO (Simão et al. 2015) as a wrapper;

SNAP was trained without a wrapper. Genemark-ES v4.38 (Lomsadze et al. 2005; Brůna et al.

2020; Lomsadze et al. 2014) was also trained, though necessarily without the initial models from

MAKER. These models were all provided to MAKER for a second round of structural

annotation. The gene models based on those annotations were filtered with gFACs v1.1.1

(Caballero and Wegrzyn 2019) and again provided to AUGUSTUS and SNAP. As Genemark-ES

does not accept initial gene models, it had no need to be run again. The gene models from the ab

initio gene predictors were again provided to MAKER for a third and final round of annotation.

Functional annotations were added using MAKER accessory scripts, the BLAST+ Suite v2.9.0

(Camacho et al. 2009; Altschul et al. 1990), and InterProScan v5.45-80.0 (Jones et al. 2014;

Mitchell et al. 2019).

Demographic History

We inferred the historical demography of C. melampygus and its close relative, the giant

trevally (Caranx ignobilis), by implementing the multiple sequentially Markovian coalescent

(MSMC) model (Schiffels and Durbin 2014) to generate estimates of effective population size

(Ne) over time. MSMC estimates the rate of coalescent events between two alleles at each locus

along an unphased, single diploid genome. We used the self-corrected PacBio reads, filtered for

scaffolds > 500Kbp, and applied additional cutoffs to ensure sufficient sequencing depth and

quality using MSMC-tools downloaded 8 October 2020 (https://github.com/stschiff/msmc-tools;

www.manaraa.com

 106

Schiffels and Wang 2020; Mather et al. 2020). We used a draft de novo genome for C. ignobilis

(Pickett et al. 2021). We ran MSMC v1.1.0 using the following time patterning parameters to

estimate 20-time intervals and one free coalescent rate parameter: “1*2+16*1+1*2”. We then

generated 1,000 bootstrap estimates using a simulated dataset that randomly pulled, with

replacement, 500Kbp long segments and arranged them into 52 segments per “chromosome.”

We generated 30 simulated “chromosomes” to construct artificial 780Mbp long genomes,

reflecting the estimated size of the C. melampygus genome, to determine confidence intervals

around Ne estimates. We used the same MSMC parameters for C. ignobilis, except that we

generated 30 simulated “chromosomes” to construct 630Mbp long genomes to reflect the

estimated size of the C. ignobilis genome (Pickett et al. 2021). After running MSMC, we

converted population sizes and times into number of individuals and years, respectively, using a

per site per generation mutation rate (𝜇 = 3.7 e-8) from another marine teleost species (Liu et al.

2016). For C. melampygus, we used a generation time of four, based on the average age of sexual

maturity of C. melampygus (two) multiplied by two (Mather et al. 2020; Nadachowska-Brzyska

et al. 2016). For C. ignobilis, we used a generation time of six, given an average age of three for

sexual maturity in this species. The scripts to perform this analysis are available on GitHub

(https://github.com/pickettbd/msmc-slurmPipeline) with supporting documentation.

Data Availability

Raw reads have been deposited in the National Center for Biotechnology Information

(NCBI) Sequence Read Archive (SRA) under BioProject PRJNA670455. The genome assembly

and annotations are associated with the same BioProject and can be found in GenBank under

accession JAFELL010000000.

www.manaraa.com

 107

RESULTS AND DISCUSSION

Sequencing

Continuous long-read sequencing (PacBio) generated 4.45M reads with a total of

52.67Gbp, which is approximately 67x physical coverage of the genome. The mean and N50

read lengths were 11,834.678 and 19,264, respectively. The longest read was 116,429bp. The

read length distribution is plotted in Figure 2. A summary of the results for the sequencing run is

available in Table 1. This genome represents the first for the Caranx genus and ranks among the

highest quality genomes available for Carangoidea in terms of N50 (Zhang et al. 2019).

RNA-seq from the eight tissues (i.e., brain, eye, fin, gill, heart, kidney, liver, and muscle)

generated 257.47M pairs of reads totaling 114.61Gbp. Across all eight tissues, the mean and N50

read lengths were 222.6 and 249, respectively. The combined results from all eight tissues are

represented in Table 1, while the results from each tissue are made available in Table 2.

PacBio CLR Error Correction

The self-correction strategy reduced the number of reads from 4.45M to 1.77M and the

total number of bases from 52.67Gbp to 29.6Gbp for an approximate physical coverage of 37.8x.

The mean and N50 read lengths were changed from 11,835 and 19,264 to 16,769 and 19,027,

respectively. The longest read was 78,163 bases. The distribution of read lengths can be viewed

in Figure 2.

Genome Assembly and Scaffolding

www.manaraa.com

 108

The initial assembly from Canu was comprised of 3.6K contigs with a total assembly size

of 711Mbp. The mean contig length, N50, NG50, and maximum contig length were 198.8Kbp,

1.5Mbp, 1.2Mbp, and 8.9Mbp, respectively. The L50 was 120, and the LG50 was 147. The

auNG was 1.93M. The scaffolding with the RNA-seq data joined some contigs together,

reducing the sequence count to 3.3K (-8.08%). The number of bases, excluding unknown bases

(Ns), was unchanged; however, it is important to note that when Rascaf creates gaps while

ordering and orienting contigs, it always uses a gap size of 17bp to represent gaps of unknown

size. The result in this case was adding 4.9Kbp of Ns, which means 289 gaps were created.

These gaps were spread across 254 scaffolds. No scaffold had more than three gaps (four contigs

ordered and oriented together). The mean scaffold length, scaffold N50, and scaffold NG50

increased by 17.5Kbp (8.79%), 213.8Kbp (12.70%), and 156.7Kbp (11.75%), respectively.

Coupled with these increases were decreases of 13 (10.33%) and 17 (11.56%) in the L50 and

LG50, respectively. The maximum scaffold length was unchanged from the maximum contig

length. The auNG increased to 2.14M (+11.05%). Table 3 summarizes the assembly continuity

statistics, and the area under the NG-curve (auNG) is visualized in Figure 3.

The assembly correctness, as assessed with single-copy orthologs, was also evaluated at

the contig and scaffold level. The results suggest that the modifications made to the primary

Canu-based assembly from scaffolding did not significantly impact the correct assembly of

single-copy orthologs. The final set of scaffolds had 3,474 complete single-copy orthologs

(95.5% of 3,640 from the ODB10 Actinopterygii set). Of these 89.8% (3,267) were present in the

assembly only once, and 6.4% (207) were present more than once. Twenty-two (0.6%) and 144

(3.9%) single-copy orthologs were fragmented in and missing from the assembly, respectively.

www.manaraa.com

 109

Transcriptome Assembly & Computational Annotation

The transcriptome assembly generated by Trinity was comprised of 680K sequences with

a mean sequence length of 1,171bp. The N50 and L50 were 2.4Kbp and 89K, respectively. The

N90 and L90 were, respectively, 434bp and 419K. Of the 3,640 single-copy orthologs in the

ODB10 Actinopterygii set, 93.3% (3,399) were complete; 33.8% (1,148) of which were present

only once in the transcript set. 112 (3.1%) single-copy orthologs were fragmented in the

transcript set, 129 (3.6%) were missing. Computational structural and functional annotation

using the transcriptome assembly and the MAKER pipeline yielded 32.9K protein-coding genes.

Of these, 21.8K and 20.7K have annotated 5′ and 3′ UTRs, respectively. 2.3K tRNA genes were

also identified. The annotations are available in GFF3 format alongside the assembly.

Population Demography

Results of MSMC modeling indicated a gradual increase in effective population size (Ne)

of both C. melampygus and C. ignobilis beginning around 150 kya, with strong fluctuations in C.

melampygus population sizes between ~30-75 kya (Fig. 4). The increase in Ne was greater for C.

melampygus than C. ignobilis. Our observed corroborate a previous demographic analysis of

both species from Hawai‘i using mitochondrial loci, which also recovered evidence of

population expansion compared to C. ignobilis (Santos et al. 2011). Other demographic

components of wild populations (e.g., population structure, nonrandom mating, selection) are

also known to affect estimates of coalescent rates (Mazet et al. 2016). For example, decreases in

sea level have been linked to the isolation of marine populations (Cacciapaglia et al. 2021; Norris

and Hull 2012), which would lead to demographic changes such as population structure and

nonrandom mating. Sea levels decreased globally from the beginning of the Upper Pleistocene

www.manaraa.com

 110

(~129 kya) until the last glacial maximum (~19–26 kya), with several fluctuations in-between

caused by glacial-interglacial cycles (Grant et al. 2014). Moreover, ocean circulation patterns

were weaker during glacial periods (Rahmstorf 2002), which would limit connectivity between

populations of marine fishes such as C. melampygus and C. ignobilis that disperse primarily via

pelagic larval drifting.

Recent evidence suggests C. melampygus and C. ignobilis individuals are a genetically

unique population in Hawai‘i (Glass et al. 2021). During the last glacial maximum, exposed

limestone bridges linked the Hawaiian Islands of Maui, Lāna‘i, and Moloka‘i and supported reef

habitats which became drowned after sea levels began rising (Grigg et al. 2002). These limestone

reef features may have created increased habitat availability in Hawai‘i during periods of

glaciation and supported population expansion. Notably, these species are large-bodied and

associated with coastal habitats, including rock and coral reefs, but are not reef-obligate. Overall,

some reef fishes exhibit evidence of dramatic declines in population size during glaciation

periods (Gaither et al. 2010), whereas others exhibit evidence of population expansion similar to

what is reported here for C. melampygus (Delrieu-Trottin et al. 2017). An analysis of

demographic history for C. melampygus individuals from the widespread, Indo-West Pacific

population, and individuals of C. ignobilis from other identified populations (Glass et al. 2021)

would allow us to compare population expansion and contractions over time and assess how sea

level changes may have affected C. melampygus and C. ignobilis differently across the Indo-

Pacific.

Conclusion

www.manaraa.com

 111

The assembled genome of Caranx melampygus represents the first whole-genome

assembly and annotation for the genus Caranx and second in the clade Carangini, the most

speciose subclade of Carangoidea. The high quality of this reference genome builds on previous

carangoid whole genome datasets and is important for delineating stock structure and

demographic history of C. melampygus, especially given evidence of a unique genetic lineage in

Hawai‘i. The bluefin trevally genome is also a valuable resource for comparative phylogenomic

studies of carangoid fishes.

AUTHOR CONTRIBUTIONS

JRG: Data Curation; Formal Analysis; Visualization; Writing - Original Draft

Preparation; Writing - Review & Editing. JSKK: Conceptualization; Funding Acquisition;

Investigation; Supervision; Resources; Writing - Review & Editing. BDP: Conceptualization;

Data Curation; Formal Analysis; Investigation; Methodology; Software; Visualization; Writing -

Original Draft Preparation; Writing - Review & Editing. PGR: Funding Acquisition;

Supervision; Resources; Writing - Review & Editing.

ACKNOWLEDGEMENTS

We thank the Brigham Young University DNA Sequencing Center

(https://dnasc.byu.edu) and Office of Research Computing (https://rc.byu.edu) for their

continued support of our research. For creating the beautiful illustration (Fig. 1), we thank the

artist, Tim Johnson (https://timjohnsongallery.com).

www.manaraa.com

 112

FUNDING

None Declared.

CONFLICT OF INTEREST

None Declared.

ORCIDS

Brandon D. Pickett: 0000-0001-8235-4440

Jessica R. Glass, Ph.D.: 0000-0002-9843-1786

Perry G. Ridge, Ph.D.: 0000-0001-6944-2753

John S. K. Kauwe, Ph.D.: 0000-0001-8641-2468

TABLES & FIGURES
============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

 113

Table 1. Sequencing Information. The
results from each type of DNA and RNA
sequencing from Caranx melampygus. PE=
Paired-end reads. SMRT=Single-Molecule,
Real-Time sequencing. CLR=Continuous
Long-reads.

Company Illumina PacBio

Instrument Hi-Seq 2500 Sequel I

Mode
 Rapid

Run NA

Sequencing
Type

 PE SMRT, CLR

Duration
 250

cycles
30

hours

Specimen 1 1

Tissues

 Brain, Eye,
Fin, Gill,

Heart, Kidney,
Liver, Muscle

Heart

Molecule RNA DNA

Millions of
Read(Pair)s

257.47 4.45

Mean Read
Length (bp)

222.6 11,834.7

Read N50
(bp)

 249 19,264

Nucleotides
(Gbp)

114.61 52.67

Table 2. RNA Sequencing Details per Tissue. The
results of RNA sequencing for each tissue from one
Caranx melampygus individual. The eight tissues
were spread across two lanes and run on an Illumina
Hi-Seq 2500 in Rapid Run mode for 250 cycles to
generate paired-end reads. Unless otherwise
specified, lengths of nucleotide sequences are
measured in base pairs (bp).

 Millions

of Read
Pairs

Mean
Read

Length

Read
N50

Nucleotides
(Gbp)

Brain 31.3 219.8 249 13.76

Eye 37.96 219.9 249 16.7

Fin 33.02 219.9 249 14.52

Gill 28.97 225.4 249 13.06

Heart 32.98 228.9 249 15.09

Kidney 32.51 222.5 249 14.47

Liver 30.10 224.6 249 13.52

Muscle 30.63 220.3 249 13.49

All 257.47 222.6 249 114.61

www.manaraa.com

 114

Table 3. Continuity Statistics. Continuity statistics
for the Caranx melampygus genome assembly at the
contig and scaffold level. Note that the auNG value is
the area under the NG-curve and is unitless. Unless
otherwise specified, all nucleotide sequences and
gaps are measured in base pairs (bp).

 Contigs Scaffolds

Sequences 3,577 3,288

Known
Bases 710.963 Mbp 710.963 Mbp

Mean
Length 198,759.666 216,229.722

Max.
Length 8,932,605 8,932,605

NG50 1,176,926 1,333,605

NG90 24,428 24,595

LG50 147 130

LG90 3,179 2,892

auNG 1,927,338 2,140,376

Sequences
with Gaps - 254

Gaps - 289

Unknown
Bases - 4,913

Mean
Gap

Length
- 17

www.manaraa.com

 115

Figure 1. Bluefin trevally (Caranx melampygus) adult and juvenile. Quantitative morphological data for this
illustration of C. melampygus were obtained primarily from (Heemstra et al. 2021). These were then evaluated by
the artist who selected specific values for details such as number of lateral line scutes (32), number of rays (23) and
spines (8) in the dorsal fin, and number of rays (19) and spines (2) in the anal fin. Each of these was portrayed in the
illustration to be near the middle of the ranges reported. Illustration copyright: Tim Johnson, used with permission.

www.manaraa.com

 116

Figure 2. Frequency of Pacific Biosciences Read Lengths. The change in read length distribution is demonstrated
as reads are corrected. The dramatic shift from raw to corrected reads is evident.

www.manaraa.com

 117

Figure 3. Area Under the NG-curve (auNG) for each Assembly Step. The NG-curve and the area under it are
plotted for the contigs and scaffolds. This visually demonstrates that the scaffold NGx is equal or larger at any value
of x (i.e., percent of the genome size). As these scaffolds were generated with only RNA-seq data, the difference is
not as dramatic as it might be with another data type (e.g., Hi-C).

www.manaraa.com

 118

Figure 4. MSMC Analysis of Demographic History. Inferred demographic history of C. melampygus over time
using MSMC. The dark blue line represents median effective population size (Ne) estimates. The light blue lines
indicate 1,000 individual bootstrap replicates.

www.manaraa.com

 119

LITERATURE CITED

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, 1990 Basic Local
Alignment Search Tool. J. Mol. Biol. 215:403-410.

Araki, K., J.-y. Aokic, J. Kawase, K. Hamada, A. Ozaki et al., 2018 Whole Genome Sequencing
of Greater Amberjack (Seriola dumerili) for SNP Identification on Aligned Scaffolds and
Genome Structural Variation Analysis Using Parallel Resequencing. Int. J. Genomics
2018:7984292.

Blaber, S. J. M., and D. P. Cyrus, 1983 The biology of Carangidae (Teleostei) in Natal estuaries.
J. Fish Biol. 22 (2):173-188.

Boutet, E., D. Lieberherr, M. Tognolli, M. Schneider, and A. Bairoch, 2007 UniProtKB/Swiss-
Prot: The Manually Annotated Section of the UniProt KnowledgeBase, pp. 89-112 in
Plant Bioinformatics: Methods and Protocols, edited by D. Edwards. Humana Press,
Totowa, NJ.

Brůna, T., A. Lomsadze, and M. Borodovsky, 2020 GeneMark-EP+: eukaryotic gene prediction
with self-training in the space of genes and proteins. NAR Genom. Bioinform. 2
(2):lqaa026.

Caballero, M., and J. Wegrzyn, 2019 gFACs: Gene Filtering, Analysis, and Conversion to Unify
Genome Annotations Across Alignment and Gene Prediction Frameworks. Genomics
Proteomics Bioinformatics 17 (3):305-310.

Cacciapaglia, C. W., M. B. Bush, ., and R. van Woesik, 2021 Legacies of an ice-age world may
explain the contemporary biogeographical provinces of corals. Frontiers of Biogeography
In press.

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., 2009 BLAST+:
architecture and applications. BMC Bioinform. 10:421.

Cuvier, G., 1833 Histoire naturelle des poissons vol. 9. Levrault, Paris.

Delrieu-Trottin, E., S. Mona, J. Maynard, V. Neglia, M. Veuille et al., 2017 Population
expansions dominate demographic histories of endemic and widespread Pacific reef
fishes. Sci. Reps. 7 (1):40519.

Friedlander, A. M., and P. Dalzell, 2004 A review of the biology and fisheries of two large jacks,
ulua (Caranx ignobilis) and omilu (Caranx melampygus), in the Hawaiian Archipeligo,
pp. 171-185 in Status of Hawai‘i’s coastal fisheries in the new millennium: Proceedings
of the 2001 Fisheries Symposium, edited by A. M. Friedlander. American Fisheries
Society, Hawai‘i Chapter, Honolulu, HI, USA.

www.manaraa.com

 120

Gaither, M. R., R. J. Toonen, D. R. Robertson, S. Planes, and B. W. Bowen, 2010 Genetic
evaluation of marine biogeographical barriers: perspectives from two widespread Indo-
Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J. Biogeogr. 37 (1):133-147.

Genomic Resources Development Consortium, S. R. Keller, D. M. Nelson, C. Pylant, S. R.
Santos et al., 2014 Genomic Resources Notes accepted 1 October 2013 – 30 November
2013. Mol. Eco. Res. 14 (2):435-436.

Gill, T. N., 1863 Synopsis of the carangoids of the eastern coast of North America. Proc. Acad.
Nat. Sci. Philadelphia 14 (9 [2nd]):430-443.

Glass, J. R., S. R. Santos, J. S. K. Kauwe, B. D. Pickett, and T. J. Near, 2021 Phylogeography of
two coastal marine predators (Caranx ignobilis and Caranx melampygus) across the
Indo-Pacific. Bull. Mar. Sci. 97 (2):257-280.

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson et al., 2011 Full-length
transcriptome assembly from RNA-Seq data without a reference genome. Nat.
Biotechnol. 29 (7):644-652.

Grant, K. M., E. J. Rohling, C. B. Ramsey, H. Cheng, R. L. Edwards et al., 2014 Sea-level
variability over five glacial cycles. Nat. Commun. 5 (1):5076.

Gregory, T. R., 2018 Animal Genome Size Database. http://www.genomesize.com.

Grigg, R., E. Grossman, S. Earle, S. Gittings, D. Lott et al., 2002 Drowned reefs and antecedent
karst topography, Au'au Channel, S.E. Hawaiian Islands. Coral Reefs 21 (1):73-82.

Harrington, R. C., B. C. Faircloth, R. I. Eytan, W. L. Smith, T. J. Near et al., 2016 Phylogenomic
analysis of carangimorph fishes reveals flatfish asymmetry arose in a blink of the
evolutionary eye. BMC Evol. Biol. 16:224.

Heemstra, P. C., E. Heemstra, D. A. Ebert, W. Holleman, and J. R. Randal, 2021 Coastal Fishes
of the Western Indian Ocean. Makhanda, South Africa: National Research Foundation -
South African Institute for Aquatic Biodiversity (NRF-SAIAB).

Holt, C., and M. Yandell, 2011 MAKER2: an annotation pipeline and genome-database
management tool for second-generation genome projects. BMC Bioinform. 12:491.

Holt, C., and M. Yandell, 2018 MAKER Tutorial for WGS Assembly and Annotation Winter
School 2018. http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/
MAKER_Tutorial_for_WGS_Assembly_and_Annotation_Winter_School_2018.

Jones, P., D. Binns, H.-Y. Chang, M. Fraser, W. Li et al., 2014 InterProScan 5: genome-scale
protein function classification. Bioinformatics 30 (9):1236-1240.

Kim, D., B. Langmead, and S. L. Salzberg, 2015 HISAT: a fast spliced aligner with low memory
requirements. Nat. Methods 12 (4):357-360.

www.manaraa.com

 121

Koepfli, K.-P., B. Paten, and S. J. O’Brien, 2015 The Genome 10K Project: A Way Forward.
Ann. Rev. Ani. Biosci. 3:57-111.

Koren, S., B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman et al., 2017 Canu: scalable and
accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome
Res. 27 (5):722-736.

Korf, I., 2004 Gene finding in novel genomes. BMC Bioinform. 5:59.

Kriventseva, E. V., D. Kuznetsov, F. Tegenfeldt, M. Manni, R. Dias et al., 2019 OrthoDB v10:
sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for
evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47 (D1):D807-
D811.

Kültz, D., 2015 Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Bio.
218 (12):1907-1914.

Li, H., 2020 auN: a new metric to measure assembly contiguity in Heng Li’s Blog.

Linnaeus, C., 1758 Systema Naturæ vol. 1. Stockholm, Sweden.

Liu, S., M. M. Hansen, and M. W. Jacobsen, 2016 Region-wide and ecotype-specific differences
in demographic histories of threespine stickleback populations, estimated from whole
genome sequences. Mol. Ecol. 25 (20):5187-5202.

Lomsadze, A., P. D. Burns, and M. Borodovsky, 2014 Integration of mapped RNA-Seq reads
into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 42
(15):e119.

Lomsadze, A., V. Ter-Hovhannisyan, Y. O. Chernoff, and M. Borodovsky, 2005 Gene
identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res.
33 (20):6964-6506.

Malmstrøm, M., M. Matschiner, O. K. Tørresen, K. S. Jakobsen, and S. Jentoft, 2017 Whole
genome sequencing data and de novo draft assemblies for 66 teleost species. Sci. Data
4:160132.

Mather, N., S. M. Traves, and S. Y. W. Ho, 2020 A practical introduction to sequentially
Markovian coalescent methods for estimating demographic history from genomic data.
Ecol. Evol. 10 (1):579-589.

Mazet, O., W. Rodríguez, S. Grusea, S. Boitard, and L. Chikhi, 2016 On the importance of being
structured: instantaneous coalescence rates and human evolution—lessons for ancestral
population size inference? Heredity 116 (4):362-371.

Meyer, C. G., K. N. Holland, B. M. Wetherbee, and C. G. Lowe, 2001 Diet, resource partitioning
and gear vulnerability of Hawaiian jacks captured in fishing tournaments. Fish. Res. 53
(2):105-113.

www.manaraa.com

 122

Mitchell, A. L., T. K. Attwood, P. C. Babbitt, M. Blum, P. Bork et al., 2019 InterPro in 2019:
improving coverage, classification and access to protein sequence annotations. Nucleic
Acids Res. 47 (D1):D351-D360.

Moriwake, A. M., V. N. Moriwake, A. C. Ostrowski, and C.-S. Lee, 2001 Natural spawning of
the bluefin trevally Caranx melampygus in captivity. Aquaculture 203 (1-2):159-164.

Nadachowska-Brzyska, K., R. Burri, L. Smeds, and H. Ellegren, 2016 PSMC analysis of
effective population sizes in molecular ecology and its application to black-and-white
Ficedula flycatchers. Mol. Ecol. 25 (5):1058-1072.

Norris, R. D., and P. M. Hull, 2012 The temporal dimension of marine speciation. Evol. Ecol. 26
(2):393-415.

Ozaki, A., and K. Araki, 2017 Seriola quiqueradiata isolate Squ1, whole genome shotgun
sequencing project. GenBank. BDMU00000000.

Pickett, B. D., J. R. Glass, P. G. Ridge, J. S. K. Kauwe, 2021 Genome assembly of the marine
apex predator, Giant Trevally (Caranx ignobilis). Chapter 4 herein.

Purcell, C. M., C. L. Chabot, M. T. Craig, N. Martinez-Takeshita, L. G. Allen et al., 2015
Developing a genetic baseline for the yellowtail amberjack species complex, Seriola
lalandi sensu lato, to assess and preserve variation in wild populations of these globally
important aquaculture species. Cons. Genetics 16:1475-1488.

Rahmstorf, S., 2002 Ocean circulation and climate during the past 120,000 years. Nature 419
(6903):207–214.

Santos, S. R., Y. Xiang, and A. W. Tagawa, 2011 Population Structure and Comparative
Phylogeography of Jack Species (Caranx ignobilis and C. melampygus) in the High
Hawaiian Islands. J. Hered. 102 (1):47-54.

Schiffels, S., and R. Durbin, 2014 Inferring human population size and separation history from
multiple genome sequences. Nat. Genet. 46 (8):919-925.

Schiffels, S., and K. Wang, 2020 MSMC and MSMC2: The Multiple Sequentially Markovian
Coalescent, pp. 147-166 in Statistical Population Genomics, edited by J. Y. Dutheil.
Springer US, New York, NY.

Simão, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, 2015
BUSCO: assessing genome assembly and annotation completeness with single-copy
orthologs. Bioinformatics 31 (19):3210-3212.

Smit, A. F. A., and R. Hubley, 2008 RepeatModeler Open-1.0, http://www.repeatmasker.org.

Song, L., D. S. Shankar, and L. Florea, 2016 Rascaf: Improving Genome Assembly with RNA
Sequencing Data. Plant Genome 9 (3):1-12.

www.manaraa.com

 123

Stanke, M., O. Schöffmann, B. Morgenstern, and S. Waack, 2006 Gene prediction in eukaryotes
with a generalized hidden Markov model that uses hints from external sources. BMC
Bioinform. 7:62.

Stanke, M., and S. Waack, 2003 Gene prediction with a hidden Markov model and a new intron
submodel. Bioinformatics 19 (Suppl. 2):ii215-ii225.

Sudekum, A. E., J. D. Parrish, R. L. Radtke, and S. Ralston, 1991 Life History and Ecology of
Large Jacks in Undisturbed, Shallow, Oceanic Communities. Fish. Bull. 89 (3):493-513.

The Uniprot Consortium, 2019 UniProt: a worldwide hub of protein knowledge. Nucleic Acids
Res. 47 (D1):D506-D515.

Yasuike, M., Y. Iwasaki, I. Nishiki, Y. Nakamura, A. Matsuura et al., 2018 The yellowtail
(Seriola quinqueradiata) genome and transcriptome atlas of the digestive tract. DNA Res.
25 (5):547-560.

Zhang, D.-C., L. Guo, H.-Y. Guo, K.-C. Zhu, S.-Q. Li et al., 2019 Chromosome-level genome
assembly of golden pompano (Trachinotus ovatus) in the family Carangidae. Sci. Data
6:216.

Zhao, Z., and Y. Lu, 2006 Establishment and characterization of two cell lines from bluefin
trevally Caranx melampygus. Dis. Aquat. Organ. 68 (2):91-100.

www.manaraa.com

 124

CHAPTER 4

Genome assembly of marine apex predator,
Giant Trevally (Caranx ignobilis)

Brandon D. Pickett1, Jessica R. Glass2, Perry G. Ridge1, John S. K. Kauwe1,3

1Department of Biology, Brigham Young University, Provo, Utah, USA

2South African Institute for Aquatic Biodiversity, Makhanda, South Africa

3Brigham Young University - Hawai‘i, Laie, Hawai‘i, USA

www.manaraa.com

 125

ABSTRACT

Caranx ignobilis, commonly known as the kingfish or giant trevally, is a large, reef-
associated apex predator. It is a prized sportfish, targeted heavily throughout its tropical and
subtropical range in the Indian and Pacific Oceans, and it has drawn significant interest in
aquaculture due to an unusual tolerance for freshwater. In this study, we present a high-quality
nuclear genome assembly of a C. ignobilis individual from Hawaiian waters, which have
recently been shown to host a genetically distinct population. The assembly has a contig NG50
of 7.3Mbp and scaffold NG50 of 46.3Mbp. Twenty-five of the 203 scaffolds contain 90% of the
genome. We also present the raw Pacific Biosciences continuous long-reads from which the
assembly was created. A Hi-C dataset (Dovetail Genomics Omni-C) and Illumina-based RNA-
seq from eight tissues are also presented; the latter of which can be particularly useful for
annotation and studies of freshwater tolerance. Overall, this genome assembly and supporting
data is a valuable tool for ecological and comparative genomics studies of kingfish and other
carangoid fishes.

www.manaraa.com

 126

BACKGROUND & SUMMARY

The “genomic revolution” continues to rapidly advance our understanding of human

evolution, as well as the evolution of non-model organisms 1. Comparative genomic approaches

using whole genome datasets allow for new discoveries at every scale: from genome to

chromosome to organism to entire clades of organisms. Genomic datasets for non-model marine

teleost fishes, the most diverse clade of vertebrates, are invaluable for investigating evolutionary

questions relating to adaptation, selection, genome duplication, and phylogenetic conservatism in

vertebrates.

We present a high-quality genome assembly of the marine teleost, giant trevally (Caranx

ignobilis; Carangiformes: Carangoidei; Fig. 1). This assembly serves as a valuable resource for

the field of evolutionary biology, ecology, and phylogenetics. Caranx ignobilis is a member of

the Carangini clade, the most specious subclade within Carangoidei. Carangoid fishes are known

for their extreme diversity in morphology and ecology 2,3. The giant trevally, specifically, is

known to be highly tolerant of freshwater environments, leading to a surge of interest in this

species for aquaculture 4-6 and making it an ideal candidate species to investigate linkages

between genotype and phenotype in the context of freshwater adaptation by marine fishes 7,8.

Caranx ignobilis is an apex predator in tropical and subtropical reefs and coastal environments in

the Indian and Pacific Oceans 9 and is heavily targeted by small-scale and recreational fisheries

throughout its range. Understanding its evolutionary and ecological role in ecosystem structure

and function is important for fisheries management and the protection of reef and coral

ecosystems. Importantly, new putative populations of C. ignobilis in the Indian and Pacific

Oceans have recently been described using genomic datasets 10. A high-quality genome thus

allows for the inference of demographic history, genomic signals of selection and adaption, and

www.manaraa.com

 127

comparative genomic studies with other Carangoid fishes, such as hybridization with the closely

related bluefin trevally, Caranx melampygus 11.

For this C. ignobilis assembly, we present results using 58.25 Gb of Pacific Biosciences

(PacBio) Single-molecule, Real-time (SMRT) sequencing data. Illumina paired-end sequencing

data was also generated with libraries for both RNA‑seq and Hi‑C, totaling 347.6 Gb. Both were

used for scaffolding purposes and are valuable datasets individually. The estimated genome size

was 625.92 Mb 12,13, of which 96.7% is covered by known bases in the primary haploid

assembly. In addition to being highly-contiguous, the genome assembly contained complete,

unduplicated copies of >95% of expected single-copy orthologs, suggesting the assembly is

reasonably accurate and complete. The assembly and supporting sequencing datasets are

sufficiently high-quality to serve as a valuable resource for a variety of prospective comparative

and population genomics studies.

METHODS

An overview of the methods used in this study is provided here. Where appropriate,

additional details, such as the code for custom scripts and the commands used to run software,

are provided in the Supplementary Bioinformatics Methods (Supplementary File 1; Appendix 5

herein).

Sample Acquisition & Sequencing

Blood, brain, eye, fin, gill, heart, kidney, liver, and muscle tissues from one C. ignobilis

individual were collected off the coast of O‘ahu (near Kaneohe, Hawai‘i, USA) in April 2019.

Blood was preserved in EDTA, and other tissue samples were flash-frozen in liquid nitrogen. All

www.manaraa.com

 128

samples were packaged in dry ice for transportation to Brigham Young University (BYU; Provo,

Utah, USA) for storage at ‑80°C until sequencing. The blood sample was used to create the

Omni‑C dataset. All non-blood tissue samples were used for short-read RNA sequencing; the

heart tissue was also used for long-read DNA sequencing.

DNA was prepared for long-read sequencing with a Pacific Biosciences (PacBio; Menlo

Park, California, USA; https://www.pacb.com) SMRTbell Library kit, adhering to the following

protocol: “Procedure & Checklist - Preparing gDNA Libraries Using the SMRTbell Express

Template Preparation Kit 2.0”. Continuous long-read (CLR) sequencing was performed on seven

SMRT cells for a 10-hour movie on the PacBio Sequel at the BYU DNA Sequencing Center

(DNASC; https://dnasc.byu.edu), a PacBio Certified Service Provider. RNA was prepared with

Roche (Basel, Switzerland; https://sequencing.roche.com) KAPA Stranded RNA‑seq kit,

following recommended protocols. Paired-end sequencing was performed in High Output mode

for 125 cycles with the eight samples across two lanes on the Illumina (San Diego, California,

USA; https://www.illumina.com) Hi-Seq 2500 at the DNASC. Finally, the “Omni‑C Proximity

Ligation Assay Protocol” version 1.0 was followed using a Dovetail Genomics Omni‑C kit to

prepare for Illumina Paired-end sequencing. Adapters were provided by Integrated DNA

Technologies, and sequencing proceeded in Rapid Run mode for 250 cycles in one lane on an

Illumina Hi-Seq 2500.

Sequence Assembly, Duplicate Purging, and Scaffolding

The PacBio CLR reads were self-corrected and assembled with Canu v1.8 14. To get a

haploid representation of the genome, duplicates were purged with purge_dups v1.2.5 15. The

primary set of 329 contigs was selected for scaffolding with Omni‑C data, which required reads

www.manaraa.com

 129

to be mapped to the assembly before determining how to order and orient the contigs. The

Omni‑C reads were aligned following the Arima Genomics (San Diego, California, USA;

https://arimagenomics.com) Mapping Pipeline commit #2e74ea4 (https://github.com/

ArimaGenomics/mapping_pipeline), which relied on BWA‑MEM2 v2.1 16,17, Picard v2.19.2 18,

and SAMtools v1.9 19. BEDTools v2.28.0 20 was used to prepare the Omni‑C alignments for

scaffolding with SALSA commit #974589f 21. Before the scaffolding step was performed,

SALSA cleaned the assembly by breaking mis-assemblies as determined by Omni‑C read

mappings. This set of contigs was then used simultaneously for both the remainder of the

SALSA pipeline and for scaffolding with Rascaf v1.0.2 commit #690f618 22 using the RNA‑seq

data from all tissues aligned using HiSat v0.1.6-beta 23. The two sets of scaffolds were combined

using custom Python (https://www.python.org) scripts, which used the Omni‑C scaffolds as a

starting point and added compatible joins from the RNA‑seq evidence. Contamination was

removed from the final set of scaffolds as identified during the NCBI submission process; all

gaps were also adjusted to a fixed size (100 Ns).

Genome Assembly Validation

At each phase of the assembly, continuity statistics, e.g., N50 and auN, were calculated

with caln50 commit #3e1b2be (https://github.com/lh3/calN50) and a custom Python script

(Table 3). The genome size (625.92 Mb) provided to Canu and used for assembly statistics was

based on the C-value of 0.64 from Hardie and Hebert 12 as recorded in the Animal Genome Size

Database 13. Assembly correctness was also assessed at each phase using single-copy orthologs

from the Actinopterygii set of OrthoDB v10 24 as identified by BUSCO v4.0.6 25 (Table 4). The

scaffolds were visually inspected using a Hi‑C contact matrix created with PretextView v0.1.4

www.manaraa.com

 130

(https://github.com/wtsi-hpag/PretextView) and PretextMap v0.1.4 (https://github.com/wtsi-

hpag/PretextMap) with SAMtools v1.10 19.

Visual comparisons with other carangoid genomes were created for cursory validation

and observation of general synteny. Dot plots were generated using Mashmap v2.0 commit

#ffeef48 26 (-f 'one-to-one' --pi 95 -s 10000) and a comparison of single-copy orthologs was

created using ChrOrthLink commit #d29b10b after assessment with BUSCO v3.0.6 25 using the

Vertebrata set from OrthoDB v9 27. The genome assemblies obtained from NCBI for these

analyses were the following (alphabetical order): Caranx melampygus (bluefin trevally) 11,

Echeneis naucrates (live suckershark) 28,29, Seriola dumerili (greater amberjack) 28,29, Seriola

quinqueradiata (yellowtail) 30,31, Seriola rivoliana (longfin yellowtail) 32, Trachinotus ovatus

(golden pompano) 33,34, and Trachurus trachurus (Atlantic horse mackerel) 35,36.

TECHNICAL VALIDATION

Sequencing

Continuous long-read sequencing (PacBio) generated 3.74M reads with a total of 58.25

Gbp, which is approximately 93x physical coverage of the genome. The mean and N50 read

lengths were 15,591.278 and 27,441, respectively. The longest read was 129,643bp. The read

length distribution is plotted in Figure 2. A summary of the results for the sequencing run is

available in Table 1. This genome represents the second for the Caranx genus and ranks highly

in terms of N50 among available carangoid genomes 34,36.

RNA‑seq from the eight tissues (i.e., brain, eye, fin, gill, heart, kidney, liver, and muscle)

generated 435.99M pairs of reads totaling 108.30Gbp. Across all eight tissues, the mean and N50

www.manaraa.com

 131

read lengths were 124.21 and 125, respectively. The combined results from all eight tissues are

represented in Table 1, while the results from each tissue are made available in Table 2. Omni‑C

sequencing generated 80.92 Gb of data across 169.1M read pairs. The N50 and mean read length

were respectively 250 and 239.3. The Omni‑C results are also represented with in Table 1 with

the PacBio and RNA‑seq data.

PacBio CLR Error Correction

The correction process reduced the number of reads from 3.74M to 656K and the total

number of bases from 58.3Gbp to 23.9Gbp for an approximate physical coverage of 38.3x. The

mean and N50 read lengths were changed from 15,591 and 27,441 to 36,475 and 40,065,

respectively. The longest read was 126,321 bases. The distribution of corrected read lengths can

be viewed relative to the raw read lengths in Figure 2.

Genome Assembly, Duplicate Purging, and Scaffolding

The initial assembly from Canu was comprised of 1.8K contigs with a total assembly size

of 758Mbp. This was a diploid assembly in the sense that both haplotypes were present and

intermixed, separated whenever a bubble in the assembly graph prevented a single reasonable

contig. Duplicate purging to get a haploid representation of the genome (albeit with inevitable

haplotype switching) and fixing mis-assemblies with evidence from Hi-C data yielded 343

contigs with a total assembly size of 605Mbp. The mean contig length, N50, NG50, and

maximum contig length were to 1.8Mbp, 7.7Mbp, 7.3Mbp, and 19.6Mbp, respectively. The L50

was 23, and the LG50 was 25. The auN was to 8.55M. These values represent modest reductions

www.manaraa.com

 132

from the original Canu assembly (as expected), and they can be visualized in the area under the

N-curve as presented in Figure 3. (Also see Table 3)

Paired-end Illumina reads, such as those produced from Hi-C or RNA-seq libraries can

provide information to order and orient contigs into scaffolds, but they contain insufficient

information to utilize for gap-filling procedures. Accordingly, the result on assembly statistics

should increase length, decrease number of sequences, and leave the number of known bases

unchanged. This pattern is evident in the assembly statistics from our iterative scaffolding

procedure (Table 3). It is important to note that SALSA and Rascaf introduce gaps of unknown

size, and they respectively use fixed runs of Ns of lengths 500 and 17 to represent such gaps. For

submission to NCBI, these gaps were converted to a fixed length of 100 Ns, and the evidence for

whether joins were supported by Hi-C data or RNA-seq data was submitted in an accompanying

file in AGP format (https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification). The NCBI

submission process also identified minor contaminants in some sequences, which were manually

removed. The final set of scaffolds had an NG50 of 46.3Mbp and an auN of 42.6M (Fig. 3; Table

3). All joins are represented in a contact matrix (Fig. 4), which shows the Hi-C evidence for the

assembly. Some joins are poorly supported by the Hi-C evidence, which is not surprising as

some joins were made by RNA-seq evidence instead. Without manual curation, it is difficult to

ascertain whether any individual such join is spurious.

The assembly correctness, as assessed with single-copy orthologs, was also evaluated at

the contig and scaffold level (Table 4). The results suggest that the modifications made to the

primary contig assembly from scaffolding did not significantly impact the correct assembly of

single-copy orthologs. The final set of scaffolds had 3,546 complete single-copy orthologs

(97.4% of 3,640 from the OrthoDB10 Actinopterygii set). Of these 85.7% (3,120) were present

www.manaraa.com

 133

in the assembly only once, and 11.7% (426) were present more than once. Twelve (0.3%) and 82

(2.3%) single-copy orthologs were fragmented in and missing from the assembly, respectively.

Comparison of Giant Trevally with Other Carangoid Genomes

We compared the C. ignobilis genome to published genomes of other carangoids

spanning the carangoid phylogeny, including the live sharksucker (Echeneis naucrates) 28,29,

golden pompano (Trachinotus ovatus) 33,34, yellowtail (Seriola quinqueradiata) 30,31, longfin

yellowtail (Seriola rivoliana) 32, greater amberjack (Seriola dumerili) 37,38, and the more closely-

related species: Atlantic horse mackerel (Trachurus trachurus) 35,36 and bluefin trevally (Caranx

melampygus) 11. We generated dot plots to visualize genome alignments and look for general

synteny between the genomes (Fig. 5). Some structural variation can be seen, but additional

analysis would be required to explore each of such further. We similarly compared the same

assemblies by visualizing the grouping of single-copy orthologs plotted along the assemblies

(Fig. 6). Large groupings of orthologs consistently appear together between genomes, though

specific patterns become difficult to inspect at the genome scale when the contigs/scaffolds get

small. The longest scaffolds in the C. ignobilis assembly have single-copy orthologs from more

than on chromosome from other assemblies with chromosome number assigned, and this is

evident with the nearby E. naucrates. If the relative sizes of the chromosomes from the E.

naucrates assembly are taken as baseline truth, this calls into question whether some of the C.

ignobilis RNA-seq scaffolding joins are valid. Karyotype analysis, additional sequencing data

(e.g., Ultra-long Nanopore (Oxford, England, UK)), and/or more in-depth, one-on-one

comparisons would help elucidate the structure. Ultimately, our results indicate the utility of this

www.manaraa.com

 134

genomic dataset for future comparative studies on genome structure and evolution within

Carangiformes and marine teleosts more broadly.

DATA RECORDS

Raw reads have been deposited in the National Center for Biotechnology Information

(NCBI) Sequence Read Archive (SRA) 39-48 under BioProject PRJNA670456 49, BioSamples

SAMN16516519-SAMN16516526 and SAMN16629462 50-58. The genome assembly is

associated with the same BioProject under the “container” BioSample SAMN18021194 59 and

can be found in GenBank under accession JAFHLA000000000. See Table 5 for a complete list

of datasets and their mapping to BioSamples.

CODE AVAILABILITY

No significant computer programs were generated in this work. Custom scripts

referenced in the text are described in the Supplementary Bioinformatics Methods and/or are

available on GitHub at https://github.com/pickettbd/caranx-ignobilis_assembly-paper_misc-

scripts.

AUTHOR CONTRIBUTIONS

JRG: Funding Acquisition; Writing - Original Draft Preparation; Writing - Review &

Editing. JSKK: Conceptualization; Funding Acquisition; Investigation; Supervision; Resources;

Writing - Review & Editing. BDP: Conceptualization; Data Curation; Formal Analysis; Funding

Acquisition; Investigation; Methodology; Software; Visualization; Writing - Original Draft

www.manaraa.com

 135

Preparation; Writing - Review & Editing. PGR: Funding Acquisition; Supervision; Resources;

Writing - Review & Editing.

ACKNOWLEDGEMENTS

We thank the Brigham Young University DNA Sequencing Center

(https://dnasc.byu.edu) and Office of Research Computing (https://rc.byu.edu) for their

continued support of our research. We thank the artist, Elaine Heemstra, and the South African

Institute for Aquatic Biodiversity (https://www.saiab.ac.za) for the use of the illustration (Fig. 1).

We are grateful to the Vertebrate Genomes Project (https://vgp.github.io), specifically Erich

Jarvis of The Rockefeller University (New York City, New York, USA) and Richard Durbin of

the Wellcome Sanger Institute and University of Cambridge (Cambridge, England, UK), for

providing access to the Trachurus trachurus genome assembly before an official publication was

released. We thank Chul Lee of Seoul National University (Seoul, Republic of South Korea) and

Ann McCartney and Arang Rhie of the National Institutes of Health – National Human Genome

Research Institute (Bethesda, Maryland, USA) for helpful discussion about assembly validation

and ChrOrthLink.

FUNDING

Illumina and the Brigham Young University DNA Sequencing Center granted an

Illumina Pilot Award to BDP, JRG, and JSKK, resulting in complimentary sequencing for the

RNA.

www.manaraa.com

 136

COMPETING INTERESTS

The authors declare no competing interests.

ORCIDS

Brandon D. Pickett: 0000-0001-8235-4440

Jessica R. Glass, Ph.D.: 0000-0002-9843-1786

Perry G. Ridge, Ph.D.: 0000-0001-6944-2753

John S. K. Kauwe, Ph.D.: 0000-0001-8641-2468

ADDITIONAL INFORMATION

Supplementary Information

Supplementary Bioinformatics Methods (Supplementary File 1) can be found in

Appendix 5 herein.

TABLES & FIGURES
============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

 137

Table 1. Sequencing Information. The
results from each type of DNA and RNA
sequencing from Caranx ignobilis. PE=
Paired-end reads. SMRT=Single-Molecule,
Real-Time sequencing. CLR=Continuous
Long-reads.

Company Illumina Illumina PacBio

Instrument Hi-Seq 2500 Hi-Seq 2500 Sequel I

Mode
 High

Output
Rapid

Run NA

Sequencing
Type

 PE Omni‑C, PE SMRT, CLR

Duration
 125

cycles
250

cycles
10

hours

Specimen 1 1 1

Tissues

 Brain, Eye,
Fin, Gill,

Heart, Kidney,
Liver, Muscle

Blood Heart

Molecule RNA DNA DNA

Millions of
Read(Pair)s

435.99 169.11 3.74

Mean Read
Length

124.2 239.3 15,591.3

Read N50 125 250 27,441

Nucleotides
(Gb)

108.30 80.92 58.25

Table 2. RNA Sequencing Details per Tissue. The
results of RNA sequencing for each tissue from one
Caranx ignobilis individual. The eight tissues were
spread across two lanes and run on an Illumina Hi-
Seq 2500 in Rapid Run mode for 250 cycles to
generate paired-end reads. Unless otherwise
specified, lengths of nucleotide sequences are
measured in base pairs (bp).

 Millions

of Read
Pairs

Mean
Read

Length

Read
N50

Nucleotides
(Gb)

Brain 45.59 124.17 125 11.32

Eye 52.02 124.26 125 12.93

Fin 50.13 124.16 125 12.45

Gill 55.56 124.22 125 13.80

Heart 57.87 124.29 125 14.39

Kidney 58.73 124.16 125 14.58

Liver 58.25 124.23 125 14.47

Muscle 57.84 124.16 125 14.36

All 435.99 124.21 125 108.30

www.manaraa.com

 138

Table 3. Continuity Statistics. Continuity statistics for the Caranx ignobilis genome assembly at the contig and
scaffold level. The final set of scaffolds (far right column) is the same as “Scaffolds (SALSA + Rascaf” except that
the contaminants were manually removed from the assembly and gaps were unified to 100 Ns. Note that the auNG
value is the area under the NG-curve and is unitless. Unless otherwise specified, all nucleotide sequences and gaps
are measured in base pairs (bp).

 Contigs Contigs
(purge_dups)

Contigs
(purge_dups +

SALSA)

Scaffolds
(SALSA)

Scaffolds
(SALSA +

Rascaf)
Scaffolds

Sequences 1,804 329 343 240 209 203

Known
Bases 757.523 Mb 605.140 Mb 605.140 Mb 605.140 Mb 605.140 Mb 605.115

Mean
Length 0.420 Mb 1.839 Mb 1.764 Mb 2.521 Mb 2.895 Mb 2.981 Mb

Max.
Length 23.990 Mb 23.990 Mb 19.607 Mb 32.157 Mb 89.251 Mb 89.251 Mb

NG50 7.412 Mb 7.412 Mb 7.261 Mb 23.385 Mb 46.318 Mb 46.303 Mb

NG90 1.097 Mb 0.950 Mb 0.700 Mb 1.386 Mb 1.410 Mb 1.410 Mb

LG50 24 24 25 12 5 5

LG90 103 105 114 39 25 25

auNG 9.090 M 9.051 M 8.549 M 19.716 M 42.606 M 42.600 M

Sequences
with Gaps - - - 40 35 35

Gaps - - - 103 134 133

Unknown
Bases - - - 51,500 52,027 13,300

Mean
Gap

Length
- - - 500 388.261 100

www.manaraa.com

 139

Table 4. Summary BUSCO Results. Summary BUSCO results for the Caranx ignobilis genome assembly at the
various contig and scaffold stages. Each value is the percentage of single-copy orthologs (n=3,640) in the
Actinopterygii lineage dataset from OrthoDB v10.

 Contigs Contigs
(purge_dups)

Contigs
(purge_dups +

SALSA)

Scaffolds
(SALSA)

Scaffolds
(SALSA +

Rascaf)
Scaffolds

Complete 97.6 97.5 97.6 97.2 97.3 97.4

Single Copy 85.9 95.9 96.0 95.7 95.7 95.8

Duplicated 11.7 1.6 1.6 1.5 1.6 1.6

Fragmented 0.3 0.6 0.5 0.5 0.5 0.5

Missing 2.1 1.9 1.9 2.3 2.2 2.1

www.manaraa.com

 140

Table 5. Database Information for Raw Sequences. All samples were collected from the same Caranx ignobilis
specimen in April 2019 off the coast of O‘ahu (near Kaneohe, Hawai‘i, USA). They are combined under the
BioProject PRJNA670456. The genome assembly is deposited in GenBank under accession JAFHLA000000000
with the “container” BioSample SAMN18021194.

Specimen Tissue BioSample Number Sequencing Type SRA Accession
1 Blood SAMN16629462 Dovetail Omni‑C SRR13036356
1 Brain SAMN16516519 Illumina RNA‑seq SRR13036363
1 Eye SAMN16516520 Illumina RNA‑seq SRR13036362
1 Fin SAMN16516521 Illumina RNA‑seq SRR13036361
1 Gill SAMN16516522 Illumina RNA‑seq SRR13036360
1 Heart SAMN16516523 Illumina RNA‑seq SRR13036359
1 Heart SAMN16516523 PacBio CLR WGA SRR13036357
1 Kidney SAMN16516524 Illumina RNA‑seq SRR13036355
1 Liver SAMN16516525 Illumina RNA‑seq SRR13036354
1 Muscle SAMN16516526 Illumina RNA‑seq SRR13036353

www.manaraa.com

 141

Figure 1. Giant trevally (Caranx ignobilis) adult and juvenile. Illustration by Elaine Heemstra, courtesy of the
South African Institute for Aquatic Biodiversity.

www.manaraa.com

 142

Figure 2. Frequency of Pacific Biosciences Read Lengths. The change in read length distribution is demonstrated
as reads are corrected. The dramatic shift from raw to corrected reads is evident. Reads were corrected by consensus
using the correction phase of Canu v1.8.

www.manaraa.com

 143

Figure 3. Area Under the NG-curve (auNG) for each Assembly Step. The NG-curve and the area under it are
plotted for the contigs and scaffolds. This visually demonstrates increase in continuity from contigs to scaffolds.
Scaffolding with RNA-seq data – which has minimal effect on its own (data not shown) – further increases the
scaffold-level continuity. This plot also shows that duplicate purging and fixing mis-assemblies slightly reduced
contig-level continuity, which is expected.

www.manaraa.com

 144

Figure 4. Hi-C Contact Matrix. In the context of scaffolding, Hi-C contact matrices show how correct the
scaffolds are based on Hi-C alignment evidence. The longest 26 scaffolds are shown, ordered by descending length
from top-left to bottom-right; grey lines show scaffold boundaries. Off-diagonal marks, especially those that are
dark and large, are possible evidence of mis-assembly and/or incorrect scaffolding. Regions with sharp edges similar
to where the grey lines appear, but without the grey lines (e.g., three such locations occur in the top-left square), are
joins between contigs in that scaffold that lack Hi-C evidence. The lack of Hi-C alignment evidence could suggest
that these joins are invalid, but evidence for these joins does exist from RNA-seq alignments. Detection of any
spurious joins would, at a minimum, require manual curation. Such curation would enable additional adjustments
that would fix minor issues evident from the contact matrix.

www.manaraa.com

 145

Figure 5. Dot Plot Comparisons with other Carangiformes (Carangoidei) Genomes. Dot plots show the relative
continuity of the various segments of two genomes. The purple dots show segments that align in the positive
orientation, blue in the negative. The x-axis is the Caranx ignobilis genome. The y-axes for each plot are other
carangoid genomes. Dots off the diagonal indicate structural variation between the genome assemblies. For
assemblies that did not have duplicates purged to reduce the assembly to pseudohaplotypes (Caranx melampygus
and Seriola spp.), the extra dots are presumably the alignment to the secondary copy.

www.manaraa.com

 146

Figure 6. Single-copy Ortholog Comparisons with other Carangiformes (Carangoidei) Fishes. Single-copy
orthologs from the Actinopterygii set of OrthoDB v9 were identified with BUSCO v3.0.6 and visualized using
ChrOrthLink. “Chromosomes” (usually contigs or scaffolds) are ordered based on length. Comparisons are difficult
to assess when “chromosome” sizes vary greatly, especially at the genome scale. Additional information could be
gleaned when comparing genomes one-by-one with chromosomes ordered based on similarity. At this scale,
however, it is clear that groupings of single-copy orthologs cluster together across genomes, suggesting orthology
not just between these genes, but with general genomic structure within larger regions. The longest scaffolds in the
Caranx ignobilis assembly have single-copy orthologs from more than one chromosome from other assemblies with
chromosome number assigned, and this is evident with the Echeneis naucrates assembly. If the relative sizes of the
chromosomes from the E. naucrates assembly are taken as baseline truth, this calls into question whether some of
the C. ignobilis RNA-seq scaffolding joins are valid.

www.manaraa.com

 147

REFERENCES

1 Koonin, E. V., Aravind, L. & Kondrashov, A. S. The Impact of Comparative Genomics
on Our Understanding of Evolution. Cell 101, 573-576, doi:10.1016/s0092-
8674(00)80867-3 (2000).

2 Price, S. A., Claverie, T., Near, T. J. & Wainwright, P. C. Phylogenetic insights into the
history and diversification of fishes on reefs. Coral Reefs 34, 997-1009,
doi:10.1007/s00338-015-1326-7 (2015).

3 Frédérich, B., Marramà, G., Carnevale, G. & Santini, F. Non-reef environments impact
the diversification of extant jacks, remoras and allies (Carangoidei, Percomorpha).
Proceedings of the Royal Society B: Biological Sciences 283, 20161556,
doi:10.1098/rspb.2016.1556 (2016).

4 Abdussamad, E. M., Kassim, H. M. & Balasubramanian, T. S. Distribution, biology and
behaviour of the giant trevally, Caranx ignobilis - a candidate species for mariculture.
Bengladesh Journal of Fisheries Research 12, 89-94 (2008).

5 Kappen, D. C., Kaippilly, D. & D., D. N. Pioneer Attempt on Cage Culture of
GiantTrevally, Caranx Ignobilis through Farmer Participatory Approach in
Thiruthipuram Backwaters, Kochi, Kerala, India. Ambient Science 5, 6-8,
doi:10.21276/ambi.2018.05.2.ta02 (2018).

6 Mutia, M. T. M., Muyot, F. B., Magistrado, M. L., Muyot, M. C. & Baral, J. L. Induced
Spawning of Giant Trevally, Caranx ignobilis (Forsskål, 1775) using Human Chorionic
Gonadotropin (hCG) and Luteinising Hormone-releasing Hormone Analogue (LHRHa).
Asian Fisheries Science 33, 118-127, doi:10.33997/j.afs.2020.33.2.004 (2020).

7 Cossins, A. R. & Crawford, D. L. Fish as models for environmental genomics. Nature
Reviews Genetics 6, 324-333, doi:10.1038/nrg1590 (2005).

8 Kültz, D. Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Bio.
218, 1907-1914, doi:10.1242/jeb.118695 (2015).

9 Glass, J. R., Daly, R., Cowley, P. D. & Post, D. M. Spatial trophic variability of a coastal
apex predator, the giant trevally Caranx ignobilis, in the western Indian Ocean. Marine
Ecology Progress Series 641, 195-208 (2020).

10 Glass, J. R., Santos, S. R., Kauwe, J. S. K., Pickett, B. D. & Near, T. J. Phylogeography
of two coastal marine predators (Caranx ignobilis and Caranx melampygus) across the
Indo-Pacific. Bull. Mar. Sci. 97, 257-280, doi:10.5343/bms.2019.0114 (2021).

11 Pickett, B. D., Glass, J. R., Ridge, P. G. & Kauwe, J. S. K. De novo genome assembly of
the marine teleost, Bluefin Trevally (Caranx melampygus). Chapter 3 herein.

www.manaraa.com

 148

12 Hardie, D. C. & Hebert, P. D. N. Genome-size evolution in fishes. Canadian Journal of
Fisheries and Aquatic Sciences 61, 1636-1646, doi:10.1139/F04-106 (2004).

13 Gregory, T. R. Animal Genome Size Database, <http://www.genomesize.com> (2018).

14 Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer
weighting and repeat separation. Genome Res. 27, 722-736, doi:10.1101/gr.215087.116
(2017).

15 Guan, D. et al. Identifying and removing haplotypic duplication in primary genome
assemblies. Bioinformatics 36, 2896-2898, doi:10.1093/bioinformatics/btaa025 (2020).

16 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
arXiv 1303.3997 (2013).

17 Vasimuddin, M., Misra, S., Li, H. & Aluru, S. in 2019 IEEE IPDPS. 314-324 (Institute
of Electrical and Electronics Engineers (IEEE), 2019).

18 Broad Institute. Picard Toolkit. GitHub http://broadinstitute.github.io/picard (2019).

19 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,
2078-2079, doi:10.1093/bioinformatics/btp352 (2009).

20 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26, 841-842, doi:10.1093/bioinformatics/btq033
(2010).

21 Ghurye, J. et al. Integrating Hi-C links with assembly graphs for chromosome-scale
assembly. PLoS Comput. Biol. 15, e1007273, doi:0.1371/journal.pcbi.1007273 (2019).

22 Song, L., Shankar, D. S. & Florea, L. Rascaf: Improving Genome Assembly with RNA
Sequencing Data. Plant Genome 9, 1-12, doi:10.3835/plantgenome2016.03.0027 (2016).

23 Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory
requirements. Nat. Methods 12, 357-360, doi:10.1038/nmeth.3317 (2015).

24 Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal,
protist, bacterial and viral genomes for evolutionary and functional annotations of
orthologs. Nucleic Acids Res. 47, D807-D811, doi:10.1093/nar/gky1053 (2019).

25 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M.
BUSCO: assessing genome assembly and annotation completeness with single-copy
orthologs. Bioinformatics 31, 3210-3212, doi:10.1093/bioinformatics/btv351 (2015).

26 Jain, C., Koren, S., Dilthey, A., Phillippy, A. M. & Aluru, S. A fast adaptive algorithm
for computing whole-genome homology maps. Bioinformatics 34, i748-i756,
doi:10.1093/bioinformatics/bty597 (2018).

www.manaraa.com

 149

27 Kriventseva, E. V. et al. OrthoDB v8: update of the hierarchical catalog of orthologs and
the underlying free software. Nucleic Acids Res. 43, D250-D256,
doi:10.1093/nar/gku1220 (2015).

28 NCBI RefSeq https://identifiers.org/insdc.gca:GCF_900963305.1 (2019).

29 Vertebrate Genomes Project. Echeneis naucrates, Live Sharksucker,
<https://vgp.github.io/genomeark/Echeneis_naucrates> (2019).

30 NCBI GenBank https://identifiers.org/insdc.gca:GCA_002217815.1 (2017).

31 Yasuike, M. et al. The yellowtail (Seriola quinqueradiata) genome and transcriptome
atlas of the digestive tract. DNA Res. 25, 547-560, doi:10.1093/dnares/dsy024 (2018).

32 NCBI GenBank https://identifiers.org/insdc.gca:GCA_002994505.1 (2018).

33 NCBI GenBank https://identifiers.org/insdc.gca:GCA_900607315.1 (2018).

34 Zhang, D.-C. et al. Chromosome-level genome assembly of golden pompano
(Trachinotus ovatus) in the family Carangidae. Sci. Data 6, 216, doi:10.1038/s41597-
019-0238-8 (2019).

35 NCBI GenBank https://identifiers.org/insdc.gca:GCA_905171665.1 (2021).

36 Vertebrate Genomes Project. Trachurus trachurus, Atlantic Horse Mackerel,
<https://vgp.github.io/genomeark/Trachurus_trachurus> (2020).

37 Araki, K. et al. Whole Genome Sequencing of Greater Amberjack (Seriola dumerili) for
SNP Identification on Aligned Scaffolds and Genome Structural Variation Analysis
Using Parallel Resequencing. Int. J. Genomics 2018, 7984292,
doi:10.1155/2018/7984292 (2018).

38 NCBI RefSeq https://identifiers.org/insdc.gca:GCF_002260705.1 (2017).

39 NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13036353 (2021).

40 NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13036354 (2021).

41 NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13036355 (2021).

42 NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13036356 (2021).

43 NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13036357 (2021).

44 NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13036359 (2021).

45 NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13036360 (2021).

46 NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13036361 (2021).

www.manaraa.com

 150

47 NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13036362 (2021).

48 NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13036363 (2021).

49 NCBI BioProject https://identifiers.org/bioproject:PRJNA670456 (2021).

50 NCBI BioSample https://identifiers.org/biosample:SAMN16629462 (2021).

51 NCBI BioSample https://identifiers.org/biosample:SAMN16516519 (2021).

52 NCBI BioSample https://identifiers.org/biosample:SAMN16516520 (2021).

53 NCBI BioSample https://identifiers.org/biosample:SAMN16516521 (2021).

54 NCBI BioSample https://identifiers.org/biosample:SAMN16516522 (2021).

55 NCBI BioSample https://identifiers.org/biosample:SAMN16516523 (2021).

56 NCBI BioSample https://identifiers.org/biosample:SAMN16516524 (2021).

57 NCBI BioSample https://identifiers.org/biosample:SAMN16516525 (2021).

58 NCBI BioSample https://identifiers.org/biosample:SAMN16516526 (2021).

59 NCBI BioSample https://identifiers.org/biosample:SAMN18021194 (2021).

www.manaraa.com

 151

CHAPTER 5

 SA-SSR: a suffix array-based algorithm for
exhaustive and efficient SSR discovery in

large genetic sequences

Brandon D. Pickett1, Sarah M. Karlinsey1, Corinne E. Penrod1, Michael J. Cormier1, Mark T. W.

Ebbert1, Dennis K. Shiozawa1, Clint J. Whipple1, Perry G. Ridge1

1Department of Biology, Brigham Young University, Provo, Utah, USA

A peer-reviewed, production version of this manuscript has been published in
Bioinformatics, 32(17):2707-2709, DOI: 10.1093/bioinformatics/btw298.

I hereby confirm that the use of this article is compliant with all publishing agreements.

https://doi.org/10.1093/bioinformatics/btw298

www.manaraa.com

 152

ABSTRACT

Summary: Simple Sequence Repeats (SSRs) are used to address a variety of research questions
in a variety of fields (e.g., population genetics, phylogenetics, forensics, etc.), due to their high
mutability within and between species. Here, we present an innovative algorithm, SA-SSR,
based on suffix and longest common prefix arrays for efficiently detecting SSRs in large sets of
sequences. Existing SSR detection applications are hampered by one or more limitations (i.e.,
speed, accuracy, ease-of-use, etc.). Our algorithm addresses these challenges while being the
most comprehensive and correct SSR detection software available. SA-SSR is 100% accurate
and detected >1000 more SSRs than the second-best algorithm, while offering greater control to
the user than any existing software.

Availability and implementation: SA-SSR is freely available at https://github.com/ridgelab/
SA-SSR

Supplementary information: Supplementary data are available at Bioinformatics online and in
Appendix 6 herein.

www.manaraa.com

 153

1. INTRODUCTION

Simple Sequence Repeats (SSRs), microsatellites, or short tandem re-peats (STRs), are

tandem repeats of short (often 2–5 bp) nucleotide strings (Madesiset al., 2013). There are

generally 10–100 such re-peats at each SSR locus resulting in a DNA segment that is amenable

to rapid molecular characterization. Given their repetitive nature, the lengths of SSR loci tend to

increase or decrease due to polymerase slippage during DNA replication (Schlotterer and Tautz,

1992). As a consequence, SSR loci have high mutation rates and frequently generate multiple

polymorphic alleles. SSR loci are common in both nuclear and organellar genomes, and when

flanked by unique sequence, PCR primers can be readily designed to amplify simple sequence

length polymorphisms. SSRs have proven highly useful for a variety of molecular genetics,

population genetics, and phylogenetics applications because it is simple to genotype them using

PCR, and because they are highly polymorphic.

While SSRs have been extensively characterized in many model species, the expense and

effort traditionally required to develop SSRs has limited their use in non-model species.

Fortunately, next-generation sequencing has enabled researchers to quickly produce large

quantities of genomic and/or transcriptomic data for nearly any species. While a high-quality

genome is still difficult to assemble, there is usually adequate sequence information to identify

thousands of unique SSR loci with minimal sequencing. Thus, researchers working in non-model

systems need user friendly and customizable bioinformatics algorithms to identify SSR loci.

A complete, accurate, characterization of SSRs in non-model systems increases the

likelihood researchers are able to identify SSRs where flanking genotyping primers can be

designed. SSR differences can be used to differentiate between related species or provide

insights into specific phenotypes/adaptations. Finally, since the majority of researchers do not

www.manaraa.com

 154

have formal computational training, a straightforward, intuitive application is likely to enable

traditional bench/field scientists to use SSRs in their research.

Many tools exist to find SSRs with varying degrees of utility, but few tools have both a

useful command line interface for scripting and meaningful, parseable output. Identifying SSRs

in a sequence is challenging because the search is prohibitive in time and memory requirements.

Most existing tools use either an exhaustive, combinatorial search approach or a heuristic

approach (Limet al., 2013). Exhaustive searches have time complexity that grows exponentially,

while heuristic approaches trade comprehensiveness for run time. We developed an algorithm

that is both efficient and complete.

Conceptually, finding SSRs in a nucleotide sequence is relatively straightforward, but

the size of current datasets makes it a substantial challenge. SSR detection in sequence data is a

substring operation—a large class of problems common in computer science. Many algorithms

and data structures have been developed to reduce the time and space requirements for string

operations. The suffix tree boasts linear time and space requirements for generating its

representation of the string and can be used to perform many important substring operations in

O(nlogn) time. After Weiner discovered suffix trees (Weiner, 1973), McCreight (McCreight,

1976) and Ukkonen (Ukkonen, 1995) each simplified it, paving the way for the development of

the suffix array (Abouelhodaet al., 2004;Kurtz,1999;Manber and Myers, 1993). Suffix arrays

have the same properties as suffix trees, but they are as many as five times more memory

efficient (Kurtz, 1999;Manber and Myers, 1993).

2. ALGORITHM

www.manaraa.com

 155

A suffix array is an array of character positions representing a list of all possible suffixes

of a string, ordered lexicographically, and longest common prefix arrays are arrays of the lengths

of the longest common prefix of each adjacent suffix in the suffix array. Using suffix and longest

common prefix arrays, we designed and implemented a novel algorithm for finding SSRs in a

nucleotide sequence in linear (O(n)) time and space. The algorithm makes no distinction between

microsatellites or minisatellites—it can find tandem repeats of any length or period size.

SSRs are identified by calculating three different parameters, k, r, and p from the suffix

and longest common prefix arrays, where k equals the length of an SSR repeating unit or period

size, r equals the number of times it repeats after the original occurrence, and p equals the

position of the first nucleotide of the first period of the SSR (see Supplementary Texts 1 and 2,

and Supplementary Figure S1 for a more detailed explanation). SSRs are identified by

calculating k , p and r from the suffix and longest common prefix arrays (Supplementary Fig. S1

C). Let i equal the index of any entry in the suffix array (except the first position), where SA and

LCPA are the suffix and longest common prefix arrays, respectively:

 𝑘 = |𝑆𝐴𝑖 − 𝑆𝐴𝑖−1| (1)

 𝑟 = ⌊
𝐿𝐶𝑃𝐴𝑖

𝑘𝑖
⌋ (2)

 𝑝 = 𝑀𝐼𝑁(𝑆𝐴𝑖−1, 𝑆𝐴𝑖) (3)

If r  > 0, an SSR of length k * (r  + 1) exists at position p in the original sequence,

otherwise if r  = 0 there is no SSR at position p . The base unit (e.g., AG in the SSR AGAGAG)

of the SSR starts at position p and ends at position p  + (k  − 1). Thus, by comparing each

adjacent element in the suffix array we can find SSRs in a sequence.

3. RESULTS

www.manaraa.com

 156

Our algorithm requires at most 9n bytes of memory, where n is the length of the entire

query sequence. For each nucleotide in the sequence, we generously assume one byte in the

original sequence (using 8-bit characters), four bytes in the suffix array (using 32-bit integers)

and four bytes in the longest common prefix array (using 32-bit integers). The time complexity

for building a suffix array and its longest common prefix array is O(n). Our algorithm then

requires 3 * (n − 1) constant time computations to find SSRs, thus keeping the total time and

space complexities at O(n).

We evaluated the performance of our algorithm compared to seven existing applications

(see Supplementary Table S1 for a list of algorithms) on the Arabidopsis thaliana (chromosome

4), Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli and Zaire ebolavirus

genomes (GenBank Accessions: NC_003075.7, GCA_001483305.1, GCA_001014345.1,

GCA_001432175.2 and NC_002549.1, respectively), comprised of 13,121 sequences totaling

248,846,830 nucleotides. Sequences ranged in length from 516 to 18,590,000 nucleotides with a

median size of 4,662 (Supplementary Figures S2–S6 show a distribution of sequence lengths).

Dozens of applications exist for SSR detection. We selected algorithms for comparison that: (i)

were capable of processing the Arabidopsis thaliana chromosome (the longest of the sequences),

(ii) had a non-interactive, Linux, command-line interface, (iii) were freely available for

immediate download, and (iv) had 10 or more citations per year or were published in the last

three years. Several additional algorithms met our requirements, but used antiquated shared

libraries, or had compile/run-time errors. All comparisons were run on a 6-core Intel Haswell

Westmere (2.67 GHz) processor with 24 GB of memory (1066 MHz DDR3).

SA-SSR, like other algorithms, calls any detected sequence repeat an SSR. Reported

numbers and accuracy reflect the assumption that all sequence repeats are SSRs. SA-SSR

www.manaraa.com

 157

maximized the number of SSRs identified, while maintaining low memory requirements and

runtime, and providing higher flexibility to the user to control desired output (results summarized

in Table 1 with more detailed results in Supplementary Table S2). We counted the total number

of SSRs identified by SA-SSR and each of the algorithms with period sizes one to seven and

minimum total length of 16 nucleotides (period sizes and lengths likely to be of most interest in

common applications). Next, we determined the accuracy of each of the tested algorithms,

including SA-SSR, by writing a script to scan the entire sequence to verify whether or not a

reported SSR was present. Most of the tested algorithms, including SA-SSR, were 100%

accurate. However, compared to other algorithms, SA-SSR, found the highest number of correct

(38,088 SSRs) and unique SSRs (on average >18,000 SSRs more than the other algorithms).

MREPS, SSR-Pipeline, and TRF only missed 1,340, 3,047, and 7,423 correct SSRs detected by

SA-SSR, respectively. However, TRF was only 23% accurate. Results of algorithm comparisons

and software features are summarized in Supplementary Tables S2–S31.

Finally, we designed SA-SSR with intuitive features and formatting requirements. Like

other SSR detection applications, SA-SSR takes FASTA files as input. However, some of the

other applications, including some of those with high performance, are difficult to use. For

example, MREPS displays an error message if any characters are not A, C, G, T or N, or if too

many N's are present. Even if a user has the skills to remove all the characters that are not A, C,

G or T, this makes the output positions of SSRs incorrect because those characters are not

accounted for. Additionally, MREPS output is in a relatively un-structured text document that is

not trivial to parse. As another example, SSR-Pipeline can only look for one period size at a

time, requiring the user to manually re-run the software repeatedly for each period size of

interest. Finally, SA-SSR provides greater flexibility to the user. For example, the user can

www.manaraa.com

 158

choose whether to perform an exhaustive or faster (still nearly complete) search, change output

filters to report (or not) overlapping SSRs, or report only user-specified SSRs.

SA-SSR is freely available at: http://github.com/ridgelab/SA-SSR.

ACKNOWLEDGEMENTS

We thank the Fulton Supercomputing Laboratory (https://marylou.byu.edu) at Brigham

Young University for their consistent efforts to support our research.

FUNDING

This work was supported by start-up funds from Brigham Young University to PGR and

a mentoring environment grant from Brigham Young University to CJW.

CONFLICT OF INTEREST

None declared.

SUPPLEMENTAL MATERIALS

The supplemental materials are available online or in Appendix 6 herein.

TABLES   
============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

https://marylou.byu.edu/

www.manaraa.com

 159

Table 1. Summary of results from comparisons of SA-SSR with other SSR detection algorithms. This is a
combination of results across each of the genomes included in the comparison. For more detailed results see
Supplementary Tables S2, S4–S31. a MREPS timing includes the pre- and post-processing time for each genome
necessary to adjust positions to account for removing ‘incorrect symbols’ and Ns. The additional times are an
average of multiple approaches. b We only considered SSRs with period sizes 1–7 (inclusive) and lengths of at least
16 nucleotides (nt). The difference between the number of SSRs in range and reported is due exclusively to SSR
length (less than 16 nt) and period size (greater than 7). c Whenever possible, we salvaged correct SSRs that were
inside incorrect SSRs reported by other software packages. For example, in Drosophila melanogaster, we recovered
three for PRoGeRF and 8,408 for TRF. To illustrate, in sequence JXOZ01000043.1, TRF reports a CT repeated 36
times at position 2,171. While TRF does correctly identify a low-complexity region with many CT repeats, there are
not 36 perfect repeats in a row. In this case, we salvaged two perfect CT regions, each repeating 8 times. d Detailed
pairwise comparisons can be found in Supplementary Tables S4–S31.

 Comparison with SA-SSR

CPU
Timea

(mm:ss)

Real
Timea

(mm:ss)
SSRs

Reported
SSRs In
Rangeb

Number
Correctc

Percent
Correct

SSRs
Unique to
Softwared

SSRs
Unique to

SA-SSR
Shared

SSRs
GMATo 329:18 329:18 72,713,858 15,284 6,617 43.29 20 34,237 3,851
MREPS 393:02 393:02 75,552 37,076 37,076 100 71 1,340 36,748

PRoGeRF 3,194:18 3,194:18 5,457,129 2,278 2,268 99.56 2 35,864 2,224
QDD 24:17 24:17 53,248 17,418 17,418 100 10 20,759 17,329

SA-SSR 28,820:12 2,416:32 38,088 38,088 38,088 100 NA NA NA
SSR-Pipeline 1,411:21 1,411:21 60,344,067 36,398 36,398 100 68 3,047 35,041

SSRIT 2:12 2:12 13,217 13,217 13,217 100 5 24,951 13,137
TRF 12:14 12:14 2,035,715 147,284 33,876 23.00 12 7,423 30,665

www.manaraa.com

 160

REFERENCES

Abouelhoda, M. I. et al. (2004) Replacing suffix trees with enhanced suffix arrays. J. Discrete
Algorithms, 2, 53–86.

Kurtz, S. (1999) Reducing the space requirement of suffix trees. Softw. Pract. Exp., 29, 1149–
1171.

Lim, K. G. et al. (2013) Review of tandem repeat search tools: a systematic approach to
evaluating algorithmic performance. Brief. Bioinf., 14, 67–81.

Madesis, P. et al. (2013) Microsatellites: Evolution and contribution. In: Microsatellites.
Springer, pp. 1–13.

Manber, U. and Myers, G. (1993) Suffix arrays: a new method for on-line string searches. SIAM
J. Comput., 22, 935–948.

McCreight, E. M. (1976) A space-economical suffix tree construction algorithm. J. ACM
(JACM), 23, 262–272.

Schlotterer, C. and Tautz, D. (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids
Res., 20, 211–215.

Ukkonen, E. (1995) On-line construction of suffix trees. Algorithmica, 14, 249–260.

Weiner, P. (1973) Linear pattern matching algorithms. Switching and Automata Theory, 1973.
SWAT’08. In: IEEE Conference Record of 14th Annual Symposium on IEEE, pp. 1–11.

www.manaraa.com

 161

CHAPTER 6

 Kmer-SSR: A Fast and Exhaustive SSR
Search Algorithm

Brandon D. Pickett1, Justin B. Miller1, Perry G. Ridge1

1Department of Biology, Brigham Young University, Provo, Utah, USA

A peer-reviewed, production version of this manuscript has been published in
Bioinformatics, 33(24):3922-3928, DOI: 10.1093/bioinformatics/btx538.

I hereby confirm that the use of this article is compliant with all publishing agreements.

https://doi.org/10.1093/bioinformatics/btx538

www.manaraa.com

 162

ABSTRACT

Motivation: One of the main challenges with bioinformatics software is that the size and
complexity of datasets necessitate trading speed for accuracy, or completeness. To combat this
problem of computational complexity, a plethora of heuristic algorithms have arisen that report a
‘good enough’ solution to biological questions. However, in instances such as Simple Sequence
Repeats (SSRs), a ‘good enough’ solution may not accurately portray results in population
genetics, phylogenetics and forensics, which require accurate SSRs to calculate intra- and inter-
species interactions.

Results: We present Kmer-SSR, which finds all SSRs faster than most heuristic SSR
identification algorithms in a parallelized, easy-to-use manner. The exhaustive Kmer-SSR option
has 100% precision and 100% recall and accurately identifies every SSR of any specified length.
To identify more biologically pertinent SSRs, we also developed several filters that allow users
to easily view a subset of SSRs based on user input. Kmer-SSR, coupled with the filter options,
accurately and intuitively identifies SSRs quickly and in a more user-friendly manner than any
other SSR identification algorithm.

Availability and implementation: SA-SSR is freely available at https://github.com/ridgelab/
Kmer-SSR

www.manaraa.com

 163

1. INTRODUCTION

Simple sequence repeats (SSRs) are short repetitive regions of DNA where at least one

base is tandemly repeated many times due to slipped-strand mispairing and errors occurring in

DNA replication, repair, or recombination (Levinson and Gutman, 1987). For decades, SSRs

have been studied to determine phenotypic differences caused by increased copy numbers of

short repetitive sequences (Kashi and King, 2006). Moreover, SSRs account for quantitative

genetic variation and phenotypic differences without lowering species fitness (Kashi et al.,

1997). SSR concentration varies not only between different species, but also between different

chromosomes within the same species, and cannot be explained by assessing the nucleotide

composition of sequences (Katti et al., 2001). Because SSRs reveal characteristic functions of

DNA replication, recombination and repair, they are important in studying biological systems

interactions, as well as studying repeat expansion-based diseases with next-generation

sequencing data (Kashi and King, 2006).

Many different approaches have been used to identify SSRs. Here, we propose the use of

k-mers. The term k-mer refers to a subsequence of length ‘k’ derived from a given sequence,

while k-mer decomposition refers to all possible substrings of length ‘k’ that can be made from a

sequence. Uses for k-mer decomposition have previously been outlined in instances such as

genome assembly and machine learning (Chikhi and Medvedev, 2014; Ghandi et al., 2014).

Although k-mers have been used to identify similar subsequences as in (Han et al., 2007), to our

knowledge SSR identification has never been attempted through k-mer decomposition.

2. MATERIALS AND METHODS

www.manaraa.com

 164

2.1 Overview

Kmer-SSR utilizes k-mer decomposition to provide an exhaustive or filtered approach to

finding all SSRs in a given sequence (Figs 1 and 2). Our version of k-mer decomposition works

by identifying all subsequences of length ‘k’ while tracking the start position of each k-mer. K-

mer lengths are defined by the user as the SSR period length. Kmer-SSR minimizes the usage of

random access memory (RAM) by performing k-mer decomposition and only storing k-mers that

are the same as the preceding k-mer (SSR period length). If a k-mer is not identical to a k-mer

found k bases previously, the previously identified k-mers will be discarded and k-mer

decomposition will occur for the rest of the sequence.

2.2 Memory Requirements

We used the following techniques to limit memory requirements:

1. Identify SSRs from left to right: Kmer-SSR checks each position starting at the

leftmost position of the sequence for each SSR period size (i.e., k-mer length) given

by the user. This method allowed us to store only a single potential SSR and

immediately either discard it if it was not repeated or write it to a file if it was a valid

SSR.

2. Identify SSRs with the largest period size first: Since Kmer-SSR does not store

previously identified SSRs in memory, it is necessary to search for SSRs in a specific

order, or else risk reporting SSRs fully enclosed within larger SSRs. To avoid this

issue, we take the period sizes given by the user and search for SSRs from the longest

period size to the smallest (e.g., if the user wants to search for 2-mers and 7-mers, we

search for all 7-mer SSRs in the sequences before we search for 2-mer SSRs). When

www.manaraa.com

 165

an SSR is discovered, an atomicity check is conducted to determine if the k-mer can

be broken down to a smaller subsequence. An SSR is considered atomic if no smaller

SSRs exist inside the first period. For example, ATATATAT would be identified as a

4-mer (ATAT) repeated twice, but ATAT is not atomic because AT (repeated twice)

occurs within the first period. Thus, it is ignored because it is an invalid 4-mer and, if

the user requested searching for 2-mers, it would be discovered again as a 2-mer (AT)

repeated four times. If the atomicity check fails, the SSR is not reported. When an

atomic (i.e. valid) SSR is discovered, the iterator moves just past the SSR, minus the

current period size being searched, to ensure that overlapping SSRs are identified. For

example, ACAACAACACACACAC has ACA repeated three times starting at

position 0. Additionally, AC repeats five times starting at position 6. After finding the

ACA repeat, we would miss the full AC repeat if we skipped to the end of the ACA

repeat and resumed searching from there. Only by backtracking as described above

(9–3 = 6), do we find the full AC repeat. Note that each of the nucleotides between

positions 0 and 5 need not be searched for SSRs because Kmer-SSR has already

found SSRs with larger period sizes than the current period size. In other words, since

Kmer-SSR has already found SSRs with larger period sizes, the maximum possible

overlap with the current SSR (ACA) and an adjacent following SSR is k (which is

three in this example), removing the need to search for SSRs from the start of a valid

SSR to k bases from the end of that SSR.

3. Create a Boolean filter array: To ensure that SSRs are unique and do not end in the

same positions, we created a Boolean filter array of the same length as the sequence

being analyzed, which is initiated to false. In C ++, the implementation of this array

www.manaraa.com

 166

only requires one bit per position, so the memory requirement is nominal. When an

SSR is discovered, we first ensure that at least one position in the first or last SSR

period size on either end of the SSR is false in the Boolean array. If one position is

false, we assign all values within the array that correspond to all positions in the SSR

to true. The filter allows us to ignore completely overlapping SSRs because

overlapping SSRs will be set to ‘true’ at the positions at the ends of the SSR.

By utilizing the above-mentioned methods, we were able to limit the amount of RAM

needed to O(n), where n is the sequence length, and the constant value is slightly more than one

byte (one byte to store each sequence base and one bit allocated in the Boolean filter for each

base).

2.3 SSR filters

Next, we implemented a comprehensive filter that allows users to control the output of

Kmer-SSR based on atomicity, cyclic duplicates, enclosed SSRs, minimum SSR length and

specific SSR period sizes. Pseudocode for Kmer-SSR is in Figure 2. The following are different

filters that are optionally applied to the output of Kmer-SSR:

1. Atomicity check: The atomicity check ensures that the smallest period size for each

SSR is reported. For instance, if an ATAT repeats four times, it would be reported as

an AT repeated eight times because AT is the smallest period size within ATAT.

2. Cyclic duplicates: Many SSRs create equally viable SSRs with slightly different

positions reported. For instance, in the sequence ATATATATATATATATA, it is

arguably equally valid to report the AT repeated eight times starting at position zero

as it would be to report TA repeating eight times starting at position one. To avoid

www.manaraa.com

 167

duplicate reporting of cyclic duplicates and ensure the longest SSR is always

reported, we choose and report only the leftmost SSR. So, in this instance, only the

AT repeated eight times would be reported.

3. Enclosed SSRs: Occasionally, SSRs might be completely enclosed within other SSRs.

For example, in the sequence TAAAATTAAAATTAAAAT, the SSR TAAAAT is

repeated three times, but within each TAAAAT there is an A that repeats four times.

In this case, we only report the longest SSR, TAAAAT, repeated three times.

4. SSR length: We allow the user to input minimum and maximum SSR lengths via

command line options. By default, SSRs are only reported if they are at least 16

nucleotides long.

5. Set specific period sizes: We allow the user to input specific period sizes to be

checked (e.g., 1, 3, 5 would look for SSRs with period sizes of one, three and five), or

ranges of period sizes (e.g. 1–7 would look for SSRs with period sizes one through

seven). By default, Kmer-SSR reports SSRs of period sizes one through seven. SSRs

outside of the user specified range are not reported.

6. Number of repeats: We allow the user to input minimum and maximum numbers of

repeats via command line options. By default, SSRs must repeat at least twice to be

reported.

7. Enumerated SSRs: If the user is interested in a very limited set of SSRs, they may

specify those via a command line option and no other SSRs will be reported.

8. Sequence length: The user may specify minimum and maximum bounds on the length

of an input sequence, outside of which the program will not search or report SSRs. By

www.manaraa.com

 168

default, if a sequence is less than 100 bases or more than 500 megabases, it will be

ignored.

3. RESULTS

We conducted pairwise comparisons of Kmer-SSR against the following SSR

identification algorithms: GMATo (Wang et al., 2013), MREPS (Kolpakov et al., 2003),

PRoGeRF (Lopes et al., 2015), QDD (Meglécz et al., 2014), SA-SSR (Pickett et al., 2016), SSR-

Pipeline (Miller et al., 2013), SSRIT (Temnykh et al., 2001) and TRF (Benson, 1999). These

comparisons were performed on DNA sequences from six different species (whole genome

assembly unless otherwise noted): Anolis carolinensis chromosome 6 (CM000942.1),

Chlamydomonas reinhardtii (assembly v5.5) (Merchant et al., 2007), Danio rerio chromosome

25 (CM002909.1), Dictyostelium doscoideum (GCA_0000044695.1), Physcomitrella patens

chromosome 1 (assembly v3.3), and Saccharomyces cerevisiae (GCA_001634645.1). Table 1

displays the computational time of each algorithm and the number of SSRs correctly identified

for each dataset (CPU Time and Real Time columns).

Because Kmer-SSR is multithreaded and robust to fasta files with unknown nucleotides,

the real time for SSR identification using Kmer-SSR is faster than any other algorithm. Although

MREPS reports a faster real time identification of SSRs, the program does not usually run with

sequences containing unknown characters. With the addition of the time necessary to make the

input fasta files usable for MREPS, it underperformed Kmer-SSR in all six datasets (Table 1,

Real Time column). We found that with the exception of TRF, all algorithms tested were 100%

accurate in identifying SSRs; however, only Kmer-SSR, MREPS and SSRIT reported all

possible filtered SSRs within the range specified for each dataset (Table 1, SSRs In Range

www.manaraa.com

 169

column). Although SSRIT has a faster CPU time than Kmer-SSR, it does not have the

multithreading capabilities of Kmer-SSR, nor does it allow for querying of SSRs other than

period sizes 2–4 without directly editing the algorithm’s source code.

4. DISCUSSION

SSR identification is important in many biological comparisons. It is important to have

100% accuracy in SSR identification because primers often depend on the exact SSR sequence

with conserved flanking sequences (Robinson et al., 2004), and phenotypic variations associated

with SSRs require an accurate portrayal of a genome. Furthermore, determining the exact SSR

copy number is important in species identification and aids in the identification of discrete

families and individuals. Kmer-SSR fills a usability gap in SSR identification. While many SSR

identification algorithms exist, it is often difficult to install, use and read the output from the

algorithms available. Two of the main strengths of Kmer-SSR are its usability and the SSR filters

that are easily accessible to help answer biological questions. Installing Kmer-SSR is at least as

easy to install as other algorithms. Kmer-SSR was implemented in C ++. It does not require any

editing of the source code to find SSRs of different lengths or filter overlapping SSRs, and it

provides a robust documentation for its command line options. Step-by-step instructions for

installation and implementation of Kmer-SSR are available with the algorithm’s source code at

http://github.com/ridgelab/Kmer-SSR.

The filters available in Kmer-SSR help answer primary biological questions. Instead of

inundating a researcher with duplicate SSRs, Kmer-SSR eliminates overlapping SSRs by only

reporting the left-most SSR in each sequence when multiple SSRs are equally valid.

Furthermore, longer SSRs are typically more biologically interesting, so completely enclosed

www.manaraa.com

 170

SSRs are not included in the output. Importantly, these filters still allow for overlapping SSRs

where at least one period size is completely outside of the previously reported SSR. These filters

set Kmer-SSR apart from all other SSR identification algorithms because of its ease of use as

well as its utility.

As we compared other algorithms, a few difficulties arose that made it challenging to

directly compare the output from each program. We learned that QDD does not allow the

sequence header line to contain the vertical bar [|] (and possibly other characters that have

special meaning in a regular expression). Also, analysis of 1-mers in longer sequences, such as

the lizard genome, exceeded 21 days in SSR-pipeline. MREPS also required pre-splitting of the

input sequence files because the algorithm does not accept any characters besides A, T, C and G

in the sequence lines (it will accept a very limited number of well-distributed Ns). SSRIT

requires directly editing the source code to query period sizes other than lengths two through

four. Similarly, QDD requires directly editing its source code to retrieve different period lengths

and different SSR lengths. QDD defaults to 1-mers that must be 1 million bases long and 2-mers

through 6-mers that must repeat at least 5 times. Furthermore, unlike some other algorithms, the

output format for Kmer-SSR is easily parsable, and it can be exported directly to an Excel

spreadsheet or another tab delimited parser. GMATO, ProGeRF, SSRIT and SA-SSR have

similar output formats (although, ProGeRF and SSRIT do not provide column headers). MREPS

and TRF are text-based reports with embedded tables. QDD provides a semicolon-separated

value report with a few fixed columns followed by a variable number of columns thereafter

depending on the number of SSRs found in a given sequence. SSR-Pipeline provides FASTA

formatted output where the SSRs are encoded in the header (see Table 2). MREPS, PRoGeRF

and TRF attempt to identify SSRs through heuristics. Heuristics are a common approach to

www.manaraa.com

 171

achieve an adequate solution to a problem that is either too computationally intensive to check

all possible solutions or does not have a good approach to calculate the exact solution (Clancey,

1985). Table 2 displays features of each software package per each software package’s

documentation (Benson, 1999; Kolpakov et al., 2003; Lopes et al., 2015; Meglécz et al., 2014;

Miller et al., 2013; Pickett et al., 2016; Temnykh et al., 2001; Wang et al., 2013).

While Kmer-SSR provides a substantially better user experience with more filters and

options than all other algorithms, Kmer-SSR has several weaknesses. First, since Kmer-SSR is

an exact algorithm, it is not as fast as the heuristic approach of MREPS when there are only

canonical nucleotides in a sequence. Second, due to the kmer decomposition approach used in

Kmer-SSR, it is unable to identify fuzzy repeat regions where only one or two nucleotides differ

from an exact repeat. Although not necessary for many applications, fuzzy repeats would provide

Kmer- SSR with increased functionality that is not currently possible with the algorithm’s

implementation. Third, Kmer-SSR has no web interface.

Unlike all other algorithms, Kmer-SSR offers the convenience of a completely exhaustive

search in linear time (though with a larger constant factor than normal). This truly exhaustive

search is entirely filter- free. As an example, that means it would report an ACG repeated seven

times at position 1, six times at position 4, five times at position 7, etc. This is likely not

necessary for most applications. However, with the exhaustive option, we set an upper limit for

all SSR identifications. Furthermore, since genome complexity is important in primer design and

predicting recombination events (Murray et al., 1999), the exhaustive option could be used as an

easy approach to determine the proportion of a sequence that repeats.

ACKNOWLEDGEMENTS

www.manaraa.com

 172

We appreciate Brigham Young University and the Fulton Supercomputing Laboratory

(https://marylou.byu.edu) for their continued support of our research. We thank the US

Department of Energy Joint Genome Institute for granting access to Chromosome 1 of

Physcomitrella patens.

FUNDING

This work has been supported by funds provided by Brigham Young University and the

Department of Biology.

CONFLICT OF INTEREST

None declared.

TABLES & FIGURES
============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

https://marylou.byu.edu/

www.manaraa.com

 173

Table 1. Comparisons of all nine SSR-identification algorithms across six genomes with period sizes of 1-7
and a minimum SSR length of 16 bases. We ran all comparisons on a 2.3 Ghz Intel Haswell processor. Although
each algorithm was given the same amount of memory and CPUs, due to hardware variability of the CPU, runtimes
could vary by up to 20%. Also, MREPS required pre-processing of the fasta files, which typically added anywhere
from a few seconds to several minutes to the runtime (not depicted in the table), depending on the pre-processing
approach used. Similarly, we did not include the time required to edit SSRIT and QDD’s source code in order for
their programs to function over the period sizes in these tests. SSR-Pipeline could not finish searching for 1-mers in
chromosome 6 of the Anolis carolinensis in 21 days of run time. Accordingly, the chromosome was split into 24
approximately equal sized chunks (i.e., approximately 3.3 Mb each) and each chunk was searched for 1-mers
separately by SSR-Pipeline. The required time for each chunk was summed (approximately 5 hours) and used in
place of 504 hours (21 days).
The SSRs After Adjustments column reflects the number of SSRs that we did not remove or alter for purposes of
making the comparison simpler. SSRs that were exact duplicates, duplicates with only the repeat number varying,
duplicates that varied only by cycle (e.g., ACG versus CGA with the same number of repeats right next to each
other), entirely surrounded by another SSR, or not atomic (e.g., ATAT repeated 2 times instead of AT repeated 8
times) were removed. SSRs that shared the same base and overlapped were combined into one SSR (e.g., AT
repeated 8 times at position 1 and AT repeated 6 times at position 11 would be combined to AT repeated 11 times at
position 1).
The SSRs In Range column is the number of SSRs from the previous column that were 16 nt or longer and had a
period size of 1-7 (inclusive).
The Number Correct column is the number of SSRs In Range that were actually present in the sequence.
The Number Correct and Fixed is the Number Correct plus a few incorrect SSRs that we are able to fix (e.g., a
program might report an AT repeated 30 times, but it only repeated 20 times in the sequence).
The Percent Correct and Fixed is the percent of SSRs in Range that were correct or fixed.

 Comparison with Kmer-SSR

 CPU Time

(mm:ss)

Real Time

(mm:ss)

SSRs

Reported

SSRs After

Adjustments

SSRs In

Range

Number

Correct

Number

Correct &

Fixed

Percent

Correct &

Fixed

SSRs Unique

to Software

SSRs Unique

to Kmer-SSR

SSRs

Shared

A
n

o
li

s
ca

ro
li

n
en

si
s

(c
h

r
6

)

GMATo 2:38 2:38 20,623,008 16,369,297 16,871 16,871 16,870 100 0 8,194 10,090

Kmer-SSR 2:24 0:24 18,284 18,284 18,284 18,284 18,284 100 NA NA NA

MREPS 0:09 0:09 25,639 25,639 18,284 18,284 18,284 100 0 0 18,284

PRoGeRF 18:07 18:07 16,841,656 16,840,821 17,763 17,762 17,763 100 0 610 17,674

QDD 19:11 19:11 60,994 60,994 18,009 18,009 18,009 100 0 732 17,552

SA-SSR 338:47 33:55 18,166 18,166 18,166 18,166 18,166 100 0 442 17,842

SSR-Pipeline 611:55 611:55 19,173,282 17,301,120 18,044 18,044 18,044 100 0 913 17,371

SSRIT 1:29 1:29 87,073 74,121 18,284 18,284 18,284 100 0 0 18,284

TRF 2:09 2:09 422,851 411,644 42,157 13,872 17,307 41.05 0 1,560 16,724

C
h

la
m

yd
o

m
o
n

a
s

re
ih

a
rd

ti
i

GMATo 3:30 3:30 26,512,280 21,624,294 50,401 50,401 50,139 99 0 23,086 34,416

Kmer-SSR 3:26 0:19 57,502 57,502 57,502 57,502 57,502 100 NA NA NA

MREPS 0:14 0:14 94,875 94,875 57,502 57,502 57,502 100 0 0 57,502

PRoGeRF 37:55 37:55 8,071,102 8,020,213 32,043 31,989 32,004 100 0 25,588 31,914

QDD 8:51 8:51 216,943 216,943 55,470 55,470 55,470 100 0 3,002 54,500

SA-SSR 1,324:33 167:48 56,833 56,833 56,833 56,833 56,833 100 0 1,214 56,288

SSR-Pipeline 632:10 632:10 26,973,434 23,032,838 56,729 56,729 56,729 100 0 1,793 55,709

SSRIT 2:00 2:00 310,109 252,223 57,502 57,502 57,502 100 0 0 57,502

TRF 8:52 8:52 1,022,145 990,316 181,973 25,451 45,773 25.15 0 14,546 42,956

D
a

n
io

 r
er

io
 (

ch
r

2
5

)

GMATo 1:12 1:12 9,501,860 7,535,749 22,546 22,546 22,362 99 0 8,463 13,636

Kmer-SSR 1:10 0:13 22,099 22,099 22,099 22,099 22,099 100 NA NA NA

MREPS 0:05 0:05 26,862 26,862 22,099 22,099 22,099 100 0 0 22,099

PRoGeRF 8:14 8:14 7,696,269 7,695,012 21,729 21,668 21,684 100 0 494 21,605

QDD 7:43 7:43 49,016 49,016 21,805 21,805 21,805 100 0 908 21,191

SA-SSR 2,075:03 648:00 21,862 21,862 21,862 21,862 21,862 100 0 690 21,409

SSR-Pipeline 1,958:54 1,958:54 8,948,450 7,954,899 21,857 21,857 21,857 100 0 987 21,112

SSRIT 0:43 0:43 69,645 58,065 22,099 22,099 22,099 100 0 0 22,099

TRF 5:03 5:03 293,378 283,764 40,343 11,255 16,911 41.92 0 6,144 15,955

www.manaraa.com

 174

D
ic

ty
o

st
el

iu
m

 d
o

sc
o

id
eu

m

GMATo 1:02 1:02 8,810,607 7,126,425 82,643 82,643 82,526 100 0 28,714 62,967

Kmer-SSR 1:12 0:08 91,681 91,681 91,681 91,681 91,681 100 NA NA NA

MREPS 0:05 0:05 121,835 121,835 91,681 91,681 91,681 100 0 0 91,681

PRoGeRF 11:42 11:42 4,629,786 4,604,499 60,176 60,174 60,174 100 0 31,707 59,974

QDD 3:44 3:44 171,686 171,686 88,017 88,017 88,017 100 0 5,295 86,386

SA-SSR 723:31 236:01 90,700 90,700 90,700 90,700 90,700 100 0 1,635 90,046

SSR-Pipeline 246:35 246:35 9,292,900 7,397,561 90,810 90,810 90,810 100 0 1,759 89,922

SSRIT 0:42 0:42 265,894 202,531 91,681 91,681 91,681 100 0 0 91,681

TRF 17:30 17:30 642,904 602,301 178,902 40,772 75,742 42.34 0 18,962 72,719

P
h

ys
co

m
it

re
ll

a
 p

a
te

n
s

(c
h

r
1
)

GMATo 0:59 0:59 7,981,869 6,500,395 7,739 7,739 7,736 100 0 3,259 5,528

Kmer-SSR 0:58 0:10 8,787 8,787 8,787 8,787 8,787 100 NA NA NA

MREPS 0:04 0:04 12,885 12,885 8,787 8,787 8,787 100 0 0 8,787

PRoGeRF 7:32 7:32 6,639,989 6,639,933 8,669 8,668 8,668 100 0 131 8,656

QDD 4:29 4:29 27,774 27,774 8,319 8,319 8,319 100 0 621 8,166

SA-SSR 642:36 91:59 8,719 8,719 8,719 8,719 8,719 100 0 152 8,635

SSR-Pipeline 1,498:06 1,498:06 7,763,141 6,874,175 8,720 8,720 8,720 100 0 253 8,534

SSRIT 0:35 0:35 39,472 35,941 8,787 8,787 8,787 100 0 0 8,787

TRF 1:53 1:53 223,938 215,818 22,730 6,132 8,192 36.04 0 891 7,896

S
a

cc
h
a

ry
o

m
yc

es
 c

er
ev

is
ia

e

GMATo 0:23 0:23 3,281,592 2,674,303 1,101 1,101 1,101 100 0 588 887

Kmer-SSR 0:23 0:04 1,475 1,475 1,475 1,475 1,475 100 NA NA NA

MREPS 0:02 0:02 2,293 2,293 1,475 1,475 1,475 100 0 0 1,475

PRoGeRF 3:43 3:43 1,065,515 1,065,510 492 492 492 100 0 988 487

QDD 0:47 0:47 8,672 8,672 1,368 1,368 1,368 100 0 139 1,336

SA-SSR 338:50 60:55 1,430 1,430 1,430 1,430 1,430 100 0 57 1,418

SSR-Pipeline 9:32 9:32 3,124,288 2,820,560 1,427 1,427 1,427 100 0 73 1,402

SSRIT 0:14 0:14 12,276 10,386 1,475 1,475 1,475 100 0 0 1,475

TRF 0:26 0:26 62,616 61,038 4,634 755 1,242 26.80 0 290 1,185

C
o

m
b

in
ed

GMATo 9:44 9:44 76,711,216 61,830,463 181,301 181,301 180,734 100 0 72,304 127,524

Kmer-SSR 9:33 1:18 199,828 199,828 199,828 199,828 199,828 100 NA NA NA

MREPS 0:39 0:39 284,389 284,389 199,828 199,828 199,828 100 0 0 199,828

PRoGeRF 87:13 87:13 44,944,317 44,865,988 140,872 140,753 140,785 100 0 59,518 140,310

QDD 44:45 44:45 535,085 535,085 192,988 192,988 192,988 100 0 10,697 189,131

SA-SSR 5,443:20 1,238:38 197,710 197,710 197,710 197,710 197,710 100 0 4,190 195,638

SSR-Pipeline 4,957:12 4,957:12 75,275,495 65,381,153 197,587 197,587 197,587 100 0 5,778 194,050

SSRIT 5:43 5:43 784,469 633,267 199,828 199,828 199,828 100 0 0 199,828

TRF 35:53 35:53 2,667,832 2,564,881 470,739 98,237 165,167 35.09 0 42,393 157,435

 Comparison with Kmer-SSR

 CPU Time

(mm:ss)

Real Time

(mm:ss)

SSRs

Reported

SSRs After

Adjustments

SSRs In

Range

Number

Correct

Number

Correct &

Fixed

Percent

Correct &

Fixed

SSRs Unique

to Software

SSRs Unique

to Kmer-SSR

SSRs

Shared

www.manaraa.com

 175

Figure 1. Conceptual Representation of Kmer-SSR. Although we implement some filters and tricks to speed up
Kmer-SSR runtime, each SSR is identified through kmer decomposition, which allows the identification of instances
when the same SSR period occurs k bases from the previously identified SSR period.

www.manaraa.com

 176

Figure 2. Pseudocode for the Kmer-SSR algorithm. The function passesBooleanFilter ensures SSRs are not
duplicates of previously reported SSRs. The function passesUserFilters (function not shown) completes other user-
specified options, which may include minimum SSR length, minimum and maximum number of periods, finding
specific SSRs, and sequence length bounds.

Input: P, s // the list of desired period sizes, a DNA sequence
P ← sort(P) // sort largest to smallest
F // Boolean array of length(s); all values instantiated as False
Function searchForSSR(period, seq, index)
Begin
 base = getSubSequence(pos, period, seq) // grab the first sequence
 next = getSubSequence(pos, period, seq)
 repeats = 0 // the number of times the ssr repeats
 pos = index // starting position of the ssr

 while base == next and pos < (length(seq) – period – 1) do // while adjacent

// periods match
 repeats += 1 // we found another copy, increment the count
 pos += period
 next = getSubSequence(pos, period, seq) // grab the next period
 end while
return SSR(base, repeats, index)
End Function

Function passesBooleanFilter (F, ssrStartPos, ssrStopPos)
Begin
 for i ← ssrStartPos to ssrStopPos do //Positions in first period size
 if F

i
== False then //If SSR has never been found at the position

 return True //SSR is valid
 end if
 end for
return False //SSR is not valid
End Function

Main Program
for i ← 1 to length(P) do //For each period size in list
 for j ← 1 to length(s) do //For each nucleotide in sequence
 ssr = searchForSSR(P

i
, s, j) //Search for next SSR that repeats

 u = getSSRStartPos(s, ssr) //Get start position of SSR
 v = getSSRStopPos(s, ssr) //Get last position of SSR
 if passesUserFilers(ssr) and passesBooleanFilter(F, u, v) then

 print(ssr) //Print SSR to output file
 for x ← u to v do //For each position in SSR
 F

x
← True //Sets Boolean filter to True

 end for
 j += (length(ssr) - P

i
 – 1) //Update position in sequence

 end if
 end for
end for
End

www.manaraa.com

 177

REFERENCES

Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids
Res., 27, 573.

Chikhi, R. and Medvedev, P. (2014) Informed and automated k-mer size selection for genome
assembly. Bioinformatics, 30, 31–37.

Clancey, W. J. (1985) Heuristic classification. Artif. Intell., 27, 289–350.

Ghandi, M. et al. (2014) Enhanced regulatory sequence prediction using gapped k-mer features.
PLoS Comput. Biol., 10, e1003711.

Han, W.-S. et al. (2007) Ranked subsequence matching in time-series data-bases. In:
Proceedings of the 33rd international conference on Very large databases. VLDB
Endowment. p. 423-434.

Kashi, Y. et al. (1997) Simple sequence repeats as a source of quantitative gen-etic variation.
Trends Genet., 13, 74–78.

Kashi, Y. and King, D. G. (2006) Simple sequence repeats as advantageous mutators in
evolution. Trends Genet., 22, 253–259.

Katti, M. V. et al. (2001) Differential distribution of simple sequence repeats in eukaryotic
genome sequences. Mol. Biol. Evol., 18, 1161–1167.

Kolpakov, R. et al. (2003) mreps: efficient and flexible detection of tandem re-peats in DNA.
Nucleic Acids Res., 31, 3672–3678.

Levinson, G. and Gutman, G. A. (1987) Slipped-strand mispairing: a major mechanism for DNA
sequence evolution. Mol. Biol. Evol., 4, 203–221.

Lopes, RdS. et al. (2015) ProGeRF: Proteome and Genome Repeat Finder Utilizing a Fast
Parallel Hash Function. BioMed. Res. Int., 2015, 1.

Meglécz, E. et al. (2014) QDD version 3.1: a user-friendly computer program for microsatellite
selection and primer design revisited: experimental validation of variables determining
genotyping success rate. Mol. Ecol. Resources, 14, 1302–1313.

Merchant, S. S.et al. (2007) The Chlamydomonas genome reveals the evolution of key animal
and plant functions. Science, 318, 245–250.

Miller, M. P. et al. (2013) SSR_pipeline: A bioinformatic infrastructure for identifying
microsatellites from paired-end Illumina high-throughput DNA sequencing data. J.
Hered., est056.

www.manaraa.com

 178

Murray, J. et al. (1999) Comparative sequence analysis of human minisatellites showing meiotic
repeat instability. Genome Res., 9, 130–136.

Pickett, B. D. et al. (2016) SA-SSR: a suffix array-based algorithm for exhaustive and efficient
SSR discovery in large genetic sequences. Bioinformatics, 32, 2707–2709.

Robinson, A. J. et al. (2004) Simple sequence repeat marker loci discovery using SSR primer.
Bioinformatics, 20, 1475–1476.

Temnykh, S. et al. (2001) Computational and experimental analysis of micro-satellites in rice
(Oryza sativa L.): frequency, length variation, transposon associations, and genetic
marker potential. Genome Res., 11, 1441–1452.

Wang, X. et al. (2013) GMATo: A novel tool for the identification and analysis of microsatellites
in large genomes. Bioinformation, 9, 541–544.

www.manaraa.com

 179

CHAPTER 7

 Molecular epidemiology of carbapenem-
resistance plasmids using publicly available

sequences

Galen E. Card1*, Brandon D. Pickett2*, Perry G. Ridge2, Richard A. Robison1

1Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah,

USA

2Department of Biology, Brigham Young University, Provo, Utah, USA

*These authors contributed equally to this work

A peer-reviewed, production version of this manuscript has been published in
Genome, 62(12):785-792, DOI: 10.1139/gen-2019-0100.

I hereby confirm that the use of this article is compliant with all publishing agreements.

https://doi.org/10.1139/gen-2019-0100

www.manaraa.com

 180

ABSTRACT

Carbapenem-resistant bacteria have quickly become a worldwide concern in nosocomial
infections. Of the seven known carbapenemases, four have been shown to be particularly
problematic: KPC, NDM, IMP, and VIM. To date, many local and species- or carbapenemase-
specific epidemiological studies have been performed, which often focus on the organism itself.
This report attempts to perform an inclusive (encompass both species and carbapenemase)
epidemiologic study using publicly available plasmid sequences from NCBI. In this report, the
gene content of these various plasmids has been characterized, replicon types of the plasmids
identified, and the global spread and species promiscuity of the plasmids analyzed. Additionally,
support to several groups targeting plasmid maintenance and transfer mechanisms to slow the
spread of resistance plasmids is given.

www.manaraa.com

 181

INTRODUCTION

Nosocomial infections have quickly become a significant cause of mortality. In 2002, the

US Centers for Dis- ease Control and Prevention estimated that the national mortality rate due to

hospital-acquired infections was 5.8% (Klevens et al. 2007). In 2011, that rate increased to

10.4% (Magill et al. 2014). While these same reports show that the chance of acquiring an

infection at the hospital has decreased, the infections are becoming strikingly more lethal.

One significant reason for this increase in mortality is the acquisition of antibiotic

resistance in bacterial populations (Read and Woods 2014). To mitigate the havoc wrought by β-

lactamases on the efficacy of antimicrobials, multiple β-lactam derivatives have been pressed

into service. One of these derivate classes, the carbapenems, is used as a last resort for treating

extended spectrum β-lactamase infections. Recently, resistance to this class has occurred as well.

Antibacterial resistance is often conferred to these organisms through extra-chromosomal

segments of DNA called plasmids (Read and Woods 2014). Plasmids often carry the molecular

machinery to replicate themselves and allow for the transfer of the plasmid between different

bacterial strains, and even between many gram-negative bacteria (Logan and Weinstein 2017).

Additionally, many carbapenemase-carrying plasmids are large; therefore, they often carry a

toxin/anti- toxin plasmid addiction system (Tsang 2017) or plasmid partitioning system to

prevent the bacterium from losing the plasmid. Furthermore, evidence has been shown for local

and global transmission of carbapenemase genes among several bacterial species (Logan and

Weinstein 2017; Stoesser et al. 2017), leading to a global crisis in the declination of antibiotic

therapy efficacy.

www.manaraa.com

 182

Carbapenemases

Currently there are about nine diverse types of carbapenemases falling into Ambler

classes A, B, and D (Yong et al. 2009; Overturf 2010). Each of those nine types have several

allele variations. We will focus on four clinically relevant types found in Enterobacteriaceae, the

class A serine-mediated Klebsiella pneumoniae carbapenemase (blaKPC) and three class B

metallo-β-lactamases (blaMBL): the New Delhi metallo-β-lactamase (MBL) (blaNDM), the Verona

integron-encoded MBL (blaVIM), and the Imipenem- resistant MBL (blaIMP), and highlight their

pertinent characteristics.

Klebsiella pneumoniae carbapenemase

First identified in 2001 (Yigit et al. 2001), blaKPC was not the first carbapenemase, as

several MBLs that could hydrolyze carbapenem had already been identified in Japan in 1994

(Paterson and Bonomo 2005). This initial variant (now referred to as KPC-2) provided resistance

to numerous penicillins, all the cephalosporins, and aztreonam, and was also resistant to the β-

lactamase inhibitors clavulanic acid and tazobactam (Yigit et al. 2001). A recent review indicates

that there are currently 12 reported variants of the KPC enzyme (Sotgiu et al. 2018). As of 27

February 2018, the Centers for Disease Control and Prevention report that blaKPC-positive

infections have been reported from all 50 states and the District of Columbia (Centers for

Disease Control and Prevention n.d.; https://www.cdc.gov/hai/organisms/cre/trackingcre.html).

KPC enzymes have also been reported from many other nations and in numerous gram-negative

species, including Acinetobacter baumanii, Pseudomonas aeruginosa, and nearly all the

Enterobacteriaceae (Arnold et al. 2011; Perez and Van Duin 2013; Codjoe and Donkor 2018).

www.manaraa.com

 183

The ease of blaKPC gene transfer has been augmented by the Tn4401 transposon that flanks the

KPC-1 gene (Arnold et al. 2011).

New Delhi metallo-β-lactamase

Originally isolated from India in 2008, there are currently more than 10 reported variants

of blaNDM (Bedenic ́ et al. 2014). They are present in 34 states (Centers for Disease Control and

Prevention n.d.; https://www.cdc.gov/hai/organisms/cre/trackingcre.html) and multiple countries

including the United Kingdom, Pakistan, In- dia, Sweden, and others (Perez and Van Duin

2013). This type of carbapenemase has shown greater enzymatic activity than the blaVIM and bla

types for the penicillins, cephalosporins, and a few of the carbapenems (Yong et al. 2009).

blaNDM has shown a greater potential for spread than blaKPC, as it has rapidly appeared across the

world in the last 10 years.

Verona integron-encoded metallo-β-lactamase

blaVIM has 14 reported variants with amino acid content varying up to 10% (Bedenić et

al. 2014). blaVIM originated from Pseudomonas aeruginosa in the Mediterranean in 1997, but

quickly spread into Enterobacteriaceae and proceeded to spread globally. Reports indicate that

blaVIM can hydrolyze all β-lactams except monobactams and remains susceptible to inhibitors

(Marsik and Nambiar 2011). Like the other carbapenemases, plasmids are the primary

mechanism for horizontal gene transfer of this carbapenemase.

Imipenem-resistant metallo-β-lactamase

www.manaraa.com

 184

blaIMP shares many of the same characteristics as blaVIM, but the amino acid content

between the two diverges by 70% (Bedenić et al. 2014). blaIMP also represents the most diverse

type of carbapenemase with 18 variants reported (Bedenić et al. 2014). Isolated in 1991 in Japan,

it is the earliest carbapenemase of the four, and is resistant to the inhibitor clavulanic acid

(Watanabe et al. 1991).

While there are other reports that characterize carbapenemase plasmids, these generally

describe a single carbapenemase within a species (see Johnson and Woodford 2013; Sheppard et

al. 2016; Stoesser et al. 2017; Piazza et al. 2019; Wang et al. 2018; Chen et al. 2019; Mansour et

al. 2019; Mukherjee et al. 2019). This report is the first large-scale attempt to characterize the

diversity and promiscuity of plasmids carrying one of four carbapenemase families across

multiple bacterial species. However, the impact of this study is limited due to the regional bias

introduced by national surveillance and sequencing programs. Additionally, blaOXA-48

carbapenemase was excluded due to its sequence similarities to other OXA-type β-lactamases

and because of its reported decreased efficiency in hydrolytic activity towards carbapenems

(Poirel et al. 2012). We identified these carbapenemase-carrying plasmids from seven clinically-

relevant gram-negative bacteria (Enterobacter aerogenes (also Klebsiella aerogenes (Tindall et

al. 2017)), Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas

aeruginosa, Providencia stuartii, and Serratia marcescens).

MATERIALS AND METHODS

www.manaraa.com

 185

A detailed description and the full dataset can be found in the supplementary data, File

S11.

Sequence acquisition

In total, 532 complete plasmid sequences were obtained from NCBI nucleotide database

by a discontiguous megablast nucleotide search (Altschul et al. 1990) of four representative

carbapenemase genes (blaIMP-4, blaKPC-2, blaNDM-1, blaVIM-1) to allow for variations within the

carbapenemase family. We employed the same Entrez strategy used by Orlek et al. (2017) in the

BLAST search to filter for complete plasmids:

“biomol_genomic[PROP] AND plasmid[filter] NOT complete cds[Title] NOT
gene[Title] NOT genes[Title] NOT contig[Title] NOT scaffold[Title] NOT whole ge-
nome map[Title] NOT partial sequence[Title] NOT par- tial plasmid[Title] NOT
locus[Title] NOT region[Title] NOT fragment[Title] NOT integron[Title] NOT
transposon[Title] NOT insertion sequence[Title] NOT insertion element[Title] NOT
phage[Title] NOT operon[Title]”

This BLAST search was done separately for the seven organisms of interest: E. aerogenes, E.

cloacae, E. coli, K. pneumoniae, P. aeruginosa, P. stuartii, and S. marcescens. GenBank files

were downloaded for each BLAST alignment that scored >80% identity and query coverage.

These sequences were retrieved on 5 March 2018.

Plasmid gene composition

A list of key terms was derived by a random survey of 10% of the acquired GenBank

files, with cross reference to QuickGO, the European Bioinformatics Institute’s Gene Ontology

reference database to classify gene products into one of the following categories: antimicrobial

resistance, with β-lactamases as a subset; plasmid trans- fer genes; toxin/antitoxin systems; DNA

1 Supplementary data are available with the article through the journal Web site at https://nrcresearchpress.com/doi/suppl/10.1139/gen-2019-0100

and in Appendix 7 herein.

www.manaraa.com

 186

maintenance, modifying, and repair proteins; mobile genetic elements; hypothetical genes; and

other.

Incompatibility group/replicon typing and plasmid characterization

Plasmid incompatibility groups were determined by nucleotide BLAST (Altschul et al.

1990; Camacho et al. 2009) against a local download of the PlasmidFinder v1.3

Enterobacteriaceae database containing the origin sequences for numerous replicon types

(Carattoli et al. 2014) downloaded on 1 March 2018. The incompatibility groups were assigned

when matches met the following criteria: ≥80% identity, ≥60% subject coverage, and within 1%

of the percent identity of the highest match. Accordingly, more than one incompatibility group

could be reported for any given plasmid. Further characterization was accomplished as follows:

extracting the CDS regions for each plasmid, searching these CDS regions for key terms using

regular expressions, and combining the results for plasmid groups of interest (e.g., those that

belong to Enterobacteriaceae, or those that carry blaKPC). Additionally, associated metadata

were extracted for plasmids that identified a country of origin to elucidate the global prevalence

of these plasmids.

Nondiscrete plasmid groups

Ultimately, the plasmid sequences were BLASTed against each other to identify any

duplicate entries, and the following metadata was identified for any match exceeding 98%

coverage and identity match: the organism from which the plasmid was extracted, the country of

origin, and the collection date of the plasmid. The tree was constructed using a custom distance

metric and Python (https://python.org) code from the CAM package (Miller et al. 2019). The

custom distance metric is described in detail in the supplementary data (File S1). Briefly, it is the

www.manaraa.com

 187

sum of the bases from the query and subject included in the alignment divided by the sum of the

length of the query and subject sequences. The image of the tree was generated using FigTree

v1.4.4 (https://github.com/rambaut/figtree).

This characterization of each plasmid and of groups of plasmids was accomplished using

custom scripts, made freely available at https://github.com/ridgelab/plasmidCharacterization and

in the supplementary data (File S1).

Statistical analyses

Since plasmid length distributions are not normal (left-skewed, Fig. S1), all statistical

analyses were performed with the Mann–Whitney U-test or the Kruskal–Wallis ranked ANOVA

where appropriate, for nonparametric distributions. To be conservative due to our large sample

size, statistical significance was determined when p < 0.0001.

RESULTS  

Plasmid gene composition

Due to the inherent inconsistencies of GenBank record annotations, our search method

required discarding 86/532 accessions, leaving a total of 446 accessions in this analysis. The

criteria for keeping an accession in the analysis was if at least one, and no more than six,

carbapenemase genes were identified on the plasmid (full dataset available in Table S1). To

account for poor assembly and annotation due to short-read sequencing technologies, we

identified from the metadata which technologies were used. Of the 86 GenBank files discarded,

27 used short-read technologies and 46 used long-read technologies. Of the GenBank files

retained, 271 GenBank files noted the sequencing technology used, of which 48 used more than

www.manaraa.com

 188

one with 40 of these using a short-read/ long-read strategy. Overall, there was an even

distribution of short- and long-read sequencing technologies (198 short- and 121 long-read

technologies). Of those 446 plasmids, 198 carry blaKPC, 168 carry blaNDM, 49 carry blaIMP, and

31 carry blaVIM. When identifying species of origin, 7 plasmids belong to E. aerogenes, 33 to E.

cloacae, 142 to E. coli, 235 to K. pneumoniae, 18 to P. aeruginosa, 3 to P. stuartii, and 8 to S.

marcescens. The mean size of all carbapenemase-carrying plasmids was 104,222 bp, with a

median length of 87,663 bp. The largest plasmid was 500,840 bp and the smallest 1,635 bp. The

average percent gene content of all plasmids was as follows: antimicrobial-resistance genes,

8.0%; plasmid transfer genes, 15.8%; DNA modification genes, 14.7%; mobile genetic elements,

9.3%; hypothetical genes, 33.2%; other/ metabolic genes, 18.9%. The plasmids carried, on

average, two β-lactamases, with 22.6% of the plasmids carrying three or more, and the most β-

lactamases on a single plasmid was six. The carbapenemase copy number of these plasmids

ranged from one to three, with 97.98% of the plasmids harboring only one copy. Of those that

harbored more than one carbapenemase gene, they all belonged to the same type.

Plasmid incompatibility group/replicon typing

No incompatibility group presented itself as the most abundant; however, the following

six groups constitute 70.4% of the plasmids: IncA/C2 (45/446, 10.1%), IncFIB (39/ 446, 8.7%),

IncFII (58/446, 13%), IncN (56/446, 12.6%), IncX3 (54/446, 12.1%), and multi-replicon

plasmids (62/446, 13.9%) (see Table S2). Notably, 7.62% (34/446) of the plasmids could not be

accurately typed using this method. Sixty-two plasmids carried more than one replicon, and these

were significantly larger than those that carried a single replicon (Mann–Whitney U-test P <

0.0001, Fig. S2). Previous work has shown the propensity for blaNDM to be located on IncX3

www.manaraa.com

 189

plasmids, and our work supports this claim with 28% of blaNDM-carrying plasmids on an IncX3

plasmid. We also identify IncFII as a common replicon for blaNDM plasmids (25%) (Fig. 1; Table

S3) (Wang et al. 2018). Additionally, we have identified multi-replicon plasmids, IncFIB, and

IncN to be the common carriers for blaKPC, and IncA/C2 and IncN replicons as the common

carriers for blaIMP (Table S3). Notably, most of the replicon types for blaVIM-resistance plasmids

(38%) could not be identified using the PlasmidFinder database.

While the carbapenemases do not seem to be found more often on plasmids of a specific

incompatibility group over another, there is a species preference, as would be expected (Fig. 2).

With species that have more than five plasmids represented, E. cloacae, S. marcescens, and E.

aerogenes more commonly contain IncFII plasmids (30%, 50%, and 43%, respectively); E. coli

commonly contains IncX3 plasmids (27%); and K. pneumoniae are predominately carrying

IncFIB, IncN, and multi-replicon plasmids (15%, 12%, and 18%, respectively). Most plasmids

from P. aeruginosa could not be typed from the PlasmidFinder database since the database is

designed for the family Enterobacteriaceae.

Of the incompatibility groups from multi-replicon plasmids, the most commonly found

was IncFII, present in 48.4% of the plasmids. The other two most common incompatibility

groups in multi-replicon plasmids are IncR and IncFIB (35.5% and 29.0%, respectively).

Geographic spread and species promiscuity of plasmids

Among all 446 plasmids, only 32 countries are represented, with the United States of

America and China being the predominant countries (54 and 86, respectively). One hundred and

ninety-four submissions did not list a country of origin for the plasmid. Additionally, of the 446

plasmids, our intra-BLAST analysis identified 42 indiscrete groups containing 114 plasmids

www.manaraa.com

 190

(Fig. 3). The smallest groups contain 2 plasmids (23 groups) and the largest 48. In total, there

were 332 discrete plasmids. Of the seven species of interest in this study, the greatest

promiscuity has been seen between E. coli and K. pneumoniae, with the occasional coincident

plasmid in E. cloacae and one incidence of an indiscrete plasmid shared between K. pneumoniae

and S. marcescens. Twelve plasmids were of environmental or livestock origin, 139 were from

clinical isolates, and the remaining 295 did not provide an isolation source.

Additionally, according to this public data, China is the only country where all four

carbapenemase types have been observed. In the following countries, three of the four

carbapenemases were observed (not observed): Australia (blaVIM), Canada (blaIMP), Switzerland

(blaIMP), Taiwan (blaVIM), and the United States of America (blaIMP). blaNDM was the most

widespread carbapenemase, present in 25/32 countries. Interestingly, blaIMP was only reported

from Asian and Oceanic countries (Australia, China, Japan, Taiwan, and Thailand).

Additionally, in countries that had at least 10 plasmids, we identified the predominant

incompatibility group in that country (Table 1).

DISCUSSION

In general, data on carbapenemase-producing plasmids from less common but still

clinically important organisms such as P. aeruginosa and relevant carbapenemases such as

blaVIM is severely lacking. Additionally, global epidemiologic studies of carbapenemase-carrying

plasmids are further complicated by the lack of GenBank metadata found. Differences between

infection-reporting requirements and research efforts among different countries, and the fact that

these plasmids are not routinely sequenced, further complicates these analyses.

www.manaraa.com

 191

The cladogram showing the nondiscrete plasmid groups (Fig. 3) is quite illuminating, but

it is also the most biased due to large sequencing projects of local outbreaks. This may be the

case for the over-representation of plasmids from China, especially the IncX3 group. However,

the intercontinental nature of these nondiscrete plasmids, particularly the IncFIB group present

on four separate continents, indicates either that these plasmids are very stable or that they can

spread at a speed at which they do not accumulate significant mutations. Conversely, the fact that

common incompatibility groups such as IncFII do not cluster with similar nondiscrete plasmids

could be explained by them simply being more diverse or that they have not been identified

during a sequencing project of a hospital CRE outbreak.

Furthermore, to effectively track and monitor the spread of carbapenem-resistance

plasmids in local outbreaks, rapid identification is critical. Current clinical practices (blood

culture, followed by isolation and PCR) have a 48–72 h delay before carbapenemase resistance is

determined. For the more rapid, nonPCR-based methods using whole blood (such as Knob et al.

2018), it is important to realize that the plasmids of interest are quite large. With their median

length over 80 kb, plasmid isolation becomes difficult when necessary for the application, and

many of the replicon types identified are from low copy number plasmids.

Also, this report supports rational methods of several groups using targeted approaches to

slow the spread of carbapenemase plasmids. First, the antitoxin of the plasmid addiction system

is currently a target (Tsang 2017). Targeting this system could prevent its binding with the toxin,

resulting in the death of the host harboring the plasmid. However, this would not be a universal

target since only 52.9% of the plasmids contain toxin/antitoxin systems (Table S1). And

secondly, 90.4% (403/446) of the plasmids carry transfer genes to pass the plasmid be- tween

bacteria (Table S1), which is also supported by the evidence shown here of nondiscrete plasmids

www.manaraa.com

 192

appearing in multiple species. Preventing pilus formation could dramatically reduce the spread of

these plasmids. This direction is currently being pursued by several groups employing strategies

such as bacteriophage, colloidal clays, and antibody therapy (Getino and de la Cruz 2018).

Targeting both mechanisms simultaneously may dramatically reduce the spread and persistence

of these plasmids in the hospital.

Ultimately, this analysis was very difficult due to the nonstandardization of GenBank

metadata and the under-reporting and publication of carbapenemase-carrying plasmids from

different countries. This is a severe limitation in the complete comprehension of the carbapenem-

resistance epidemic, and more effort needs to be focused on these under-reported

carbapenemases and species (VIM and IMP, P. aeruginosa). However, we were able to support

work done by other groups, by showing the prevalence of diverse targets (toxin/ antitoxin and

conjugal transfer) among these plasmids. These efforts may ultimately help stem the tide of in-

creasing global carbapenem resistance.

CONFLICT OF INTEREST STATEMENT

The authors have no conflicts of interest to declare.

ACKNOWLEDGEMENTS

G.E.C. conceptualized this analysis, determined the functional groups of interest,

generated the key terms, and analyzed the output from the scripts. B.D.P. wrote the scripts for

the analysis and assisted in writing a portion of the manuscript. P.G.R. and R.A.R. advised this

work and reviewed the manuscript. We thank the Fulton Supercomputing Laboratory

(https://marylou.byu.edu) at Brigham Young University for their consistent efforts to support our

www.manaraa.com

 193

research. We would also like to thank the curators of the PlasmidFinder database (Henrik

Hasman and Alessandra Carattoli) for keeping that information up to date and accessible. This

work was supported by the U.S. National Institutes of Health (R01 AI116989).

TABLES & FIGURES

Supplementary Tables (File S2) and Supplementary Figures (File S3) are available online

or herein as Appendix 8 and Appendix 9, respectively.

============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

 194

Table 1. Predominant incompatibility group and carbapenemase prevalence in countries with more than 10
representative plasmids.

Country
Incompatibility
Group

Percent of
plasmids (no./Total)

Percent carbapenemase in predominant
Incompatibility group

Australia IncFIB 45.5% (5/11) KPC 80.0% (4/5); IMP 20.0% (1/5)
Brazil IncN 50.0% (8/16) KPC 100.0% (8/8)
Canada IncFII 33.3% (5/15) KPC 40.0% (2/5); NDM 60.0% (3/5)
China IncFII 26.7% (23/86) KPC 82.6% (19/23); NDM 17.4% (4/23)
United States of America IncFIB 24.1% (13/54) KPC 61.5% (8/13); NDM 38.5% (5/13)

www.manaraa.com

 195

Figure 1. Relative abundance of incompatibility groups among plasmids. Predominant incompatibility groups
from each carbapenemase family: KPC, IncFIB (15.8%), IncN (15.8%), and multi-replicon (17.3%); NDM, IncA/C2
(15.1%), IncFII (25.3%), IncX3 (28.3%), and multi-replicon (11.4%); IMP, IncA/C2 (22.4%), IncN (32.7%), and
NA (8/49 16.3%); VIM, IncA/C2 (16.1%), IncN (13.8%), IncR (10.3%), and NA (37.9%).

www.manaraa.com

 196

Figure 2. Relative abundance of incompatibility groups among bacterial species. E. cloacae, S. marcescens, and
E. aerogenes prefer FII plasmids (30.3%, 50%, and 42.9% respectively), E. coli prefer X3 plasmids (26.8%) and
FIB and multi-replicon plasmids predominate in K. pneumoniae (15.3 and 17.9 respectively). The majority of
plasmids from P. aeruginosa could not be typed from the PlasmidFinder database (50%).

www.manaraa.com

 197

Figure 3. Indiscrete plasmid groups. Cladogram showing the nucleotide relationships between plasmids that have
>98% query coverage and identity. The geographic distribution of these plasmids in the three largest groups has
been identified by colored dots. Blue text = KPC carrying plasmid, green = NDM, red = IMP, and black = VIM.

www.manaraa.com

 198

REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment
search tool. J. Mol. Biol. 215: 403-410. doi:10.1016/S0022-2836(05)80360-2.
PMID:2231712.

Arnold, R.S., Thom, K.A., Sharma, S., Phillips, M., Johnson, J.K., and Morgan, D.J. 2011.
Emergence of Klebsiella pneumoniae Carbapenemase (KPC)-producing bacteria. South.
Med. J. 104(1): 40-45. doi:10.1097/SMJ.0b013e3181fd7d5a. PMID:21119555.

Bedenić, B., Plečko, V., Sardelić, S., Uzunović, S., and Godič Torkar, K. 2014. Carbapenemases
in gram-negative bacteria: laboratory detection and clinical significance. BioMed Res.
Int. 2014: 841951. doi:10.1155/2014/841951. PMID: 25025071.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden,
T.L. 2009. BLAST+: architecture and applications. BMC Bioinform. 10: 421.
doi:10.1186/1471-2105-10- 421.

Carattoli, A., Zankari, E., Garcia-Fernandez, A., Voldby Larsen, M., Lund, O., Villa, L., et al.
2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid
multilocus sequence typing. Antimicrob. Agents Chemother. 58(7): 3895-3903.
doi:10.1128/AAC.02412-14. PMID:24777092.

Centers for Disease Control and Prevention. n.d. Tracking CRE [online]. Available from
https://www.cdc.gov/hai/organisms/cre/trackingcre.html [accessed 8 June 2018].

Chen, F.J., Huang, W.C., Liao, Y.C., Wang, H.Y., Lai, J.F., Kuo, S.C., et al. 2019. Molecular
epidemiology of emerging carbapenem resistance in Acinetobacter nosocomialis and
Acinetobacter pittii in Taiwan, 2010–2014. Antimicrob. Agents Chemother. doi:10.1128/
aac.02007-18.

Codjoe, F.S., and Donkor, E.S. 2018. Carbapenem resistance: a review. Med. Sci. 6(1).
doi:10.3390/medsci6010001. PMID: 29267233.

Getino, M., and de la Cruz, F. 2018. Natural and artificial strategies to control the conjugative
transmission of plasmids. Microbiol. Spectrum, 6(1). doi:10.1128/microbiolspec.MTBP-
0015-2016. PMID:29327679.

Johnson, A.P., and Woodford, N. 2013. Global spread of antibiotic resistance: the example of
New Delhi metallo-beta- lactamase (NDM)-mediated carbapenem resistance. J. Med.
Microbiol. 62: 499-513. doi:10.1099/jmm.0.052555-0. PMID: 23329317.

Klevens, R.M., Edwards, J.R., Richards, C.L., Horan, T.C., Gaynes, R.P., Pollock, D.A., and
Cardo, D.M. 2007. Estimating health care-associated infections and deaths in U.S.
hospitals, 2002. Public Health Reports, 122(2): 160-166. PMID: 17357358.

www.manaraa.com

 199

Knob, R., Hanson, R.L., Tateoka, O.B., Wood, R.L., Guerrero-Arguero, I., Robison, R.A., et al.
2018. Sequence-specific sepsis-related DNA capture and fluorescent labeling in
monoliths prepared by single-step photopolymerization in microfluidic devices. Journal
of Chromatography A, 1562: 12–18. doi:10.1016/j.chroma.2018.05.042.
PMID:29859687.

Logan, L.K., and Weinstein, R.A. 2017. The epidemiology of carbapenem-resistant
Enterobacteriaceae: the impact and evolution of a global menace. The Journal of
Infectious Dis- eases, 215(suppl_1): S28–S36. doi:10.1093/infdis/jiw282. PMID:
28375512.

Magill, S.S., Edwards, J.R., Bamberg, W., Beldavs, Z.G., Dumyati, G., Kainer, M.A., et al. 2014.
Multistate Point-prevalence survey of health care-associated infections. New England
Journal of Medicine, 370(13): 1198-1208. doi:10.1056/NEJMoa1306801.
PMID:24670166.

Mansour, W., Grami, R., Jaidane, N., Messaoudi, A., Charfi, K., Ben Romdhane, L., et al. 2019.
Epidemiology and whole-genome analysis of NDM-1-producing Klebsiella pneumoniae
KP3771 from Tunisia. Microb. Drug Resist. 25(5). doi:10.1089/mdr.2018.0204.

Marsik, F.J., and Nambiar, S. 2011. Review of carbapenemases and AmpC-beta-lactamases.
Pediatr. Infect. Dis. J. 30(12): 1094-1095. doi:10.1097/INF.0b013e31823c0e47.
PMID:22105420.

Miller, J.B., McKinnon, L.M., Whiting, M.F., and Ridge, P.G. 2019. CAM: an alignment-free
method to recover phylogenies using codon aversion motifs. PeerJ. 7: e6984.
doi:10.7717/peerj.6984. PMID:31198636.

Mukherjee, S., Bhattacharjee, A., Naha, S., Majumdar, T., Debbarma, S.K., Kaur, H., et al. 2019.
Molecular characterization of NDM-1-producing Klebsiella pneumoniae ST29, ST347,
ST1224, and ST2558 causing sepsis in neonates in a tertiary care hospital of North-East
India. Infect. Genet. Evol. 69: 166-175. doi:10.1016/j.meegid.2019.01.024.
PMID:30677535.

Orlek, A., Phan, H., Sheppard, A.E., Doumith, M., Ellington, M., Peto, T., et al. 2017. Ordering
the mob: insights into replicon and MOB typing schemes from analysis of a curated
dataset of publicly available plasmids. Plasmid, 91: 42-52. doi:10.1016/
j.plasmid.2017.03.002. PMID:28286183.

Overturf, G.D. 2010. Carbapenemases: a brief review for pediatric infectious disease specialists.
Pediatric Infect. Disease J. 29(1): 68-70. PMID:20035208.

Paterson, D.L., and Bonomo, R.A. 2005. Extended-spectrum β-lactamases: a clinical update.
Clin. Microbiol. Rev. 18(4): 657-686. doi:10.1128/CMR.18.4.657-686.2005.
PMID:16223952.

www.manaraa.com

 200

Perez, F., and Van Duin, D. 2013. Carbapenem-resistant Entero- bacteriaceae: a menace to our
most vulnerable patients. Cleveland Clin. J. Med. 80(4): 225-233. doi:10.3949/
ccjm.80a.12182. PMID:23547093.

Piazza, A., Comandatore, F., Romeri, F., Brilli, M., Dichirico, B., Ridolfo, A., et al. 2019.
Identification of blaVIM-1 gene in ST307 and ST661 Klebsiella pneumoniae clones in
Italy: old acquain- tances for new combinations. Microb. Drug Resist. 25(5): 787-790.
doi:10.1089/mdr.2018.0327. PMID:30589602.

Poirel, L., Potron, A., and Nordmann, P. 2012. OXA-48-like carbapenemases: the phantom
menace. J. Antimicrob. Chem. 67(7): 1597-1606. doi:10.1093/jac/dks121.
PMID:22499996.

Read, A.F., and Woods, R.J. 2014. Antibiotic resistance management. Evol. Med. Publ. Health,
2014(1): 147. doi:10.1093/emph/eou024. PMID:25355275.

Sheppard, A.E., Stoesser, N., Wilson, D.J., Sebra, R., Kasarskis, A., Anson, L.W., et al. 2016.
Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem
resistance gene blaKPC. Antimicrob. Agents Chemother. 60(6): 3767-3778. doi:10.1128/
AAC.00464-16. PMID:27067320.

Sotgiu, G., Are, B.M., Pesapane, L., Palmieri, A., Muresu, N., Cossu, A., et al. 2018.
Nosocomial transmission of carbapenem-resistant Klebsiella pneumoniae in an Italian
university hospital: a molecular epidemiological study. J. Hosp. Infect. 99(4): 413-418.
doi:10.1016/j.jhin.2018.03.033. PMID:29621600.

Stoesser, N., Sheppard, A.E., Peirano, G., Anson, L.W., Pankhurst, L., Sebra, R., et al. 2017.
Genomic epidemiology of global Klebsiella pneumoniae carbapenemase (KPC)-
producing Escherichia coli. Sci. Rep. 7(1): 5917. doi:10.1038/s41598-017-06256-2.
PMID:28725045.

Tindall, B.J., Sutton, G., and Garrity, G.M. 2017. Enterobacter aerogenes Hormaeche and
Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971
(Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the
Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella
mobilis Bascomb et al. 1971 (Approved Lists 1980). Int. J. Syst. Evol. Microbiol. 67(2):
502-504. doi:10.1099/ijsem.0.001572. PMID:27902205.

Tsang, J. 2017. Bacterial plasmid addiction systems and their implications for antibiotic drug
development. Postdoc J. 5(5): 3-9. PMID:28781980.

Wang, Y., Tong, M.-K., Chow, K.-H., Cheng, V.C.-C., Tse, C.W.-S., Wu, A.K.-L., et al. 2018.
Occurrence of highly conjugative IncX3 epidemic plasmid carrying blaNDM in
Enterobacteriaceae isolates in geographically widespread areas. Front. Microbiol. 9:
2272. doi:10.3389/fmicb.2018.02272. PMID:30294321.

www.manaraa.com

 201

Watanabe, M., Iyobe, S., Inoue, M., and Mitsuhashi, S. 1991. Transferable imipenem resistance
in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 35(1): 147-151.
doi:10.1128/AAC.35.1.147. PMID:1901695.

Yigit, H., Queenan, A.M., Anderson, G.J., Domenech-Sanchez, A., Biddle, J.W., Steward, C.D.,
et al. 2001. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-
resistant strain of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy,
45(4): 1151-1161. doi:10.1128/AAC.45. 4.1151-1161.2001. PMID:11257029.

Yong, D., Toleman, M.A., Giske, C.G., Cho, H.S., Sundman, K., Lee, K., and Walsh, T.R. 2009.
Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin
esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence
type 14 from India. Antimicrob. Agents Chemother. 53(12): 5046-5054. doi:10.1128/
AAC.00774-09. PMID:19770275.

www.manaraa.com

 202

CHAPTER 8

TANOS: TAxon jackknife for NOdal
Stability with genomic data

Gareth S. Powell1*, Brandon D. Pickett1*, Gavin J. Martin1, Michael F. Whiting1, Perry G.

Ridge1, Seth M. Bybee1

1Department of Biology, Brigham Young University, Provo, Utah, USA

*These authors contributed equally to this work

www.manaraa.com

 203

ABSTRACT

Motivation: As phylogenetic data sets increase in size due to high-throughput sequencing,
standard nodal support values (e.g., bootstrap values) quickly reach full support and thus provide
minimal value in assessing tree stability within or across topologies. With this increase in loci
coverage, some approaching full genomic scales, the main limitation in current and future
phylogenetics has shifted to taxon sampling. However, few strategies remain to assess the
strength of a given taxon sampling scheme or identifying troublesome and potentially
undersampled regions of a topology. How stable is a given node to the utilized taxon sampling?

Results: We present TANOS (TAxon jackknife for NOdal Stability), which uses traditional
resampling without replacement for taxa in genomics-scale datasets to compute nodal stability
scores for the phylogenetic tree of interest. Resampled trees are compared, and all internal nodes
are recorded. After tabulating the presence of each internal node in all jackknifed trees, a
measure of nodal stability is generated and reported. Reported values provide insight into the
stability of a given node to the included taxon sampling.

Availability and implementation: The source code is freely available on GitHub at
https://github.com/pickettbd/TANOS.

www.manaraa.com

 204

1. INTRODUCTION

Resampling methods are those techniques that create many subsamples of data from an

original dataset. In phylogenetics these approaches have been applied to both sequence and

morphological data matrices as a means to measure nodal “support”, via assessing data

agreement across a topology (Efron 1979, Lanyon 1985). Bootstrapping, simply explained, is

subsampling with replacement and in phylogenetics is commonly applied but is limited to

characters (whether nucleotides or morphological features), jackknifing is subsampling without

replacement and therefore can be applied to characters or taxa. The failings of both bootstrapping

and jackknife approaches to nodal support with traditional phylogenetic datasets (i.e., small

Sanger-based datasets) are documented within the literature (Felsenstein 1985). However,

jackknifing has the clear philosophical advantage over bootstrap in that it does not skew the

observed data; specifically, applying additional weight to a given character in the dataset by

resampling it multiple times. Additionally, jackknifing as an approach to taxon stability has not

been fully explored, especially in the current day of genomic scale data and phylogenetics.

Herein we produce a robust approach to assess taxon sampling schemes while also identifying

troublesome and potentially undersampled regions of a topology that are particularly useful with

modern and large phylogenetic datasets.

Tukey (1958) coined the term “jackknife” and specifically used the method to explore

how a given outcome was affected by subsets of the original observations of the total dataset. In

this context jackknifing methods are methods of random subsampling without replacement. From

a statistical standpoint, jackknife methodologies and the theory predicating its usage is reviewed

by Miller (1974) and subsequently summarized by Efron (1979). Miller argues jackknifing a

dataset reduces overall bias in that dataset and attempts to prove this formulaically.

www.manaraa.com

 205

1.1 Character Jackknife in Phylogeny

Lanyon (1985) proposed “a technique for investigating variance within a dataset” and

coined the “jackknife approach” within phylogenetics. He provides both a biological and

statistical argument for jackknifing approaches being beneficial when reconstructing trees. The

biological justification is based around the value of pseudoreplicates in cases of ideal datasets

containing redundancy. He argues that any given dataset only contains a small subset of data

from the evolutionary history that has actually taken place between a given taxon and its sister

species. Apart from this subset of data, the remainder of the data are informative at ancestral

nodes and represents the evolutionary history of more than just that terminal taxon. Lanyon

refers to these data as redundant across multiple included taxa and pointed out that conflicting

data will result in internal inconsistencies across the topology.

Both Lanyon (1985) and Felsenstein (1985) discuss what jackknife techniques add to

phylogenetics. Through the use of strict consensus trees, Lanyon (1985) focuses on the utility of

identifying where all subtrees agree and identifying disagreement. He also argues those internal

inconsistencies are not a reflection of complex speciation events resulting in multiple new taxa,

but merely an unresolved region of the tree. It must be pointed out that Lanyon proposed this

method within a distance-based framework and used it to specifically find inconsistencies in

distance data being used for phylogenetic estimation.

Lanyon (1987) further outlines these techniques as they apply to phylogenetics. He states

“The use of jackknifing and bootstrapping should enable investigators to learn more about their

data than was previously possible because of the information on the dispersion of sample

statistics. I hasten to add that this situation does not imply that investigators will be able to

www.manaraa.com

 206

conclude more from their data”. He goes on to point out that these methods, as with all statistical

procedures, do come with limitations and assumptions that need to be taken into account before

using such tools. Lanyon (1987) argued that the real value in jackknifing is the amount of data

exploration that these tools allow.

Simmons and Freudenstein (2011) investigated the seeming inflation of support values

and what they called “Spurious 99%” bootstrap or jackknife support values. Using both

contrived and empirical real world examples the authors demonstrated these erroneous examples

of high support at the nodes. The authors end that article with a list of recommendations based on

situations with high amounts of missing data, or low overlap in loci across terminals, or

supermatrix approaches. Recommendation number two is largely ignored but simply stated “JK

(jackknife) resampling be used rather than BS (bootstrap) resampling.” These authors were

clearly focused on character jackknifing and not a taxon approach; however, it is clear that

jackknifing is an underused method in modern phylogenetics.

1.2 Taxon Jackknifing and the Taxon Influence Index

Wrobel (2008) reviewed methods for identifying uncertainty in phylogeny, specifically

with those estimated based on molecular data. In this review he contemplated both the character

jackknife and the taxon jackknife. He posited that the character jackknife may not be as popular

as the bootstrap despite its theoretical similarity due to the often overall lower values it resulted

in for nodal support. When giving an overview of taxon jackknife he notes that many argued

“species” are not independent and so the statistical implications of removing a subset of taxa are

even less understood than in character jackknifing. While certainly true, it underestimates the

www.manaraa.com

 207

power of a taxon jackknife to identify unstable portions of the topology, it also ignores the

obvious lack of independence in the vast majority of molecular and morphological data as well.

An alternate use of jackknifing methods has been developed for maximum likelihood

analyses. Mariaassou et al. (2012) explored the use of taxon resampling in molecular alignments

and execution in maximum likelihood tree reconstruction. These methods are based on the

sequential removal of individual terminals and comparison of resulting topologies. They argue

that based on the changes in topology when a taxon is removed, a metric for evolutionary

importance can be generated, the Taxon Influence Index (TII). This tool has been used to help

identify key taxa that have a larger impact on the phylogeny than surrounding species (Denton et

al. 2017); however, it is not used as a metric of internal nodal stability nor as a way to identify

potential weaknesses in an overall taxon sampling. Instead of using taxon jackknifing to assess

the overall stability of a given node to sampling, TII identifies which terminals have the most

effect on parent nodes. Conceptually, TII is a tool that can be used with a phylogenetic analysis

to identify influential taxa, these taxa could be considered influential due to being relics,

representing large diverse clades, or actually reflect flaws in the original sampling. Both of these

examples provide the theoretical foundation for TANOS and demonstrate utility even on a

smaller scale.

1.3 Needs in a genomics era

In this era, the traditional limitations of phylogenetics due to the lack of character

coverage can be argued has largely gone away. What remains is the influence of taxon sampling

and the problem of reconstructing relationships between often extremely diverse clades with

relatively few representatives. Genomic-scale data are more readily available and its usage in

www.manaraa.com

 208

phylogenetics is constantly growing, an improved platform to investigate taxon stability is

needed. Here, we present a new program TANOS, capable of evaluating taxon jackknifes of very

large molecular datasets based on modern tree reconstruction methods, answering the core

question, how stable is a given topology to the removal of taxa?

2. MATERIALS AND METHODS

To calculate how stable each node in a given topology is, additional trees must be

constructed with taxa removed. These new trees can be compared with the original provided tree,

and a score can be assigned to each node. The process can be summarized by the following steps:

(a) subset alignments, (b) generate new trees, and (c) compute stability scores. The first two steps

are routine, if potentially computationally expensive; they can be completed with basic scripting

and existing software packages. The third step is unique and required the conception and

implementation of a new algorithm. The process is most easily understood conceptually and

visually before getting to the implementation details.

2.1 Conceptual Examples

The core question is how stable the current topology is to the removal of taxa?

Accordingly, the same question extends to each internal node of the tree. The answer may vary

throughout the tree. Regardless of which node is currently being evaluated, the overall stability

to the removal of taxa is a combination of the stability to the removal of each individual taxon.

Consider a simple example tree with taxa A-C (internal nodes, L and I, are also labeled for

convenient reference):

www.manaraa.com

 209

To determine the overall stability of node L, the results for the stability of node L to the

individual removal of each taxon must be combined. Once a taxon is removed from the tree, the

remaining taxa can be considered as a set. Trees built without that taxon can then be queried to

see how many trees also contain a node with the same taxa set. For example, if A is removed

from the tree, the node L effectively has only two taxa, forming the set {B,C}. If trees built

without A are queried, the percentage of those trees containing this same set as a clade can be

identified. Likewise, the trees built without B and C can be queried for presence of sets {A,C}

and {A,B}, respectively.

As this entire tree has only three total taxa, each tree built without the removed taxon is

guaranteed to have the set being searched for; thus, stability for that given node to the removal of

A would be 1 (100%), likewise for the removal of B and C. If the stability is averaged for all

taxa, the final score is 1 ((1+1+1)/3). One could follow the same procedure to evaluate node I,

but the effort would be similarly wasted as a set containing a single taxon (the result of removing

www.manaraa.com

 210

one from a set of two taxa) will necessarily be found in any subsequent trees made with that

taxon. This simple example tree demonstrates that the score at the root and parents of terminal

nodes is, by definition, always 1.

Consider the following more complex expanded example tree for taxa A-H (internal

nodes, I-O, are also labeled for convenient reference):

By definition, node O (the root) and nodes I, J, and K (parents of only terminal nodes)

will all receive a score of 1. Thus, nodes L, M, and N remain to be evaluated. Node N will be

demonstrated here, but the procedure is the same for nodes L and M. Five taxa are in the clade

under node N: taxa A-E. Consider first the stability of node N to the removal of taxon A;

removing A leaves the set {B, C, D, E} at node N and set {B, C, D, E, F, G, H} at node O:

www.manaraa.com

 211

Trees with taxa B-H (the set remaining from node O, {B, C, D, E, F, G, H}) are

generated with a predetermined level of replication, six in this example. To determine the

frequency with which set {B, C, D, E} occurs, a node containing only those taxa B-E is searched

for in each tree and tallied:

www.manaraa.com

 212

Four of these six trees contain a node with the set {B, C, D, E}, the top three and the

bottom-left. The remaining two trees do not contain the requisite set; thus, the frequency of

occurrence of set {B, C, D, E} is 0.67 (4/6). For the sake of this example, assume the same

procedure is followed for the removal of the remaining taxa (B, C, D, and E) from node N and

frequencies of occurrence were obtained. If the other frequencies were 0.5, 0.33, 0.83, and 0.67,

they could then be averaged to obtain 0.6 ((0.67+0.5+0.33+0.83+0.67)/5). The same procedure

can be followed for nodes L and M with the systematic removal of taxa A-C and F-H,

respectively.

2.1.1 Meta-Methods

All trees shown in these examples were generated from files in Mermaid format

(http://mermaid-js.github.io/mermaid) using the associated command-line interface Mermaid-

CLI v8.5.3 (https://github.com/mermaid-js/mermaid-cli), which can generate diagrams and

charts from text in a similar manner to Markdown (https://daringfireball.net/projects/markdown).

The command to generate a vector-based image is structured like the following:

mmdc -b transparent -i input.mmd -o output.pdf

2.2 Detailed Methods

Before nodal stability scores can be calculated, the tree must be jackknifed, which is a

computationally expensive process. The first step is to prepare input matrices (i.e., the

alignments) for building the sampled trees, which is a simple task conceptually and

computationally. The second task is to generate the N ⋅ R trees, where N is the number of taxa in

the original tree and R is the desired level of replication (in our case, 144 ⋅ 50 = 7,200).

Assigning nodal stability scores to every node using TANOS is computationally tractable. The

implementation details will be provided after the preparatory steps are described.

www.manaraa.com

 213

2.2.1 Subsetting Alignments

Creating subset copies of the original alignment file (the input to the software used to

create the tree) will vary depending upon the original file format and desired output file format.

The sample Insect and related Arthropod alignment file we downloaded from Misof et. al (2014)

was in PHYLIP format. Our script to parse an alignment in PHYLIP format and create new

subsets in FASTA format is available with the TANOS code on GitHub. It will create N new

files, each named after the taxon that has been removed to have N-1 taxa in each alignment,

where N is the number of taxa in the original alignment. PHYLIP format is trickier to parse than

other formats as it is designed to be more human readable than machine readable. For record-

centric formats (e.g., FASTA), the following pseudocode describes the process:

parse the input file

name_to_sequence_map = {}

input_file = open("some_name.txt ", 'w')

for record in input_file:

 name_to_sequence_map[record.name] = record.sequence

input_file.close()

loop through each of the taxa, creating an output file for each

for name_to_exclude in name_to_sequence_map.keys():

 # write the output alignment without the taxon name_to_exclude

 output_file = open(name_to_exclude + ".fa ", 'w')

 for name in name_to_sequence_map.keys():

 if name != name_to_exclude:

 sequence = name_to_sequence_map[name]

 output_file.write('>' + name + '\n ' + sequence + '\n

')

 output_file.close()

For PHYLIP format, the pseudocode looks like the following:

parse the input file

input_file = open("some_name.phy", 'r')

process first line

num_taxa = input_file.getFirstLine().num_taxa

names = array[num_taxa]

sequences = array[num_taxa]

www.manaraa.com

 214

process first section

section = input_file.getFirstAlignmentSection()

for i in range(num_taxa):

 line = section.getNextLine()

 names[i] = line.name

 sequences[i] = line.sequence

process remaining sections

for section in input_file.getRemainingAlignmentSections():

 for i in range(num_taxa):

 line = section.getNextLine()

 names[i] += line.name

 sequences[i] += line.sequence

input_file.close()

loop through each of the taxa, creating an output file for each

for i in range(num_taxa):

 name_to_exclude = names[i]

 # write the output alignment without the taxon name_to_exclude

 output_file = open(name_to_exclude + ".fa ", 'w')

 for j in range(num_taxa):

 name = names[j]

 if name != name_to_exclude:

 sequence = sequences[j]

 output_file.write('>' + name + '\n ' + sequence

+ '\n ')

 output_file.close()

Of course, instead of subsetting the alignment, one could generate entirely new alignments. This

could further mitigate the influence of any given taxon on the resulting trees, at the cost of

increasing computational requirements.

 2.2.2 Generating Trees

The primary tree was built with IQ-TREE v1.6.12 (Nguyen et al. 2015), and model

selection (Kalyaanamoorthy et al 2017) resulted in GTR+F+I+G4. This same model was used as

input to IQ-TREE for each of the 7,200 jackknife trees to avoid the extra computation of model

selection for every tree. Of course, IQ-TREE could be substituted for any other software package

preferred by someone seeking to perform a similar analysis. The command to perform model

selection is the following:

www.manaraa.com

 215

iqtree -nt ${THREADS} \

 -mem ${MEMORY}G \

 -s ${INPUT_ALIGNMENT} \

 -pre ${OUTPUT_PREFIX} \

 -m TESTONLY

The command to generate the primary tree and subsequent trees was structured like the

following:

iqtree -nt ${THREADS} \

 -mem ${MEMORY}G \

 -s ${INPUT_ALIGNMENT} \

 -pre ${OUTPUT_PREFIX} \

 -m ${MODEL}

In our case, all jobs were provided 16GB of RAM and 24 threads; each job finished in

less than four days. Generating a single tree is a simple computational problem and can be

finished in a day. However, generating thousands of trees, each requiring resources and a few

days of computation, requires access to a compute cluster.

Job management was done with a pipelining software and is available with the TANOS

code on GitHub. It relies on the checkpoint file created by IQ-TREE, which is how IQ-TREE

keeps track of its own progress across multiple runs if it is killed early. In effect, a job is

submitted if either no checkpoint file exists, or the file reports the analysis was not yet

completed. When all jobs are terminated, rerunning the script will attempt any job without a

checkpoint file, this is repeated until no new jobs are started and all analyses have a generated

checkpoint file. At this point, all trees are successfully created.

2.2.3 Calculating Nodal Stability

Once the jackknife trees are generated, TANOS is able to calculate stability scores for

each node in the primary tree. The software is implemented in Python v3.6+ (https://python.org)

and is available on GitHub (https://github.com/pickettbd/TANOS) and the Python Package Index

www.manaraa.com

 216

(https://pypi.org/project/tanos). As input, TANOS requires the primary tree, the jackknife trees,

and a text file providing a mapping of taxon names to file paths with trees built without that

particular taxon. As output, it writes to file the tree with nodal stability scores. In our primary test

case, it was able to calculate the scores for a tree with 144 taxa, which included evaluating the

7,200 trees with 143 taxa each, in a few minutes using a single thread.

The score is given individually to each node and is bounded by [0,1], where 0 and 1

respectively denote that no and all jackknife trees contain the same node. The score is the

average frequency of occurrence of the node in the jackknife trees, counting the node as present

if a node exists with the same taxa minus the taxon removed for that jackknife. The score for a

given node can be described formulaically:

1

𝑛
∑

1

𝑟
∑ 𝑓(𝑁𝑖, 𝐽𝑖𝑗)

𝑟

𝑗=1

𝑛

𝑖=1

Where N is the set of taxa of length n under the node in question from the primary tree

with Ni denoting the subset of N without i, J is a set of jackknife trees with Ji denoting a set

containing r replicates of trees made without taxon i and Jij denoting the j-th replicate tree made

without taxon i, and f(Ni, Jij) is a function yielding 1 if and only if Ni exists in Jij, 0 otherwise.

Pseudocode for visiting each node in a primary tree and assigning a score is demonstrated here:

parse the primary tree

main_tree = Tree("primary.nwk ")

parse the taxa_to_trees mappings file and other tree files

taxa_to_trees = {}

mappings_file = open("mappings.tsv ", 'r')

for record in mappings_file:

 if not record.taxon in taxa_to_trees:

 taxa_to_trees[record.taxon] = []

 taxa_to_trees[record.taxon].append(Tree(record.path))

mappings_file.close()

www.manaraa.com

 217

calculate score for each node

for node in main_tree.internal_nodes():

 if main_tree.isRoot(node) or node.hasNoGrandchildren():

 node.score = 1

 else:

 score = 0

 taxa_set = node.getAllLeavesBelowMe()

 for taxon in taxa_set:

 count = 0

 jackknife_taxa_set = taxa_set – set(taxon)

 for tree in taxa_to_trees[taxon]:

 if tree.containsClade(jackknife_taxa_set):

 count++

 score += count / length(taxa_to_trees)

 score /= length(taxa_set)

 node.score = score

write output tree with node scores

output_file = open("output.nwk "), 'w')

main_tree.writeTreeWithScores(output_file)

output_file.close()

3. RESULTS

3.1 Computation

TANOS generates a single annotated tree as an output. The output tree is written in

Newick format (https://evolution.genetics.washington.edu/phylip/newicktree.html), and multiple

modifications to the Newick tree are possible via command-line options. By default, the score is

placed in a comment for each node. Instead of placing the score in a comment, the score can be

output in place of the branch length or label for a given node. For convenience, other output

formats are supported with command-line options: compact or pretty-printed JSON

(https://www.json.org) and Mermaid format (http://mermaid-js.github.io/mermaid). Functions

for outputting a tree in ASCII art are built into the Tree class, making it relatively simple for

someone to extend TANOS to output this format as well. Modifying the code that outputs JSON

format to output customized JSON or XML (https://www.w3.org/TR/xml) would be relatively

www.manaraa.com

 218

straightforward, e.g., if a favorite tree imaging software accepted phyloXML (Han and Zmasek

2009) TANOS could be modified to output in this format.

3.2 Case study in higher level classification of Insects

The sample dataset, Misof et al. (2014), contained 144 hexapod taxa and analyzed 1,478

protein-coding genes; to date this remains the most comprehensive phylogeny and widely used

insect classification. Published topologies were overall highly-supported at ordinal and higher

taxonomic levels (Fig. 1, Misof et al. 2014). Misof et al. (2014) report 92% of nodes with a

Bootstrap value of >98. In phylogenetics, standard Bootstrap values are generated from a random

resampling of the data. TANOS values are generated from a systematic, non-random resampling

of taxa. Thus, a direct comparison between Bootstrap and TANOS is difficult. Nonetheless, it is

possible to compare well supported and less supported nodes between the approaches over the

Misof et al. (2014) topology, therefore learning additional information about the topology that is

not possible with a character bootstrap. Calculated TANOS values show less stability overall,

with 74.6% of ordinal or higher taxonomic nodes >0.98, and 82.6% of nodes >0.75 (Figure 1).

This disagreement was the clearest in two areas of the topology, the Polyneoptera and the sister

groups to Holometabola.

The overall weakest TANOS values were found along the backbone for Polyneoptera.

Seven of the eight nodes depicting relationships between Polyneoptera orders were recovered

with TANOS scores of <50%. These nodes are specifically sensitive to the removal of a single

taxon from the alignment. Further, the polyneopteran clade was shown to be quite variable given

even minor changes to the included taxon sampling.

www.manaraa.com

 219

Some deep nodes were also shown to be less robust than the bootstrap support values

would suggest. Specifically, nodes “104” and “105” (Misof et al. 2014, Fig 1) were again both

recovered with >98% BS but were recovered with TANOS values ~0.46 demonstrating that the

taxon sampling is lacking in these areas leading to instability at evolutionarily important deep

nodes. These nodes are of specific importance because they depict the sister group to

Holometabola (arguably one of the most successful lineages of life on Earth).

4. DISCUSSION

4.1 Case Study

Recently, molecular phylogenetics has grown from single molecular marker datasets to

multiple targeted gene regions from Sanger technology to full transcriptome, genome, and/or

targeted enrichment probe sets for 100s of genes that result in alignments of millions of base

pairs (e.g., Cloutier et al. 2019, Misof et al. 2014, Prum et al. 2015). As this transition to

genomic datasets has occurred, there has been much less of a focus on taxon sampling breadth,

likely due to the obvious increase in resources required to sequence and analyze genomic scale

datasets.

Nodal support as a means of assessing phylogenetic relationships has long been

controversial and bootstrap values have been specifically criticized since their first usage in

phylogenetics (Sanderson 1995, Soltis & Soltis 2003). Genomic level phylogenies have further

exposed problems with nodal support, such as consistent maximal bootstraps (e.g., Brower

2019). We propose TANOS as a tool for the genomics era that can assess nodal stability in

relation to taxon sampling rather than “support” at the node based on data agreement. This

important distinction allows the researcher to access how stable the nodes are across a topology

www.manaraa.com

 220

to the taxa sampled. Specifically, this tool identifies weak areas that might be very sensitive to

even minor changes in taxon sampling.

Using TANOS, several well resolved and highly supported nodes from Misof et al.

(2014) were shown to be less robust than traditional support metrics might have suggested. This

is not demonstrating a methodological flaw in phylogenetic reconstruction, but clearly identifies

the weakest nodes and weakest portions of the overall topology with respect to the taxon

sampling. One of the goals of this tool is to direct future research by highlighting which clades

may benefit from increased taxon sampling, directly impacting the accuracy and predictive

power of a given phylogeny. Thus, allowing for more robust investigation and discussion of the

many avenues a well-supported phylogeny allows.

4.2 General implications

The steady decline in usage of the jackknifing methods (whether character or taxon

based) in phylogenetics (Felsenstein 1985, Lanyon 1985) over the last two decades is not

necessarily due to theoretical flaws in the statistic (e.g., compared to the Bootstrap), but instead,

driven by lower values as well as the lack of tools to implement with large datasets and more

modern reconstruction methods. Many of the major issues given by Wrobel (2008) in an attempt

to explain the disparity between usage of jackknifing and bootstrapping are in fact larger issues

present across most phylogenetic analyses. He argued that taxa are not independent due to

clusters formed during phylogenetic reconstruction, violating a basic statistical assumption.

Molecular data are also not independent and therefore should not be subjected to these

resampling techniques. Obviously, that has not prevented thousands of research papers doing so

over the last few decades. Wrobel (2008) was also in agreement with both Farris et al. (1996)

www.manaraa.com

 221

and Oxelman et al. (1999) that these tools are exploratory and more directed approaches can be

used to identify weaknesses in the data or taxon sampling. Wrobel also pointed out that

jackknifing methods often give overall lower support values and is likely the reason the jackknife

statistic was less popular among researchers. In a time when it has been demonstrated that larger

and larger datasets inflate bootstrap values (Brower 2019), methods generating overall lower

support or stability values might provide resolution in those cases. Zuo et al. (2010) argued that

researchers were often restricted to bootstrapping instead of jackknifing due to limitations in

sampling space. With the consistent growth of phylogenetic datasets (both molecular and

morphological), this criticism may no longer apply.

The taxon jackknifing methods discussed by Mariadass et al. (2012) and Denton et al.

(2017) demonstrate that there is a place for these techniques in the phylogenomics era; however,

we argue there is still a missing piece. In combining the traditional jackknife methods of nodal

stability along with the adaptations of Mariadess et al. to apply the idea to maximum likelihood

allows for a resurgence of these original methods to be used alongside other measures of support.

Nodal support and stability metrics are important when using phylogenies in every way.

It is obviously preferred when using a tree to make classification or systematics changes, asking

evolutionary questions, mapping characters, reconstructing ancestral distributions, or any of the

other diverse tasks researchers are currently using phylogenies for, that those nodes are “well-

supported”. That being said, we should be cautious of artificially inflated support values. Using

multiple methods, both support and stability, is now more computationally possible than ever

before. With character dataset size on the order of genomes and transcriptomes our assessment of

stability and support needs to shift from robustness in changes to character sampling and instead

www.manaraa.com

 222

focus on taxon sampling. Utilizing taxon jackknifing is an informative method of assessing the

effect of the included taxon sampling on a given phylogenetic hypothesis.

AUTHOR CONTRIBUTIONS

SMB: Funding Acquisition; Supervision; Validation; Writing - Original Draft

Preparation; Writing - Review & Editing. GJM: Conceptualization; Validation; Writing -

Review & Editing. BDP: Data Curation; Formal Analysis; Methodology; Software;

Visualization; Writing - Original Draft Preparation; Writing - Review & Editing. GSP:

Conceptualization; Formal analysis; Investigation; Methodology; Visualization; Writing -

Original Draft Preparation; Writing - Review & Editing. PGR: Funding Acquisition; Resources;

Writing - Review & Editing. MFW: Validation; Writing - Review & Editing.

ACKNOWLEDGEMENTS

The authors appreciate the Brigham Young University Office of Research Computing

(https://rc.byu.edu) for their continued support of our research. The authors also thank those

colleagues that facilitated useful discussion on these topics and ultimately helped improve the

final work. Lastly, the authors appreciate all the suggestions made by the reviewers and editors

that improved this manuscript.

FUNDING

This work has been supported by funds provided by Brigham Young University and the

Department of Biology.

www.manaraa.com

 223

CONFLICT OF INTEREST

None declared.

TABLES & FIGURES
============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

 224

Figure 1. ML topology adapted from Misof et al. (2014) with originally reported bootstrap values (above nodes).
In addition, computed TANOS values are provided (0-1, below nodes).

www.manaraa.com

 225

REFERENCES

Brower, A. V. (2019). “Maximum support”= 100% BS. Cladistics, 35(3), 349-350.

Cloutier, A., Sackton, T. B., Grayson, P., Clamp, M., Baker, A. J., & Edwards, S. V. (2019).
Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the
presence of an empirical anomaly zone. Systematic biology, 68(6), 937-955.

Doyle, J., & M. Donoghue. (1987). The importance of fossils in elucidating seed plant phylogeny
and macroevolution. Review of Palaeobotany and Palynology. 50, 63-95.

Efron, B. (1979). Computers and the theory of statistics: thinking the unthinkable. SIAM review,
21(4), 460–480.

Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., & Kluge, A. G. (1996). Parsimony
jackknifing outperforms neighbor-joining. Cladistics, 12(2), 99-124.

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap.
Evolution, 39(4), 783-791.

Gauthier, J., A. G. Kluge, & T. Rowe. (1988). Amniote phylogeny and the importance of fossils.
Cladistics, 4,105–209.

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. (2017). ModelFinder:
fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587-589.

Lanyon, S. M. (1985). Detecting internal inconsistencies in distance data. Systematic Zoology,
34(4), 397-403.

Lanyon, S. M. (1987). Jackknifing and bootstrapping: important" new" statistical techniques for
ornithologists. The Auk, 104(1), 144-146.

Maria Dassou, M., Bar-Hen, A., & Kishino, H. (2012). Taxon influence index: assessing taxon-
induced incongruities in phylogenetic inference. Systematic Biology, 61(2), 337-345.

Miller, R. G. (1974). The jackknife-a review. Biometrika, 61(1), 1-15.

Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., ... & Niehuis, O. (2014).
Phylogenomics resolves the timing and pattern of insect evolution. Science, 346(6210),
763-767.

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. (2015). IQ-TREE: a fast and effective
stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology
and Evolution, 32, 268-274.

www.manaraa.com

 226

Oxelman B, Backlund M, Bremer B. (1999). Relationships of the Buddlejaceae s.l. investigated
using parsimony jackknife and branch support analysis of chloroplast ndhF and rbcL
sequence data. Systematic Botany, 24, 164-182.

Poe, S. (1998). Sensitivity of phylogeny estimation to taxonomic sampling. Systematic Biology,
47(1), 18-31.

Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., &
Lemmon, A. R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-
generation DNA sequencing. Nature, 526(7574), 569-573.

Sanderson, M. J. (1995). Objections to bootstrapping phylogenies: a critique. Systematic Biology,
44(3), 299-320.

Siddall, M. E. (1995). Another monophyly index: revisiting the jackknife. Cladistics, 11(1), 33-
56.

Simmons, M. P., & Freudenstein, J. V. (2011). Spurious 99% bootstrap and jackknife support for
unsupported clades. Molecular Phylogenetics and Evolution, 61(1), 177-191.

Soltis, P. S., & Soltis, D. E. (2003). Applying the bootstrap in phylogeny reconstruction.
Statistical Science, 18(2), 256-267.

Tukey, J. 1958. Bias and confidence in not quite large samples. (Abstr.) The Annals of
Mathematical Statistic, 29(2), 614-623.

Wróbel, B. (2008). Statistical measures of uncertainty for branches in phylogenetic trees inferred
from molecular sequences by using model-based methods. Journal of Applied Genetics,
49(1), 49-67.

Zuo, G., Xu, Z., Yu, H., & Hao, B. (2010). Jackknife and bootstrap tests of the composition
vector trees. Genomics, Proteomics & Bioinformatics, 8(4), 262-267.

www.manaraa.com

 227

CHAPTER 9

 Current state of and suggestions for
vertebrate genome sequencing: some

assembly required

Brandon D. Pickett1, John S. K. Kauwe1, Perry G. Ridge1

1Department of Biology, Brigham Young University, Provo, Utah, USA

www.manaraa.com

 228

ABSTRACT

Advancements in DNA sequencing technologies and genome informatics over the last
several decades have swiftly progressed the study of genomes across the spectrum of life. The
field is moving at a rapid pace, with changes to the technology causing the landscape of the field
to alter significantly every few years. Keeping up with sequencing technology and its vast array
of applications is a monumental challenge, especially for a single individual. In-depth reviews of
specific topics, such as DNA sequencing platforms, graph-based assembly algorithms, and
applications to various disciplines, are prevalent; yet, these reviews are often beyond the scope
and interest of the average scientist wishing to utilize genomic data in their work. Nevertheless,
many genomic analyses require genome assembly, which is a complicated and evolving process.
This review and commentary aim to provide the necessary background on sequencing
technologies, genome assembly methods, supplementary data types, and project planning
considerations. Suggestions for new genome assembly projects are provided alongside
bioinformatics best-practices and other recommendations. Additional reviews and resources are
provided for interested readers. Our intention is to provide a simplified, yet thorough, primer for
genome assembly to decrease the considerable barrier to entry for individuals and lab groups.

www.manaraa.com

 229

INTRODUCTION

Thirty years have passed since the Human Genome Project (HGP) began and twenty

years since the first draft of the human genome was published (International Human Genome

Sequencing Consortium 2001; Venter et al. 2001). The resulting progress in all related fields of

research has unquestionably been remarkable, even if the research and medical communities’

abilities to harness the promised power of the genome got off to a slower start than some

anticipated (Nature Editors 2010). Detailed accounts of the HGP, including descriptions and

examples of its impact, are well-described elsewhere (Lander 2011; Mardis 2011); one

significant indicator of the impact that the availability of a reference sequence had is that it

spawned entirely new fields. Researchers in these fields had to grapple with new challenges

inherent to using data on a larger scale (Stein 2010), and, with time, genetic research

methodologies expanded beyond single- or multi-gene studies to genome-wide analyses.

In the wake of the HGP, several model or evolutionarily-interesting organisms genomes

were published (Mouse Genome Sequencing Consortium 2002; Rat Genome Sequencing Project

Consortium 2004; Lindblad-Toh et al. 2005; The Chimpanzee Sequencing and Analysis

Consortium 2005; Mikkelsen et al. 2007; Green et al. 2010), and they were a boon to both their

own fields and our understanding of the human genome. Human microbiome function and

diversity were analyzed (Gill et al. 2006; Grice et al. 2009), and common variants were identified

for common diseases using genome-wide association studies (The Wellcome Trust Case Control

Consortium 2007; Peter et al. 2012). Such analyses were made possible by the accessibility of

the high-quality, continuously-updated human reference genome and the advent of massively-

parallel sequencing (MPS) technologies; the combination of which has rapidly reduced the cost

to sequence new human genomes (Fig. 1).

www.manaraa.com

 230

As more individual genomes from human and other model organisms were sequenced,

the power of the reference sequences in addressing previously-unanswerable questions inspired

those who study non-model organisms, or who had other niche interests, to sequence genomic

DNA from many diverse organisms. Indeed, a large and continuing increase in the number of

genomes submitted to NCBI began around 2009 (Fig. 2). Nevertheless, budgets, sequencing

technologies, library preparations, bioinformatics methods, and quality control procedures have

often limited the quality of the genomes. For example, human contamination and incorrect

assembly of genes are significant problems (Denton et al. 2014; Breitwieser et al. 2019).

Subsequently, while improvements in assembly algorithms, available computational power,

average read length, etc. have generally improved assembly statistics over time, high-quality

assembly remains a difficult task with a high barrier to entry.

As the affordability of sequencing genomes at scale continues to improve, more

individuals and groups will seek to sequence the genomes of new organisms and redo the draft

genomes of those previously attempted. The future utility of these genomes will depend to a

great degree on their quality and accessibility in public databases, such as those in the

International Nucleotide Sequence Database Collaboration (INSDC). To help protect the quality

and utility of future genomes submitted to INSDC databases and reduce the barrier to entry to

genome assembly, we present this report as a resource for individuals and labs seeking to begin a

genome assembly project. Sequencing technologies and assembly methods will be briefly

reviewed, and additional resources will be provided based on specific use-cases or interests. This

report will focus principally on vertebrate genome assembly, though many principles remain the

same for other groups – with special considerations being required for plant genomes that are

complicated by introgression, high ploidy, etc. Practical lessons learned from dozens of genome

www.manaraa.com

 231

assemblies will be addressed in the discussion with the intent of answering common questions

and avoiding unnecessary frustration.

REVIEW OF LITERATURE

The principal objective of genome assembly is to correctly and completely reconstruct

the genetic sequence of a sample. In practice, the genetic sequences refer to the nuclear genome,

possibly with the mitochondrial genome, from a multi-cellular sample; although, an assembly

project could conceivably be focused on a targeted region of the genome and/or samples of

mixed origin. Usually, a single organism is sequenced to represent a population or species, and

the sample is often extracted from a single tissue (e.g., blood). This could cause issues for

representing a population or species if the individual organism has significant genetic anomalies

relative to other individuals, but the reduced complexity in the assembly process resulting from

working with DNA from a single organism makes this worthwhile for now. Similarly, mosaicism

could cause issues for accurate representation and possibly for the actual assembly process itself.

These risks are generally expected in the assembly community, and a project requiring a truly

representative sequence would be considered highly specialized. Indeed, a truly representative

genome for humans has not yet been realized. Population-specific variants have been identified

as part of several important projects (e.g., The International HapMap Project (The International

HapMap Consortium 2010) and The 1000 Genomes Project (The 1000 Genomes Project

Consortium 2015)), but work on a truly representative pangenome has begun only recently

(Chaisson et al. 2020; Li et al. 2020).

In an ideal world, one could isolate individual chromosomes from individual cells and

sequence each end-to-end, quickly, with zero error. This theoretical ideal is unrealized because

(a) it is difficult to get enough DNA from a single cell, (b) it is difficult to isolate whole

www.manaraa.com

 232

chromosomes in an automated fashion, (c) it is difficult to keep high molecular weight (HMW)

DNA (i.e., whole chromosomes) intact, (d) current sequencing technology is unable to read

stretches of DNA at chromosome length, and (e) current sequencing technology is unable to read

DNA with perfect accuracy. Even if one could handle each of these limitations, assigning sets of

chromosomes to the correct parent and/or ancestral genome complicates the process when

dealing with nonhaploid assemblies. Due to these limitations, most genome assemblies have

been pseudodiploid representations where identical regions were collapsed into a single

sequence, and the variable regions either remained dually represented or were partially dropped.

Recent advances in sequencing technology and associated computational methods have begun to

enable partial pseudohaplotype separation during or after assembly (Guan et al. 2020; Cheng et

al. 2021) or genuine diploid assembly (Garg et al. 2020). Nevertheless, the aforementioned

limitations (a-e) do pose significant hurdles, such that even the HGP – despite its significant

resources – has not truly been completed because several gaps still remain in each chromosome.

To this end, the Telomere-to-Telomere (T2T) Consortium is seeking to sequence every

chromosome from end-to-end for a human complete hydatidiform mole (CHM; Logsdon et al.

2020b; Miga et al. 2020). The complete genome is expected to be published in late 2021, but this

monumental effort has required the time, minds, and resources of hundreds of people from a

dozen institutions. Without such an investment, the average lab or individual can expect any new

assembly to fall far short of a T2T assembly until technology improves, software is created, and

expert manual curation is automated. In the meantime, reasonably high-quality genomes can be

produced by non-experts, and these imperfect genome assemblies are still incredibly useful. To

better understand the utility and limitations of current assembly approaches, consider how

genome sequencing and assembly has progressed over time.

www.manaraa.com

 233

A (Very) Brief History

Initial approaches to assembly proceeded in a step-wise fashion (i.e., primer walking) in

which a primer was designed based on a known sequence and the next portion of DNA could not

be determined until a primer could be designed based on the previous portion (Sanger 1975).

This was computationally trivial and could be done by hand, but it was extremely time intensive.

Genome assembly at this time was effectively done manually by adding newly synthesized

sequence to the end of previously determined sequence; it was no more complicated than “copy-

and-paste”. Shotgun sequencing (Staden 1979) – breaking DNA into many smaller pieces to be

sequenced individually – paved the way for higher throughputs, but required significant

computational efforts because assembly could no longer be done by hand (Simpson and Pop

2015). In this light, the term “assembly” can be somewhat confusing. In a general sense,

“assembling” a genome refers to the overarching process of reconstructing genomic sequences

correctly and completely. With the advent of shotgun sequencing, “assembly” sometimes holds a

narrower definition (i.e., “computational assembly”) in which smaller sequences are merged at

areas of overlap to form longer, continuous sequences called contigs. Other steps in the overall

assembly process are given distinct names (e.g., gap-filling and scaffolding). For the duration of

this report, the verb “assembly” will refer exclusively to “computational assembly”, and

“genome assembly” will refer to the overarching process.

Recent advances in shotgun sequencing chemistry and technology, together with

advances in algorithms and computational power, have radically reduced the cost and effort

required to generate a genome assembly and subsequently ushered in the next generation of

genome sequencing (i.e., next- or second-generation sequencing) and approach to genome

www.manaraa.com

 234

assembly. The so-called second- or next-generation sequencing (SGS/NGS) approach uses short

reads (e.g., Illumina), usually paired-end (PE), as a source of low-error sequence data which is

then used in combination with longer range sequence or other data (e.g., generated by mate pair

(MP) libraries, long reads, physical maps, linkage maps, etc.) to fill the gaps between contigs

(computationally-assembled reads), correct misassemblies, and order and orient contigs into

scaffolds. The details of NGS are described in detail in the subsequent section.

Short Read Sequencing and Assembly

NGS technologies use a variety of approaches to sequence reads (segments of DNA) in a

massively parallel, high-throughput manner. Read lengths vary by platform, but they are <50-

600 nt (usually 100-250 nt), compared with Sanger-based sequences in the range 400-900 nt

(Pettersson et al. 2009; Liu et al. 2012; Loman et al. 2012; Quail et al. 2012; El-Metwally et al.

2013; Fierst 2015). Most errors from NGS platforms are single-base substitutions, with a low

error rate at ~1%. This is higher than Sanger based-sequencing at approximately 0.1%, though

Illumina (San Diego, California, USA) error rates do closely resemble Sanger-based sequencing

with an error rate of <0.1% (Pettersson et al. 2009; Liu et al. 2012; Quail et al. 2012; Fox et al.

2014; Fierst 2015). Additionally, short read sequencing platforms are subject to various biases,

e.g., change in error rate based on position in the read (Dohm et al. 2008; Fierst 2015) and failure

to sequence regions with high guanosine/cytosine (GC) content. While the read length and error

properties are not as desirable as traditional Sanger-based sequencing, the improvements in

throughput have reduced the cost of sequencing per megabase by four orders of magnitude

(Sanger and Coulson 1975; Sanger et al. 1977; Liu et al. 2012; Fierst 2015).

www.manaraa.com

 235

Provided that sequencing was performed to sufficient coverage of the genome, the reads

can be assembled de novo into contiguous sequences (contigs) using computer algorithms. Such

algorithms are complicated; indeed, the assembly problem requires exploring an exponential

number of possibilities to guarantee the optimal solution (Räihä and Ukkonen 1981; Nagarajan

and Pop 2009; Kingsford et al. 2010). Furthermore, data storage, computational resources, and

bioinformatics expertise are non-trivial considerations for any prospective sequencing and

assembly project. The most common class of algorithms for short read assembly is based on de

Bruijn graphs. In short, the sequenced reads are broken into overlapping k-mers (i.e., k-length

subsections of the read overlapping by one base pair (bp)), which form vertices in the graph.

Edges connect those k-mers that overlap, enabling the algorithms to “walk” through the graph to

output contigs. Differences between assembly software packages lie in graph traversal, statistics,

bubble resolution, error detection, etc. The fundamental , at least in theory, is that the original

sequence is reconstructed because the reads (and the k-mers they are decomposed into) overlap.

Assembly fails to correctly reconstruct the real sequence when it places reads in the

incorrect order (i.e., misassembly) or when it cannot determine the sequence at all (i.e., gaps).

Gaps can be caused by insufficient coverage and inherent systematic sequencing biases or by

repeats that are longer than the read length (Mulyukov and Pevzner 2002; Nagarajan and Pop

2009). Misassemblies and gaps occur frequently in most genome sequencing and assembly

projects, resulting in fragmented assemblies with short contig N50 (the length of the contig

where 50% of the contigs are longer (International Human Genome Sequencing Consortium

2001)). While a fragmented assembly of relatively low quality (e.g., N50 of <1 mb) is sufficient

for some applications, a more contiguous, reliable assembly would always benefit these

applications – indeed, many applications require it. Thus, short read sequencing alone is

www.manaraa.com

 236

insufficient for genome assembly, despite its high throughput and low cost (Alkan et al. 2011;

El-Metwally et al. 2013; Mak et al. 2016).

Several methods exist to overcome the limitations of short read sequencing for genome

assembly. Sanger-based sequencing can be used in a targeted fashion to fill gaps (Schatz et al.

2010). Some companies, such as Oxford Nanopore Technologies (ONT; Oxford, England, UK)

and Pacific Biosciences (PacBio; Mountain View, California, USA) have developed single-

molecule approaches that generate long reads, up to 10-30 kb (Karlsson et al. 2015; Rhoads and

Au 2015; Jiao et al. 2017). Longer reads provided more unique sequence and were expected to

be a significant boon to assembly by spanning repeats; however, some repeats are still be too

long to bridge by reads of this length (Jiao et al. 2017). Originally, such reads were used

primarily as a source of long-range information for scaffolding and gap-filling, but assembly

algorithms have since been developed to try to harness the relatively high read-length in the

computational assembly step itself. The principal difficulty with these longer read technologies

was the relatively high error rate of 10-15% (Rhoads and Au 2015; Jiao et al. 2017), coupled

with a much different error profile than Illumina reads. Several genome projects took a combined

approach and used short reads to mitigate errors in the long reads, but as of the mid-2010s, the

cost of long-read sequencing was still prohibitive for most projects (Quail et al. 2012; Rhoads

and Au 2015). These long-read sequencing technologies did eventually usher in a third

generation, but reference-guided assembly, scaffolding with short reads, and pseudo-long reads

will be addressed first as they are more timeline-appropriate topics.

Reference-guided Assembly

To aid in the overall genome assembly process, one potentially helpful source of data is

the genome of another organism with shared evolutionary history, the more closely related, the

www.manaraa.com

 237

better. Reads, contigs, and/or scaffolds can be aligned to the related reference genome, guiding

further joining, ordering, and orienting of contigs and scaffolds. This approach is sometimes

called reference-guided and has been employed several times (Schneeberger et al. 2011; Hirsch

et al. 2014; Yao et al. 2015; Golicz et al. 2016). Various software packages have been developed

to complete these tasks (e.g., Bao et al. (2014) and Silva et al. (2013)), often with varying

purposes, such as using more than one related genome (Kolmogorov et al. 2014; Bosi et al.

2015), not requiring a tree specifying the relationships (Bosi et al. 2015), or scaffolding contigs

created from ancient, degraded DNA (Rajaraman et al. 2013). Of course, this method relies

heavily on assumptions about and hypotheses of (possibly incorrect) shared evolutionary history,

which could lead to an incorrect assembly. Another similar method, also relying on presumed

homology, uses protein sequences for comparison, instead of the nucleotide sequences (Huang et

al. 2013; Zhu et al. 2016).

Scaffolding with Mate Pair Libraries

After assembling reads into contigs, the next major step was typically ordering and

orienting the contigs into scaffolds (two or more contigs joined together in the correct orientation

and separated by a run of ambiguous or unknown nucleotides (Ns)). This technique, often

referred to as scaffolding, usually relies on information that is longer in range than the read

length used for assembly. It would then use some kind of mapping information to associate

contigs together when one end of the longer-range information source mapped to one contig and

the other mapped to a second contig. In the era of short read-based genome sequencing and

assembly, a common approach to scaffolding was mate pair (MP) libraries. A MP library

produces results similar to sequencing with a paired-end (PE) library, but with a few key

differences. PE and MP libraries produces reads in different orientations (Glenn 2011).

www.manaraa.com

 238

Additionally, PE libraries typically have short inserts (<500 bp), while MP libraries can have

much longer insert sizes (e.g., 20 or 25 kb) (van Heesch et al. 2013). Thus, the benefit of MP

libraries is that they provide a source of long-range information to assist in ordering and

orienting contigs.

Many sequencing projects have included MP libraries in their sequencing projects. The

best results are obtained when using multiple MP libraries with varying insert sizes. Ideally, a

project will utilize at least one library with medium length (e.g., 5, 8, or 15 kb) and one with

large length (e.g., 20 or 25 kb) inserts; however, using more than one of each was a common

approach (Schatz et al. 2010; Gnerre et al. 2011; van Heesch et al. 2013). While MP libraries do

provide a source of fairly long-range information (say 25 kb compared to read length of 150 bp),

the reads are themselves still short and some may not align uniquely in the genome – making

these scaffolding decisions ambiguous.

Incorporating information generated using MP technology into an assembly is

computationally intractable (Huson et al. 2002), requiring additional algorithms than what the

typical assembler could initially do. Some assemblers have included scaffolding modules directly

into their assembly process (e.g., (Simpson et al. 2009; Gnerre et al. 2011; Luo et al. 2012;

Simpson et al. 2012; Nurk et al. 2013; Jackman et al. 2017)), but beginning with Bambus (Pop et

al. 2004), stand-alone programs were developed, supporting a more modular approach to

assembly and scaffolding (e.g., (Assefa et al. 2009; Simpson et al. 2009; Dayarian et al. 2010;

Boetzer et al. 2011; Gao et al. 2011; Koren et al. 2011; Salmela et al. 2011; Gritsenko et al.

2012; Donmez and Brudno 2013)). Naturally, some are for specific use cases, such as

metagenome scaffolding (Koren et al. 2011). Hunt, et al. provide a helpful review of scaffolding

methods and software through 2014 (Hunt et al. 2014). Several additional scaffolders were

www.manaraa.com

 239

subsequently released (Kajitani et al. 2014; Lindsay et al. 2014; Sahlin et al. 2014; Bodily et al.

2015; Farrant et al. 2015; Mandric and Zelikovsky 2015; Rahman and Pachter 2016; Luo et al.

2017).

MP technology improved the contiguity of SGS genome assemblies, and scaffolding

software and algorithms using MP data continued to improve. Yet, some regions of the genome

were still unresolvable because some repeats remain too long to be determined, even with long

insert size libraries (Alkan et al. 2011; van Heesch et al. 2013). Since MP sequences are just PE

sequences with a different library preparation, the reads share the same biases as those generated

by standard PE sequencing. Furthermore, generating many different libraries with varying insert

sizes requires additional DNA and is expensive and time consuming. Ultimately, other sources of

long-range data alongside or replacing MP data is required to generate high-quality genomes

with near-chromosome size pseudomolecules. Development of scaffolding programs has

continued, but most have shifted focus to utilizing other sources of long-range information for

the scaffolding of assemblies based on long-reads.

Scaffolding with RNA-seq Libraries

RNA-sequencing (RNA-seq) uses HTS capabilities (typically Illumina PE) to sequence

cDNA created with reverse transcriptase from RNA. Note that amplification-free methods are

possible on TGS platforms (Garalde et al. 2018), and they can sequence entire transcripts end-to-

end. PacBio IsoSeq is a very popular choice for this technique and is a better choice than

Illumina-based RNA-seq for most situations, provided the project has sufficient budget. Before

long-reads became widely used for DNA or RNA, short reads were the standard. Commonly,

mRNA is targeted for RNA-seq; a common application of which is differential gene expression

studies. Although a few years old, the review by Wang et al. (2009) is a helpful review of the

www.manaraa.com

 240

purpose and technology of RNA-seq. From a genome assembly standpoint, RNA-seq is

indispensable as an annotation tool (Yandell and Ence 2012). Considering that PE reads may

appear on different exons, RNA-seq data also provides a source of long-range information –

possibly enabling the merging of contigs together.

A few software tools have been written for this purpose, with somewhat varying usage

possibilities. The RNAPATH module of ERANGE (Mortazavi et al. 2008) was created to

demonstrate using RNA-seq data as long-range data for scaffolding and did so on the genome of

a Caenorhabditis nematode, nearly doubling supercontig N50 (Mortazavi et al. 2010). Using an

algorithm relying on BLAT (Kent 2002) for local alignments, L_RNA_scaffolder demonstrated

similar results on human, pearl oyster, and zebrafish genomes (Xue et al. 2013). First, however,

L_RNA_scaffolder requires the user to generate a de novo transcriptome assembly. TGnet also

relies on transcript assemblies, but additionally requires manual inspection with their visualizer

(Riba-grognuz et al. 2011). Algorithmically similar to RNAPATH, AGOUTI will update the

annotations for the genome it is scaffolding (Zhang et al. 2016). While convenient for updating

an old genome assembly and associated annotations, this is a limitation for new genome

assembly projects that do not have annotations and/or prefer to annotate after the assembly is

complete. Rascaf appears to improve upon these other methods by using a new algorithmic

approach: an exon block graph to represent gene and contig relationships (Song et al. 2016).

Rascaf does not depend on pre-existing annotations. Furthermore, it avoids expensive de novo

transcript assembly by tools such as Trinity (Grabherr et al. 2011; Haas et al. 2013) by directly

aligning the reads to the assembly.

Scaffolding a genome assembly (including possibly updating any pre-existing

annotations) with RNA-seq data was a great idea, especially considering a many genome

www.manaraa.com

 241

assembly projects would have already been doing quality RNA-seq anyway for annotation. Yet,

it was insufficient as a sole source of long-range information because it could join only contigs

that would be separated by an intron. Naturally, many contigs do not meet this criterion. As other

sources of long-range information for scaffolding have become widely available, RNA-seq has

fallen out of favor for scaffolding – short-read RNA-seq is still a reasonable choice for

annotation purposes. Scaffolding with RNA-seq is best used for updating short-read-based draft

assemblies; when used with long-read-based assemblies, it is prone to introducing incorrect

scaffolding joins. Spurious joins resulting from non-unique mapping of reads due to the

similarity of genes are not worth the benefit of the correct joins for long-read-based genome

assembly projects.

Synthetic Long Reads

One method for generating increasing read length relies on short read sequencing to

create so-called read clouds or synthetic long reads (SLRs). The underlying sequencing

technology is classic SGS. The real difference comes in the library preparation, in which the

sample is separated into discrete reactions that occur simultaneously. After each pool is

barcoded, the entire sample is sequenced. The barcoding enables recognition of which reads

belong to the same subsection of the genome, enabling assembly of each subsection

(subassembly) before using these "long reads" for the main assembly. The most notable

commercially available read cloud option was offered by 10X Genomics (10XG). Their library

preparation employed GemCode™ technology and could be completed in an extremely high

throughput manner for minimal cost (Goodwin et al. 2016; Crepeau et al. 2017). 10XG referred

to their reads as "linked-reads", differentiating them from the SLRs generated by Illumina's

TruSeq-SLR™ (TSLR) (Voskoboynik et al. 2013; McCoy et al. 2014; 10X Genomics 2016). A

www.manaraa.com

 242

similar, lower-throughput technology that pools the genome into only 9,126 (962) pools is

contiguity-preserving transposition sequencing (CPT-seq) (Amini et al. 2014). CPT-seq reads

(Adey et al. 2014), TSLR (Kuleshov et al. 2015; Pinoli 2015; Sharon et al. 2015; Kuleshov et al.

2016; Tsai et al. 2016), and 10XG linked-reads (Mostovoy et al. 2016; Crepeau et al. 2017;

Jackman et al. 2017; Weisenfeld et al. 2017; Yeo et al. 2017; Hulse-Kemp et al. 2018) have all

been used to assemble, polish, and/or scaffold genome assemblies. In 2017, Illumina

discontinued support for TSLR (Van Oene 2017), and 10XG did the same for their linked-reads

in 2020 (10X Genomics 2020). Neither CPT-seq nor its updated single-tube protocol CPTv2-seq

(Zhang et al. 2017) have been widely adopted, likely due to issues with throughput and out-of-

the-box compatibility with Illumina sequencing primers (Meier et al. 2020).

Nevertheless, four new read cloud technologies have emerged: Complete Genomics’

(CG) single tube long fragment reads (stLFRs) (Wang et al. 2019), Droplet Barcode Sequencing

(DBS) (Redin et al. 2017), Haplotagging (Meier et al. 2020), and Universal Sequencing

Technology’s (UST) Transposase Enzyme Linked Long-read Sequencing (TELL-Seq™).DBS

and Haplotagging are both open protocols with relatively low costs. Haplotagging in particular is

inexpensive at <$3 per sample for haplotyping. As commercial products, both stLFR and TELL-

Seq are very new. When considering a project, especially when haplotyping many samples is

required, both are worth considering if one wishes to avoid doing the lab work in-house. TELL-

seq specifically can theoretically do anything 10XG linked-reads could do. For certain

applications for genome assembly, read cloud technologies are a reasonable choice, but most

projects – especially if being tackled by a novice – should stick to true long reads because of the

problems associated with read cloud assemblies.

www.manaraa.com

 243

One drawback with read cloud approaches is that they produce shorter "long reads" than

true long reads – precluding them from resolving even more tandem repeats than the long read

platforms can (Kuleshov et al. 2016). Of course, the benefit is the extremely low cost when

compared with true long read technologies. Supplemented with additional long-range

information, such as optical mapping or chromosome interaction maps, read cloud data was

hypothesized to be sufficient for high-quality assembly (examples and discussion of this in later

sections). Since true long reads also need longer-range data (e.g., optical mapping) to resolve

some genomic features, read cloud technologies were an attractive option when compared with

PacBio or ONT sequencing for many assembly projects. While some very impressive assemblies

were created, at least in part, with read cloud approaches (primarily 10XG linked-reads), the

typical project will see low- to mid-quality assemblies as a result.

One contributing factor to this is that few software packages have been developed for

assembling and scaffolding genomes using read clouds. fragscaff (Adey et al. 2014) was initially

developed for CPT-seq, but has also been used with read clouds from another platform (10XG)

to re-scaffold the sugar pine genome (Crepeau et al. 2017). Architect (Kuleshov et al. 2016) was

built to scaffold metagenomes and pooled sequences. It employs an interesting algorithmic

approach to reduce the expense of subassembly: using a de Bruijn graph approach (Pevzner et al.

2001) for each pool / container and an Overlap-Layout-Consensus (OLC) approach (Myers et al.

2000) to join the subassemblies. ARCS/LINKS (Yeo et al. 2017) boasts improved performance

over both fragscaff and Architect with the ability to scale to large data sets (the other two cannot

realistically be used for more than 250,000 sequences). It was the first software expressly

developed for 10XG read cloud assembly, excluding 10XG's in-house, push-button assembler,

Supernova (Weisenfeld et al. 2017). While not an assembler itself, LRez is the most recent read

www.manaraa.com

 244

cloud software, released as a C++ API and toolkit for the now discontinued 10XG linked-reads,

but it promises effectiveness with at least Haplotagging and UST’s TELL-seq (Morisse et al.

2021a). As long as read cloud technologies exist, genome assembly with such reads is likely to

continue, as is bioinformatics development for needed tools. Despite the likelihood of working

with read cloud technologies becoming increasingly easier, the reads are still far shorter than true

long reads, which are unarguably a better choice for high-quality genome assembly.

Long Read Sequencing and Assembly

The "golden goose" of genome sequencing would be to sequence molecules end-to-end

with low error. Certain single-molecule technologies get significantly closer to such read length,

though none have successfully come close to tens or hundreds of megabases (the length of

chromosomes). Examples of such "third-generation" sequencing (TGS) platforms are PacBio

SMRT™ (Single-Molecule, Real-Time) and ONT MinION™. While ONT sequencing works by

measuring electric signals that change as a single DNA molecule is passing through a

nanochannel, PacBio SMRT sequencing works by putting a single DNA molecule in a tiny well

called a zero-mode waveguide (ZMW) and observing fluorescence as tagged nucleotides are

incorporated by a polymerase. When TGS platforms were gaining popularity (~2015-2017),

PacBio was generating reads in the 20-30 kb range (Karlsson et al. 2015), and ONT could

reliably generate reads >10 kb (Urban et al. 2015), though some reported reads >100 kb

(Goodwin et al. 2015; Madoui et al. 2015; Urban et al. 2015). The error rate for PacBio was

more desirable than ONT (could be >30% (Goodwin et al. 2015; Madoui et al. 2015)), but both

commonly had error rates of 10-15% (Rhoads and Au 2015; Jiao et al. 2017). Despite the error

rates, long reads had been shown to be sufficient for genome assembly without additional data

www.manaraa.com

 245

types, especially in bacteria (Chin et al. 2013; Brown et al. 2014; Parker et al. 2014; Terabayashi

et al. 2014; Berlin et al. 2015; Koren and Phillippy 2015; Badouin et al. 2017; Jansen et al.

2017).

One important aspect to understand of PacBio and Nanopore sequencing is the error

profile. Where Illumina sequencing has an error type of systematically-biased single nucleotide

substitutions at a rate of <0.1% (Fox et al. 2014), these long-read technologies’ 10-15% errors

were comprised of random insertions and deletions (indels). The two companies’ products have

since diverged enough that a separate discussion of each is warranted, but only after a discussion

of the effect that “noisy” (i.e., relatively erroneous), long-reads have computational assembly. If

noisy reads were dropped into a traditional assembler, especially a de Bruijn graph assembler,

the errors would wreak havoc by creating excessive tangles in the graph. In practice, this would

yield to an assembly with many contigs and low N50. To avoid this, the noisy reads need to be

corrected. Correction can happen in one or both of two ways: (a) self-correction by calling

consensus on all-vs-all alignments of the reads or (b) hybrid-correction using highly-accurate,

short-read data. Hybrid-correction can be further broken down into alignment-based methods and

assembly-based methods. Alignment-based methods work by calling consensus on alignments of

all short reads to all long reads. Assembly-based methods work by assembling the short reads

into a de Bruijn graph and correcting the long reads either by alignment to the contigs or by

direct graph traversal. These processes are extremely expensive from a computational standpoint,

often taking more CPU (Central Processing Unit) hours than the assembly of the corrected reads.

(Zhang et al. 2020)

Oxford Nanopore Technologies Reads

www.manaraa.com

 246

ONT’s long-reads commonly remain between 10-100 kb but have a much-improved

accuracy of 87-98% for most reads (a small percentage of reads have relatively low accuracy at

around 69%) (Logsdon et al. 2020a). Additionally, 91% of homopolymers ≥5 bp in length are

accurately captured in the raw reads. Both of these error rates are lower than the error rates for

PacBio’s raw reads, although PacBio does not have a small percentage of reads at very low

accuracy like ONT does. Where ONT data really shine for genome assembly are with a special

library preparation now termed “ultra-long”. By definition, these reads are mostly >100 kb and

share an error profile very similar to the regular long reads. A subset of ultra-long reads, called

“whales”, exceed 1 mb, with the current record exceeding 2 mb (Jain et al. 2018; Logsdon et al.

2020a; Miga et al. 2020). Such reads are four orders of magnitude longer than modern short

reads. Understandably, this length is an immense help for assembly and gap filling; in fact, they

have been instrumental in the T2T Consortium’s efforts on the CHM genome (Logsdon et al.

2020b; Miga et al. 2020).

ONT’s chemistry and hardware are under active development. Their first machine was

the MinION, which has a single flow cell and can be run attached to a laptop from anywhere on

earth. While this has some incredible applications, it suffers from low throughput. ONT has since

released the GridION and PromethION as more high-throughput options, but they are still

limited by the speed that the nanopore’s molecular motor can process a DNA molecule. In

essence, the GridION is made of MinIONs combined into blocks, and the PromethION is, in

turn, a collection of GridIONs. Ultra-long read libraries currently take two or more weeks to

prepare and run, though future developments to decrease this time requirement are likely

(Logsdon et al. 2020a).

www.manaraa.com

 247

Pacific Biosciences Reads

PacBio’s primary instrument was the RSII (RS2), but it has subsequently upgraded

through the Sequel and Sequel II (2) to the Sequel IIe (2e). Chemistry and throughput have

improved dramatically to the point where a sequencing run with one SMRT Cell can generate

8M reads in the time it once took to produce 1M. PacBio has branched its long-read offerings

into two main categories: continuous long reads (CLRs) and High-Fidelity (HiFi) reads.

Continuous Long Reads (CLRs)

CLR reads are PacBio’s original sequencing technology. The error rates are marginally

better than they once were (10-15%) at 8-15%. Unlike Nanopore reads, which can have a small

percentage of reads with >30% error, PacBio CLRs all fit in the 8-15% range. Of the

homopolymers 5 bp or longer, 85% are correctly recovered in the raw reads (compared to >90%

for Nanopore reads). Like ONT long-reads, CLR reads have been used extensively in genome

assemblies and have proven extremely useful in creating moderate- to high-quality assemblies.

Because the error rates of CLR reads (and ONT reads) are so high, large and/or complex

genomes require expensive high sequencing depth and/or a hybrid approach to correction, which

is a significant downside to using such long reads in a genome assembly project. As such, some

individuals have decided to use these long reads as a tool for only gap filling, localized

reassembly, and/or scaffolding (Bashir et al. 2012; English et al. 2012; Koren et al. 2012;

Boetzer and Pirovano 2014; Koren and Phillippy 2015; Rhoads and Au 2015; Warren et al. 2015;

Zimin et al. 2017); however, the relative benefit of this approach is minimal compared to using

the long reads directly in creation of the original assembly graph.

High-Fidelity (HiFi) Reads

www.manaraa.com

 248

Where PacBio really shines for genome assembly is with its HiFi reads. HiFi reads are

generated in the exact same manner as with CLR reads, except that the sequence is circularized

to enable the polymerase to re-sequence the same molecule multiple times. Similar to how SLRs

require a subassembly step for each barcoded set before the main assembly, each read output of a

ZMW must be split and evaluated to form a single consensus read. This process of

circularization, sequencing, and consensus calling to generate HiFi reads is called Circular

Consensus Sequencing (CCS) and is sometimes used interchangeably with the term “HiFi”. HiFi

read lengths are shorter than CLR reads because much of the sequencing time is being used to re-

sequence the same molecule. Due to this and size selection during library prep, HiFi read lengths

typically have a very tight distribution, whereas CLR read length distributions usually have a

long right tail. Initially, HiFi reads were 10-15 kb, but recent results are showing median read

lengths above 15 kb with maximum read lengths approaching 30 kb (Hon et al. 2020).

Despite the reduction in read length compared to traditional CLR reads, the increase in

accuracy caused by consensus makes HiFi reads advantageous. The process of repeatedly

sequencing the same molecule provides sufficient read depth to correct the random indel errors.

Most importantly, the localities of the sequences are guaranteed; in other words, the multiple

subreads (the sections extracted from the repeatedly-sequenced read after removal of primers and

indexes) are always from the same distinct DNA molecule. As such, there is no chance of

collapsing haplotypes, removing segmental duplications, removing a different gene in the same

gene family, etc. through the consensus process. Accuracy varies between HiFi reads based on

the length of the original DNA molecule and movie time (i.e., how long the sequencing reaction

was allowed to proceed), but the majority has an accuracy at or above Q20 (i.e., 99.9% accurate)

– the same quality as Illumina short reads and, as such, diminish the need for NGS reads directly

www.manaraa.com

 249

in assembly. Relatively few HiFi-based genomes have been fully published to date, but those that

are show extreme promise for this datatype, especially when combined with other datatypes.

Overall, HiFi reads are accurate and long enough to completely resolve human centromeres into

one or a handful of contigs. Moreover, when HiFi reads are combined with other data types (as

discussed later), the entire chromosome can be resolved into a single contig from telomere to

telomere through the entire centromere (Logsdon et al. 2020b; Miga et al. 2020).

Long-Read Assembly Software

Assembly software has necessarily evolved rapidly over the last few years as

“traditional” assemblers built for short reads were unable to handle the length and high error of

long, noisy reads without modification. Understandably, a graph algorithm that expects

effectively perfect reads (e.g., a 100 bp read at 99.9% accuracy has 0-1 errors) will not perform

well with the messy tangles produced from noisy reads that are ~100 times more erroneous and

at ~10-100 times longer. As was the case for short read assemblers like ABySS (Simpson et al.

2009; Jackman et al. 2017), ALLPATHS (Butler et al. 2008; Ribeiro et al. 2012), the Celera

Assembler (Myers et al. 2000), SOAPdevovo (Li et al. 2010), and Velvet (Zerbino and Birney

2008), long-read assemblers all compete with each other and have differences in their

performance, options, algorithms for bubble popping, etc. The assemblers that were created or

modified to work with noisy, long-reads either use only long reads (typically pre-corrected (Fu et

al. 2019; Morisse et al. 2020; Zhang et al. 2020)) or incorporate both long and short reads into

the assembly graph. MaSuRCA (Zimin et al. 2013) can incorporate both types of reads, and

Canu (Koren et al. 2017), PacBio’s HGAP/Falcon (Chin et al. 2013; Chin et al. 2016), miniasm

(Li 2016), Raven (Vaser and Šikić 2021), wtdbg2 (Ruan and Li 2019; — 2020), and others use

www.manaraa.com

 250

only long reads. Commonly, these programs have slightly different parameters for PacBio CLRs

and ONT reads.

Since these long-read assemblers were created to handle noisy long-reads, they required

updating – or new assemblers needed to be written – to handle HiFi data. Some assemblers

folded them into the existing programs (e.g., Falcon (Wenger et al. 2019) and HiCanu (Nurk et

al. 2020)), and others were entirely new or created off of forks of previous assemblers (e.g.,

hifiasm (Cheng et al. 2021) and Peregrine (Chin and Khalak 2019)). For the average person

intending to use these softwares, the precise details of how they differ algorithmically are

nonessential. Often, people will try assembly with more than one software and choose the one

that looked the best. Many of these programs – especially for HiFi reads – are under active

development, have limited validation, and/or have not yet been peer-reviewed. Accordingly, it is

difficult to make a strong recommendation for one software over another, even for specific

situations. Based on an observation of the community and reading assembly papers and

preprints, my subjective recommendation would be to use Canu, miniasm, or wtdbg2 for CLR or

ONT reads and HiCanu or hifiasm for HiFi reads.

Diploid Assembly

Some long-read assemblers are also beginning to address the diploid assembly problem.

Two approaches are currently being explored: phasing and trio-binning. In some cases, a

combination of both is employed, though the latter is still extremely new. Falcon_unzip (Chin et

al. 2016) paved the way for phasing by extracting phased assemblies from the Falcon assembly

graph. Similarly, hifiasm outputs a primary (i.e., the best set of paths through the graph to get a

haploid representation of the genome) and an alternate assembly (i.e., everything leftover after

www.manaraa.com

 251

extracting the primary assembly). These are effectively a secondary program from the main

assembler that will process the assembly graph, and similar standalone programs have been

written, namely purge_haplotigs (Roach et al. 2018) and purge_dups (Guan et al. 2020). While

some alternate assemblies can be fairly high in quality, most, by definition, lack the sequence

that is shared between both haplotypes. The “haplotype 1” assembly (when generated) is the

same as the primary assembly. The “haplotype 2” assembly (when generated) is a mixture of the

primary and alternate assemblies; more specifically, it contains the parts from the primary

assembly that are shared between haplotypes and the entire alternate assembly. Figure 1 from

Cheng et al. (2021) provides a helpful illustration of the relationship between primary, alternate,

and haplotype 1 and 2 assemblies. Additionally, “haplotype” in this case is more aptly termed a

“pseudohaplotype” because there is frequent occurrence of haplotype switching. While this

haplotype switching is unavoidable without additional information, methods to address this issue

are beginning to be employed.

By contrast, trio binning (Koren et al. 2018)makes use of parental information (i.e., for

sexually reproducing organisms, trio = mother, father, and child) to sort the reads into bins: those

that come from one parent and those that come from the other. Typically, a third bin is also

produced when the read could not confidently be placed in a specific bin. Binning is based on

sequence similarity and could theoretically be accomplished with traditional read mapping;

though, a k-mer-based method is usually employed. Trio binning is not always possible because

it requires DNA from both parents of the subject and additional funds for their sequencing;

although, the cost of sequencing for the parents can be relatively low because short-read

sequencing can be used. Noisy long-reads do not work very well for trio binning if using a k-mer

www.manaraa.com

 252

approach, but HiFi reads would work well. Canu/HiCanu and hifiasm (and possibly others) have

options for using trio binning information.

Another application of the trio binning concept is to trio bin data that will be used post-

assembly for polishing and/or scaffolding, though this idea has not yet been implemented

anywhere to the authors’ knowledge. However, additional data types have been incorporated into

assembly software to improve assembly and phasing. One example of this technique is dipasm

(Garg et al. 2020), which uses chromosome conformation data (commercially available as Hi-C)

with HiFi read assemblies. Currently, at least one group is exploring the incorporation of ultra-

long ONT reads into a HiFi read-based assembly graph to fill gaps, but this technique and other

combinations represent the bleeding edge of the discipline. The use of Hi-C and other sources of

long-range information to polish or scaffold assemblies as separate steps will be discussed in

subsequent sections.

Polishing Genome Assemblies

“Polishing” typically refers to the correction of errors in an assembly after the assembly

has been produced. Presumably, the assembly software has already attempted to resolve bubbles

and address prospective misassemblies. Polishing software seeks to fix sequence errors (i.e.,

point mutations and indels), break misassemblies, and/or fill gaps. Generally speaking, polishing

falls into two categories based on the type of information used for polishing: short and long

reads. Fixing point mutations and indels in a genome assembly became particularly necessary

during the pre-HiFi period of long-read genome assembling because the reads were noisy,

resulting in errors in the contigs. In principle, polishing occurs by mapping reads (short or long)

www.manaraa.com

 253

to the contigs, followed by processing the mapping information to make decisions and outputting

new polished contigs.

The first widely-used short-read polishing software was Pilon (Walker et al. 2014). Pilon

performs all types of polishing, but was, unfortunately, developed for microbial genomes and is

unable to handle large genomes efficiently as the general rule is to expect 1 GB of RAM

(Random Access Memory) for every 1 mb of sequence. While for microbial and bacterial

genomes this generally is not an issue, it quickly becomes a problem for vertebrates and

especially plants. For example, if a genome is 1 gb in size, Pilon would require approximately 1

TB of RAM. The most popular replacement/substitute for Pilon is RaCon (Vaser et al. 2017),

which is extremely efficient and has undergone intense optimization, including options to run on

GPUs. RaCon is a general-purpose consensus module, meaning it cannot fill gaps or explicitly

detect misassemblies, but it does work with both short (including MP) and long reads. RaCon

could be used for noisy read correction before assembly as well. Similarly, CONSENT (Morisse

et al. 2021b) can be used for pre-assembly read correction or post-assembly contig polishing.

However, CONSENT works only with long reads.

The other long-read polishers widely in-use are technology-specific. The main polisher

for ONT data is called Nanopolish (Loman et al. 2015; Quick et al. 2016; Simpson et al. 2017).

PacBio created their own polishing algorithms called Quiver (Chin et al. 2013; originally part of

HGAP, now deprecated) and Arrow (Laird Smith et al. 2016), now part of GCpp

(https://github.com/PacificBiosciences/gcpp) and the basis of the consensus algorithm for CCS.

Both of these technology-specific polishers also act as variant callers; variant detection is part of

the error-correction process. Another way to polish is to align reads to the assembly, call and

filter variants, then change the assembly based on the variant information using an aligner and

www.manaraa.com

 254

tools like SAMtools (Li et al. 2009), BCFtools (Li 2011), and FreeBayes (Garrison and Marth

2012).

Scaffolding Genome Assemblies

Scaffolding is the process by which contigs are ordered and oriented into scaffolds with

gaps between the contigs. This process requires information beyond the DNA reads used in the

assembly. For the additional data to be informative, it must be longer-range than the original

DNA reads. “Longer-range” need not necessarily refer to the read length of the additional data

type, if said data type is even comprised of reads. As an example of scaffolding with longer-

range information, one early use of both PacBio CLRs and ONT long reads was scaffolding

short-read assemblies (Bashir et al. 2012; English et al. 2012; Koren et al. 2012; Boetzer and

Pirovano 2014; Koren and Phillippy 2015; Rhoads and Au 2015; Warren et al. 2015; Zimin et al.

2017). Scaffolding draft assemblies with short DNA MP reads and RNA-seq reads were

discussed in previous sections. The reason short MP reads or RNA-seq reads (usually 100-250

bp) can scaffold an assembly built from short DNA reads (also usually 100-250 bp) is because

the important factor in length is the associating information, not the read length.

For short-read PE and MP libraries, the distance between reads (i.e., the insert size)

defines how long-range the associative information will be. PE libraries have an insert size 0-500

bp, making them a poor choice for scaffolding. MP libraries frequently have an insert size

between 5 and 25 kb, making them moderately informative, especially compared to the 100-250

bp length of the reads used in assembly. Biologically, if a “left” read comes from position x on

chromosome 1, the “right” read will be read_length + insert_size bases downstream at position x

+ read_length + insert_size on chromosome 1 (note that insert sizes are approximate). In silico,

www.manaraa.com

 255

if the region from x to x + 2(read_length) + insert_size is contained in a single contig, the read-

pair has no helpful information. If the two reads align to different contigs with less than

insert_size combined bases downstream of the left read and upstream of the right read, those two

contigs can be joined together and the gap size can be estimated. However, now that long reads

are consistently longer than MP insert sizes, MP libraries have fallen out of favor for genome

scaffolding purposes.

Unlike short DNA PE and MP reads, scaffold gap lengths cannot easily be determined

using the insert size between short RNA-seq reads. While the distance on the mRNA molecule is

known, the insert size is not likely to also be the genomic distance between the reads when

spanning exon/intron boundaries. Other sources of long-range information (e.g., linkage maps

and physical maps) also make estimating distance difficult, though it is possible with some of

them.

Linkage Maps

Linkage maps provide the observed recombination frequencies between loci in the

genome. Among other applications, they are useful for ordering, orienting, and correcting

scaffolds in de novo genome assembly. Fierst (2015) provides an excellent review of linkage

maps and their utility in genome assembly through 2015 – in short, linkage maps provide long-

range information. However, at least two problems limit the feasibility of linkage maps for some

genome assembly projects. First, you need an F2 mapping population (technically it can be done

in some cases with only an F1), which is not trivial when not impossible, not to mention

potentially quite expensive. Second, the ordering of markers is a computationally difficult task as

the number of possible combinations grows exponentially as the number of markers increases.

While some software has been developed to assist in this task, custom scripting is still a common

www.manaraa.com

 256

requirement for certain tasks and no software integrates completely with de novo assembly.

Ultimately, Fierst concludes that any project that can manage a linkage map, should create one,

but also points out that "undertaking a mapping project is a significant investment of resources".

Since then, others have used linkage maps to assist in genome assembly, e.g., Brassica rapa

(Markelz et al. 2017), Arabidopsis thaliana (Zapata et al. 2016), Nelumbo nucifera (Gui et al.

2018), and the domestic cat (which required genotyping 453 cats!) (Li et al. 2016).

Physical Maps

Physical maps provide information about the physical distance between locations of a

marker or sequence on a given molecule; thus, a complete genome sequence is technically a

physical map with single base-pair distance (O'Rourke 2014). In practice, the actual distance

between loci varies by choice of marker and methods, typically providing information on

megabase scales. Physical maps have often been a key component of large genome projects as

they can provide long-range information to order and orient scaffolds and, in some cases,

determine the size of gaps (Aston et al. 1999). The longer the reads (i.e., distance from end to

end) and higher the resolution (i.e., smaller average distance between loci), the more useful the

physical map will be for assisting in scaffolding a genome assembly. While optical maps, a

specific type of physical map, provide information that can enable an estimation of distance

between the markers, physical maps generated through chromosome conformation capture (3C)

provide only information that will help determine the relative distance between pairs of markers.

Optical Maps

Optical maps are high-resolution restriction maps in which the location of the restriction

enzyme sequence is determined using optics and fluorescence. Optical maps have played an

www.manaraa.com

 257

important role in validating and scaffolding genome assemblies from early assembly projects

(Gardner et al. 1998; Aston et al. 1999; Jing et al. 1999; Lin et al. 1999). They are also useful for

structural variant detection and analysis (Teague et al. 2010; Lam et al. 2012; Mak et al. 2016;

Jaratlerdsiri et al. 2017). Early development and use of optical mapping were done by Dr. David

Schwartz and his lab, paving the way towards more accessible, high-throughput methods

(Dimalanta et al. 2004; Wu et al. 2009; Zhou et al. 2009). Until high-throughput methods were

produced, only large and well-funded projects (e.g., rice (Zhou et al. 2007)), or projects with

small genomes (Latreille et al. 2007), could realistically afford the time and money required to

use optical mapping to scaffold and correct misassemblies. OpGen eventually produced the

Argus™ system, making these techniques commercially available to more assembly projects

(Giongo et al. 2010; Neto et al. 2011; Chen et al. 2012; Dong et al. 2012; Ganapathy et al. 2014).

This technique effectively required fixing linearized DNA on a slide. This method improved

throughput, but still required much time, and the utility was hampered by high error rates and the

inherent difficulty in accurately measuring DNA length (Baday et al. 2012). Furthermore, optical

map resolution was still constrained by the diffraction limit and common use of only a single

restriction enzyme (Neely et al. 2010; Baday et al. 2012).

Improvements in nanoscopy, nanofluidics, and nickase chemistries (Dimalanta et al.

2004; Xiao et al. 2007; Das et al. 2010; Neely et al. 2011; Michaeli and Ebenstein 2012; Levy-

Sakin and Ebenstein 2013) eventually led to BioNano Genomics (BNG; San Diego, California,

USA) and its commercially available Irys™ and Saphyr™ systems, which feed each DNA

molecule through a nanochannel in a very high-throughput manner. BNG refers to their

technique as next-generation mapping (NGM). BNG NGM has higher resolution and higher

throughput than the Argus system, commonly <5kb, with some reporting resolution inside SGS

www.manaraa.com

 258

read length (Baday et al. 2012; Howe and Wood 2015). With less error, lower cost, and higher

throughput, NGM has proven to be a useful tool for scaffolding genome assemblies; in fact,

several assembly projects demonstrated its utility in the first few years of its availability (Hastie

et al. 2013; O’Bleness et al. 2014; Bickhart et al. 2016; Staňková et al. 2016; Yang et al. 2016;

Daccord et al. 2017; Jiao et al. 2017; Weisenfeld et al. 2017; Gui et al. 2018; Nowoshilow et al.

2018).

Although very different, Hi-C (see the Chromosome Conformation Capture section) and

NGM competed as a source of long-range information for scaffolding; circa 2017, they were

approximately equal in terms of improving assembly statistics (Jiao et al. 2017; Yuan et al.

2017). Both the goat (Bickhart et al. 2016) and Arabidopsis thaliana (Jiao et al. 2017) genomes

were assembled utilizing both technologies. Interestingly, relatively few publications had

demonstrated the use of NGM for vertebrate genome assembly; though, it was speculated that

this resulted from low public exposure to the technology (Howe and Wood 2015). Presently, Hi-

C has far outstripped NGM for use in scaffolding. The explanation for this is likely the

substantial cost difference: NGM requires purchasing a BNG Saphyr and appropriate reagents,

while Hi-C requires only a library prep kit. See the review by Sedlazeck et al. (2018) for

additional discussion on NGM and other mapping technologies.

Chromosome Conformation Capture (3C)

A strong background to 3C and its variants is provided in a review by Lajoie et al.

(2015). Capturing chromosome conformation is useful for genome assembly projects because the

information can help scaffold and phase assemblies. Hi-C, an all-vs-all variant of (3C) (Dekker

et al. 2002), is one of these approaches. Unlike other C-techniques, a priori target selection is not

www.manaraa.com

 259

required (Lieberman-Aiden et al. 2009; Hakim and Misteli 2012). The Hi-C protocol (Belton et

al. 2012) enables massively parallel sequencing (PE) on purified ligation products to generate

unbiased, genome-wide chromatin interactions (Lieberman-Aiden et al. 2009). Since, read count

is effectively proportional to distance (Lieberman-Aiden et al. 2009), one can “triangulate”

(Lajoie et al. 2015) which sequences belong on the same chromosome and in which order they

should be placed. The key idea is that the closer a locus is to another, the stronger the interaction

and the subsequent signal. A strong signal does not guarantee two loci are on the same molecule;

however, signal patterns between various loci can provide the necessary information to

determine which loci are on the same molecule and which order they are in. This method has not

yet been effective in providing accurate estimates of distance between loci, but it does provide

megabase scale long-range information for scaffolding genome assemblies.

This approach to genome scaffolding has been demonstrated on human, mouse, and fruit

fly data sets with the software package LACHESIS (Burton et al. 2013). Other early examples

included a goat genome that also had help from BNG NGM (Bickhart et al. 2016) and a barley

genome (Mascher et al. 2017). A related approach, Chicago™, is essentially Hi-C from

reconstituted DNA instead of from a fresh sample. The durian fruit genome was a good early

example of scaffolding with both Chicago and Hi-C (Teh et al. 2017). Both are commercially

available via Dovetail Genomics (Scotts Valley, California, USA), which includes

bioinformatics support with their software HiRise (Putnam et al. 2016).

Two other companies sell kits and services for Hi-C libraries: Arima Genomics (San

Diego, California, USA) and Phase Genomics (Seattle, Washington, USA). Each is different in

price and time required to prepare the libraries, but they do effectively the same thing as

Dovetail’s Hi-C product. One important consideration for Hi-C is the number of restriction

www.manaraa.com

 260

enzymes (REs) used. As with all physical maps, resolution is important, and resolution can be

increased with commercially-available Hi-C products by ordering one with more REs. Two REs

provide markedly more resolution than one RE, though the benefit flattens out as more REs are

added. In this sense, DNase Hi-C (Ramani et al. 2016) is a significant improvement because it

relies on a general purpose endonuclease instead of REs; the resulting resolution distribution is

objectively superior to Hi-C with REs. The primary downside has historically been the large time

requirement for completing the protocol, but Dovetail offers a much-improved (and expensive)

version that it terms Omni-C. Of the two primary software packages meant for scaffolding with

Omni-C, only SALSA (Ghurye et al. 2017; Ghurye et al. 2019) can handle DNase-based Hi-C

(Dudchenko et al. 2017).

Other Physical Maps

A few other methods for generating physical maps exist. Older genome assembly projects

generated physical maps by cloning into a vector and then probing the pieces cut by restriction

enzymes (O'Rourke 2014). One other approach worth mentioning is RadMap, which is based on

RAD sequencing. RadMap has been reported to outperform BNG NGM and Hi-C on highly

fragmented (N50 <54 kb) human and Arabidopsis genome assemblies (Dou et al. 2017) and yet,

does not require specialized instruments, which is a significant benefit similar to Hi-C. However,

RadMap remains unvalidated because no other assembly has been published using the same

technique in the five years since Dou et al. (2017) published the method.

Manual Inspection & Curation

Despite the enormous improvements made in sequencing, assembly, scaffolding,

incorporation of multiple data types, etc., the algorithms are not perfect; indeed, no automated

www.manaraa.com

 261

process has produced anything resembling an error-free genome. Whenever possible, manual

inspection of the assembly and any annotations is helpful. Unfortunately, if also understandably,

curation techniques are difficult skills to transfer between people. Competent, professional

curation is expensive and hard to come by. Genome browsers like the UCSC Genome Browser

(Kent et al. 2002) or gEVAL (Chow et al. 2016) are helpful for inspecting regions of interest (at

any resolution) and picking up on macro-level issues. When Hi-C data is used for scaffolding,

the Hi-C contact matrix can be plotted and visualized with tools like Juicebox (Robinson et al.

2018), PretextMap/PretextView (High Performance Assembly Group - Wellcome Sanger

Institute 2019; — 2020), and HiGlass (Kerpedjiev et al. 2018). Inspection of the Hi-C evidence

for scaffold joins can help the curator fix misoriented or translocated contigs, detect

misassemblies, etc. Details on how to effectively use a Hi-C contact matrix, use a genome

browser, and perform curation tasks are well-beyond the scope of this manuscript, but

instructions and tutorials are available for most of the listed softwares online. The codification of

and availability of training for curation techniques is in its infancy; yet, Howe et al. (2021)

provide an excellent start by describing in a helpful review their expertise in curation born from

work on hundreds of assemblies and other experience.

Interoperability & Composite Softwares

Generally speaking, genome assembly is a modular process comprised of one or more of

the following steps: read correction, assembly, polishing, scaffolding, and curation. One can

generally switch the software for any given step without changing anything in the rest of the

pipeline. This is advantageous because it allows individual steps to be replaced easily as new

algorithms are designed or new sequencing types are produced. Unsurprisingly and

understandably, modularity is compromised by inconsistent outputs between software packages

www.manaraa.com

 262

and a general lack of standardization. Developers should, at a minimum, provide an option to

include information about how final outputs were obtained, e.g., scaffolders should provide not

only the output FASTA file of scaffolds, but also an AGP (or similar) file showing how and with

what evidence the contigs are arranged into the new scaffold sequences. This extra information

enables subsequent re-use and evaluation by other software during quality control checks and

subsequent steps.

As a practical example, consider the Hi-C scaffolder SALSA (Ghurye et al. 2017; Ghurye

et al. 2019). If provided with contig-level FASTA file and a BAM file of Hi-C read alignments

to the contigs, it will output scaffolds (FASTA) and an AGP file showing how the scaffolds are

composed of contigs and the evidence supporting these joins. If SALSA is also provided with

unitig tiling details (from the assembler), it can use the information to better make scaffolding

decisions. If the chosen assembler produces the unitig tiling information and does so in the

requested format, the scaffold-level assembly will improve. If a different assembler is used that

does not produce the information, the scaffolds will not be as good (ignoring the fact that all

assemblers have slightly different algorithms so the resulting contigs and scaffolds will

inevitably be different anyway). In this case, the process is indeed modular, but the “modules”

for assembly are not truly interoperable. For this reason, it is essential that all computational

steps in a genome assembly project are careful considered during the project planning phase (i.e.,

before ordering sequencing).

Due to issues with interoperability, convenience, or precedence, many software packages

are composites that do more than one thing. In their defense, the lines between assembly,

polishing (including error correction, breaking misassemblies, local re-assembly, and gap

filling), and scaffolding are not as cut-and-dry as have been described. If anything, this provides

www.manaraa.com

 263

further support for maximizing interoperability by providing options to output intermediate and

supporting information. Similarly, it is a good reason to allow parts of a composite program to be

skipped. Canu (Koren et al. 2017) is an excellent example of this; in addition to assembly, it has

the ability to correct raw reads by consensus from all-vs-all read alignments (i.e., it is a

composite software package). With the appropriate options and pre-corrected reads provided, the

correction step can be skipped, enabling the use of an alternate correction module (e.g., RaCon

(Vaser et al. 2017) or CONSENT (Morisse et al. 2021b)).

++itr (Iterate, Iterate, Iterate)

As the aforementioned lines between genome assembly steps (i.e., correction, polishing,

etc.) are blurry, one would do well to not view genome assembly as a simple linear progression

from reads to contigs to scaffolds to chromosomes. Iteration is a critical component. This is

certainly true within steps, such as in polishing, where more than one round of polishing is

common (i.e., contigs to polished contigs to more-polished contigs). Similarly, some scaffolding

might be viewed as an iterative flip-flop between contigs and scaffolds, where contigs are joined

into scaffolds and, after evaluation, are again separated and possibly recombined in different

ways. A person or group working on a genome assembly project should expect to experiment

with different software packages and create multiple iterations of the assembly. Genomics has

come a long way in the last decade, but many questions are still unanswered. Even those

questions that appear to have an answer, may be valid for only human genomes or particular

clade. Rigorous evaluation of every intermediate assemblies will help guide the project.

Assessing Genome Assemblies

www.manaraa.com

 264

How can one determine whether more polishing rounds are necessary? Which assembler

outputs the better assembly? Are these scaffold joins valid? Is this variant real? Confidence in

genome assemblies is essential for gaining any biological understanding from them in

subsequent studies, and that confidence begins with careful quality control and assembly

assessment. As a general rule, one should follow established and/or recommended quality control

procedures at every step in the sequencing and assembly process.

Traditionally, assemblies were assessed on a single metric: N50, the length of the contig

in which 50% or more of the assembly is contained in contigs of equal length or longer (this

metric is not the median). N50 is a stand-in measure for contiguity, the continuousness of

contigs. Like an average, it is helpful, but it does not provide the full picture like a more-fully

described distribution would. Even with one or more plots of contiguity, the length is only one

aspect of the quality of a genome. Furthermore, “bigger” is not necessarily “better”. Distributions

of fragment lengths matching informed expectations are the best. In the end, assembly

assessment falls into three categories: contiguity, completeness, and correctness. For those who

are already familiar with measures of contiguity, PacBio has a helpful blog post (Pacific

Biosciences 2020) exploring completeness and correctness as additional measures of assembly

quality; however, short summaries of each category are herein described.

Contiguity

Contiguity is all about length, and it can be measured at the read, contig, or scaffold level.

As was mentioned, N50 is a popular measure of contiguity. N50 is only one of several Nx

statistics, where x refers to a percentage of the assembly size. N50 and N90 are frequently

reported in prose or tables, but N1-100 can easily be calculated and plotted to show the entire

www.manaraa.com

 265

spectrum. A more representative metric than N50 is the area under the N-curve (auN; Li 2020a),

and the field would be benefited by a shift towards reporting the auN alongside N50. A popular

variant of Nx statistics is NGx statistics, where the “G” refers to the genome size instead of the

assembly size. Like Nx statistics, NGx statistics can be easily calculated and plotted to show the

distribution and area under the NG-curve (auNG). One related metric worth mentioning is Lx

(and LGx), which describes the number of sequences (reads, contigs, or scaffolds, depending on

the situation) needed to reach the corresponding Nx (and NGx). N(G)x and L(G)x statistics have

an inverse relationship with each other: good assemblies will have high N(G)x and low L(G)x.

Of course, optimizing (i.e., seeking to maximize N(G)x and minimize L(G)x) contiguity

statistics does not always produce the best outcome. Consider the following simplified example:

if a genome has 10 chromosomes of length 10 mb each, the genome size is 100 mb. Half of the

genome size (for the NG50) is 50 mb. If the assembly were perfectly contiguous (end-to-end for

each chromosome), the N50 would be 10 mb. For a real-life (i.e., imperfect) assembly, a value

<10 mb is expected. A value >10 mb would indicate the invalid joining of contigs/scaffolds

because the chromosomes are not joined end-to-end in real life. For this particular example, the

same statements are true for the NG10, NG20, and so on through the NG90 and NG100. The

more information you have about the cellular biology of a genome, the better you will be able to

assess assembly quality.

Completeness

While contiguity is important, if the assembly size is only 40% of the genome size, then

the assembly is not very high-quality overall, even if the existing portion is both contiguous and

correct. While there are valid reasons that support getting <95+% of the genome represented in

www.manaraa.com

 266

an assembly, the assembly team must consider the biology of the particular genome and the

details of the sequencing experiments. Otherwise, low percentages are indicative of problems.

Another common way to measure completeness is with single-copy orthologs that are highly-

conserved across evolutionary clades. BUSCO (Simão et al. 2015) will scan an assembly for

single-copy orthologs defined in OrthoDB (Kriventseva et al. 2019) and characterize the

abundance and completeness of each ortholog. Three summary values are provided: the number

of orthologs that are complete (C), fragmented (F), and missing (M) in/from the assembly. C is

further broken into two categories: single-copy (S) and duplicated (D). The sum of S and D is C,

and the sum of C, F, and M is the total number of orthologs analyzed. While the organism being

assembled may have genuine variation, a high value of C and low values of F and M are

expected. Similarly, duplications could have occurred, but a low value of D and high value of S

are expected. These BUSCO scores are also often represented as percentages of the number of

orthologs in OrthoDB for the selected clade.

Correctness

Correctness is difficult to assess when the “right” answer is unknown. In the simplified

situation where a gold-standard reference exists, comparing alignments of the two assemblies

can provide helpful information about how correct the assembly is. Naturally, this works only if

a sufficiently high-quality reference is available. Further, if the goal is to complete a “perfect”

T2T assembly, no reference is available for any species, including human. That specific case

aside, how can a person tell if a SNP is a mutation or an error? Or if the SV is a scaffolding

artefact or real biological rearrangement? If a reference is unavailable, each variant may have to

be handled on a case-by-case basis, but SNP or indel errors, once detected, can be automatically

www.manaraa.com

 267

modified via polishing, possibly in a targeted fashion. Larger SV errors may have to be fixed

manually with a text-editor or pseudo-manually with hand-made BED files and tools like

BEDTools (Quinlan and Hall 2010). With a reference, it is important to mask repeats and other

low-quality regions. PacBio has proposed a method for doing this and generally assessing

concordance with a reference (Kingan et al. 2020).

Automating methods to determine, characterize, and report errors in genome assemblies

is an active field of research. Of necessity, clever methods have been devised for individual

genome projects to assess a perceived or anticipated problem. Only approximations of

correctness are currently available unless significant resources are invested, such as comparing a

newly-assembled genome to BACs (Vollger et al. 2020) or immortalizing a cell-line to

systematically characterize and determine how to sort individual chromosomes. A k-mer analysis

with Merqury (Rhie et al. 2020; Walenz et al. 2020) or Yak (Li 2020b; Cheng et al. 2021) can

identify potentially erroneous k-mers that can subsequently be removed or polished. Merqury

can also generate k-mer spectra plots, which can help visualize the frequency of erroneous k-

mers and k-mers not present in the reads.

Annotating Genome Assemblies

Even the best genome assemblies are relatively useless without high-quality annotation.

Annotation typically focuses on protein-coding genes, referring to identifying the location,

ideally including exon-intron boundaries, UTRs, splice variants, etc. Furthermore, identifying the

gene name, gene family, homologs in related species, function of the translated protein product,

etc. are essential elements. Often genes are identified based on extra sequence information (e.g.,

RNA-seq), homology searches (e.g., Dunne and Kelly 2017), and/or ab initio gene predictors,

which may involve machine learning techniques. Annotation information is stored in a variety of

www.manaraa.com

 268

file formats, depending on the exact situation. Predominantly, GFF (gmod.org/wiki/GFF3) is

used, but BED format is common for use with a genome browser, such as the UCSC Genome

Browser (Kent et al. 2002). Databases are another common method for storing annotation

information. Naturally, other types of annotations are possible, but are not typically common

(Yandell and Ence 2012) and are stored in a variety of formats.

Genome annotation software is typically an amalgamation of various softwares, compiled

into a pipeline with wrapper scripts (Holt and Yandell 2011; Hoff et al. 2016), though some are

completely automated, as in the NCBI Eukaryotic Genome Annotation Pipeline for NCBI

genome assembly submissions (Thibaud-Nissen et al. 2013). Understanding how and when to

adjust default settings for each step of the process is non-trivial and specifics will vary with each

genome assembly project. In their present state, running annotation pipelines require

bioinformatics expertise and an intimate understanding of sequencing technologies,

bioinformatics algorithms, and the organism of interest. Ultimately, the choice of which pipeline

to use will vary based on the specific situation; in some cases, organism or group-specific

pipelines have been developed (Proux-Wéra et al. 2012; Campbell et al. 2014). Yandell and Ence

(2012) provide a helpful review about eukaryotic genome annotation that is geared towards

beginners. Ekblom and Wolf (2014) provide a helpful guide to assembly and annotation written

to conservation geneticists that assumes limited background in HTS and bioinformatics. A

helpful set of suggestions for submitting genome assemblies to NCBI is provided by Pirovano et

al. (2015). Mudge and Harrow (2016) review structural and functional annotation and provide

helpful definitions and background information; the information included in this review is

critical for understanding the inherent limitations of annotation. The MAKER annotation

pipeline (Holt and Yandell 2011; Yandell and Ence 2012; Campbell et al. 2014) has been the

www.manaraa.com

 269

foremost annotation pipeline for many years, but caveat emptor: installation is very cumbersome

and difficult, even for some experienced system administrators. Liftoff (Shumate and Salzberg

2020) has gained traction recently for transferring annotations (presumably from a high-quality,

trustworthy source genome) to a new genome or assembly version. Similarly, the Comparative

Annotation Toolkit (CAT; Fiddes et al. 2018) is promising as a method for comparing

annotations between genomes.

COMMENTARY & GUIDANCE

Entering the realm of genome assembly is extremely daunting. The technologies and

methodologies have evolved so rapidly that the methods from most papers are well-behind the

then new “standard”. This has been particularly true since the advent of TGS as the competition

to become the de facto best long-read platform has been fierce. The pace of research has been so

breakneck that sifting through the sheer number of published (and preprint) genome assemblies

alone is unpractical. Consequently, some of the lessons we learned from teaching ourselves

genome assembly over the last few years were effectively irrelevant one year later. Nevertheless,

these lessons (often anecdotal) could prove useful to the assembly newcomer – we certainly wish

such a resource were available when we started. Accordingly, we present a series of lessons-

learned, case studies, and general commentaries about genome assembly.

Assembly with Long, Noisy Reads

HiFi reads provide a distinct advantage in genome assembly, but not every project has the

funds for PacBio data or access to the right sequencing machines. Further, some may have “old”

CLRs that they have not yet had the chance to turn into a genome assembly – or perhaps did not

www.manaraa.com

 270

realize that HiFi reads would likely have been a better choice. Others may simply be interested in

using ONT data for a variety of valid reasons. The following contain some helpful guidelines for

managing genome assembly when the reads are both long and noisy.

Read Correction

Searching for a read correction software is overwhelming due to the sheer number of

options. One question we faced was whether we should do self-correction or use a hybrid

approach with short reads. We also wondered whether there was a cumulative benefit to trying

both self-correction and then hybrid-correcting the already self-corrected reads. The right answer

depends somewhat on the circumstances, but we generally found that hybrid correction is the

least effective approach. One concern with hybrid correction is the aggressive collapsing of

haplotypes and real duplication, which can occur when short reads map equally well to more

than one location in the genome. Even ignoring issues such as low-complexity DNA regions,

sequencing biases, and the non-random nature of nucleotide sequences, non-unique mappings are

expected from short reads with greater probability than from a read with more bases. We

recommend using self-correction only, though this is based on an important assumption; namely,

we assume you have high sequencing depth. Due to the initial high cost of PacBio sequencing,

hybrid correction was a cost-saving option because low-coverage CLRs (e.g., 12x) could be

corrected using high-coverage short reads (e.g., 100x), and the reads would map back to a

reference genome with accuracy similar to high-coverage (i.e., 50-100x), self-corrected CLRs.

Budget providing, we recommend obtaining higher depths for the long reads and skipping the

hybrid correction.

For completeness, we also tried “dual” correction, which is simply performing hybrid

correction on already self-corrected reads. The three tested strategies (Fig. 3) were compared on

www.manaraa.com

 271

a single ~1 gb fish genome, and our results suggested that dual correction was the best option

(Fig. 4). However, subsequent experiments with other genomes yielded inconsistent results.

Hybrid correction was consistently worse than self-correction in terms of contiguity. We

hypothesize that this is due to the unavoidable collapsing of real variation between alleles and

other genomic regions. We also found that self-corrected reads generated more-contiguous

assemblies than dual-corrected reads in each other case. Between these results and the general

concern over the deleterious effects of hybrid correction, we recommend using a self-correction

strategy. Current options for this would be with consensus modules in the assembler itself (e.g.,

Canu) or stand-alone consensus software (e.g., RaCon or CONSENT).

Short Read Correction

The Illumina reads that were used in the aforementioned Albula glossodonta correction

strategies experiments were first corrected. We generally have not seen others correct Illumina

reads (or at least not report that they did), and we have stopped doing so ourselves as the

correction process is time-consuming (computationally), and the algorithm we liked best, Quake

(Kelley et al. 2010), is implemented in old software that is cumbersome to install. That said,

Quake did make corrections in our read sets, though the q-value cutoff had to be manually

determined, which makes the approach difficult to replicate. We also corrected RNA-seq reads

from Illumina with Rcorrector (Song and Florea 2015), but have similarly stopped using it

because in every case (at least four different fish species) zero changes were made to the reads.

With near-perfect accuracy for Illumina reads (>99.9%), this is not surprising as we expect zero

errors in any given Illumina read. We do, however, recommend running FASTQC (Babraham

Bioinformatics Group 2015) or other similar quality-control software to ensure nothing is

www.manaraa.com

 272

anomalous about your short reads. Additionally, be sure to remove sequencing

adapters/indexes/etc. (e.g., with CutAdapt (Martin 2011)) if they were not already removed from

the sequence dataset.

Noisy Read Correction vs. Polishing

When we first heard of polishing from others who had used Pilon, we were extremely

skeptical as it was described as a method to correct SNPs and indels in the assembly without any

correction in advance. What we came to learn was that they did do correction in advance, they

simply did not realize that that their assembler of choice (Canu) did it for them. Unfortunately,

we did not realize this until we later tried it ourselves, and our limited viewpoint of the purpose

of polishing persisted for longer than we care to admit. We reasoned that correction in advance

made more sense than correction after-the-fact because it would make the assembly graph less

complex. Further, RaCon and CONSENT did not yet exist (though PacBio’s long-read consensus

module did), and the high RAM requirement of Pilon was off-putting.

With time, we came to realize that correction and polishing serve very different purposes,

even if part of their function is similar. Whether you have HiFi reads (i.e., reads for which you

should not run a correction step) or CLRs or ONT long-reads that have been corrected, polishing

should at least be attempted post-assembly when data is available. With ONT long-reads or

CLRs, polishing with GCpp (Arrow) or Nanopolish to utilize the long reads is common.

Polishing with short reads (e.g., with RaCon or Pilon) is also popular. Many have used both data

types for polishing in an iterative fashion, starting with the long reads. Usually, one or two

rounds of polishing is done for each data type. We have not done enough evaluation of these

polishing strategies to provide meaningful counsel except that (a) a polishing strategy should be

utilized and (b) the resulting assemblies should be evaluated.

www.manaraa.com

 273

Genome Size Determination

To sequence a genome adequately, an appropriate sequencing depth must be selected.

The depth will depend on sequencing type and may change as chemistries/error rates/ etc.

improve; your sequencing provider (i.e., sequencing center) or sequencing producer (i.e., PacBio,

ONT, etc.) can provide up-to-date recommendations. Assuming the desired depth has been

determined, it can be utilized alongside the genome size to order the appropriate amount of

sequencing. The simplest way to determine genome size for vertebrates is from the Animal

Genome Size Database (Gregory 2021). Ideally, your species of interest is listed with a C-value.

If a C-value is not listed for your species of interest, it can be estimated based on listed related

organisms; however, a C-value estimated in this way is not guaranteed to be correct, especially if

there is variation of the C-value in the clade. Provided that the C-value has been determined and

assuming a GC-content of 50%, the C-value can be converted into a haploid genome size with

the simple formula: S = 0.978C, where C is the C-value and S is the genome size in gigabases

(Doležel et al. 2003).

If the genome size is not in the database, it can also be estimated experimentally with

flow cytometry (Hare and Johnston 2012) or Feulgen microspectrophotometry (Leuchtenberger

1954; Hardie et al. 2002). If you have accurate reads (e.g., Illumina short reads), the size can also

be estimated based on a k-mer analysis. Even if you have a good genome size estimate from an

experiment or the Animal Genome Size Database, it is good practice to corroborate the size

estimate by performing an in silico k-mer analysis. The k-mer analysis requires the following

steps: (1) generate a k-mer coverage histogram, (2) calculate the area under the curve, and (3)

identify the peak. The genome size can then be determined according to the following equation:

www.manaraa.com

 274

a / p = s, where a is the area under the curve, p is the number of times the k‑mers occur (the x-

value) at the peak, and s is the genome size. While the k-mer analysis can be done semi-

manually, we recommend the much simpler approach: GenomeScope (Vurture et al. 2017;

Ranallo-Benavidez et al. 2020). The input for genome scope is a “histogram” file, which is a

two-column, space-separated text file containing the coverage or copy number in the first column

and frequency in the second column, which can be generated using one of many programs (e.g.,

Jellyfish (Marcais and Kingsford 2011) or KMC (Kokot et al. 2017)). Note that in the

GenomeScope profile, the value of “len” is the genome size. Also note that k-mer-based

estimates of genome size can be inaccurate when the genome is unusually homozygous, the

sequencing error rate is high, or the coverage is too low.

Tips for Select Software Packages

While specifics on how to run software, manage jobs in a cluster environment, etc. are

outside the scope of this report, some software packages are particularly complex, and, as such,

general recommendations are provided herein. Specifically, we provide experiential viewpoints

about three software packages: (Hi)Canu (Koren et al. 2017; Nurk et al. 2020), MAKER (Holt

and Yandell 2011; Campbell et al. 2014), and purge_dups (Guan et al. 2020).

(Hi)Canu

Canu, which is the same program used for HiCanu for HiFi reads, is an assembler that

can also correct noisy reads. Canu is well-written, well-documented, and well-maintained. We

mention it here only because it is a unique piece of software when running on a cluster.

Specifically, Canu is capable of submitting itself to the cluster, including managing the resources

www.manaraa.com

 275

it requests for different jobs. The main Canu program assesses the cluster environment and starts

an initial set of jobs while also submitting itself as an “executive” job as a dependency of these

other jobs. This executive job assesses Canu’s overall progress and submits new jobs, as needed,

to tackle subsequent steps or redo failed steps. Then, it once again submits itself as an executive

job as a dependency and the cycle continues. Notably, the initial Canu command need not be

submitted as a job because it can be run quickly (i.e., <5 seconds) on an interactive node. The

cluster we use is managed by SLURM (https://slurm.schedmd.com), but Canu works with other

workload managers as well.

MAKER

MAKER is an annotation pipeline written primarily in Perl (https://www.perl.org). While

MAKER combines a remarkable number of software packages together to accomplish a very

complex and very difficult task, and despite a fair amount of guidance available in “annotation

school” (Holt and Yandell 2018) and the help emails (https://groups.google.com/g/maker-devel),

MAKER is notoriously difficult to run. We do not blame this on MAKER; it is a product of the

enormity of the task of annotation and the age of the software. Unfortunately, many projects that

use MAKER are vague about how they accomplished it. For example, little more than “and we

annotated with MAKER” is sometimes stated in manuscripts. Other times, the entire annotation

process is described as if it were all by hand, even though it was obvious that MAKER was used.

You can save yourself extensive frustration by recognizing that MAKER is a tool to accomplish

many diverse annotation tasks and is not a “push-button” solution that simply outputs reliable

and usable annotations. Additionally, an extensive understanding of annotation is required; as

such, it may be beneficial find a collaborator with annotation experience. For additional

information about our overall annotation process (primarily using MAKER), including the exact

www.manaraa.com

 276

settings and commands run, see our Caranx melampygus genome paper supplement (Pickett et

al. 2021). We do not claim that this is how you should annotate your assembly; it is simply a

reference.

Again, another important thing to discuss about MAKER is that it is prodigiously

difficult to install. Part of the issue is that it has so many dependencies, some of which are

beginning to get rather old, especially some of the Perl modules. Another part of the issue is that

it is difficult to manage more than one Perl installation on the same system, especially if custom

modules need to be universally available (i.e., available to more than just one user). Things are

even more difficult if the user attempting the install does not have or does not wish to use root

privileges. While we did eventually manage a successful installation ourselves, our cluster’s

operating system was upgraded a few weeks later, breaking dependencies and the installation.

Despite careful notes and following the exact same steps, we failed to re-install it. With

extensive help from our system administrators, and after several months of work, we managed to

install it a second time. We strongly encourage others to plan accordingly or determine another

method of annotation. Please, note that at least one update to MAKER has been released since

we had this experience (v3.01.02-beta); it is possible that the issue is helped in the update. It is

also possible that our system was configured in an unusual way that interfered with the process.

purge_dups

purge_dups can be run on a contig-level genome assembly to purge duplicate contigs and

generate a primary and alternate assembly. It is an excellent program, and we highly recommend

it. We do provide a gentle forewarning, however. On the GitHub repository (https://github.com/

dfguan/purge_dups), formal releases have been fairly far and few between considering the jump

in version numbers. We used v1.0.1 because it was the most recent release, despite many

www.manaraa.com

 277

commits having been made afterward. We encountered a bug in the program that would silently

replace entire contigs with Ns in certain circumstances. Gratefully, it had already been fixed in a

numbered version, but that and many other versions were not formally tagged or listed in the

releases. We have had success with v1.2.5, also labeled the “Chinese New Year release”. We

advise checking the list of commits, which have previously been named according to version

number. If a new version number appears there, but not in the tags or releases, it may be worth

skipping straight to it instead of using the formal release. Use your own judgement based on the

content of the commit messages.

Scaffolding Scaffolds

We strongly recommend scaffolding with Hi-C data, as previously described. However, it

is also possible to combine more than one data type for scaffolding. If you have the ability to

generate BNG NGM data, this is also an excellent data source for scaffolding. The specifics for

how combining data types works will vary between software packages, but a few principles will

help. First, scaffold with data types based on the length of the long-range information they

provide. For example, if you were to scaffold with Hi-C data, BNG NGM data, and read clouds

(e.g., if you had old 10XG data or tried new TELL-seq), you would start with the shortest-range

data (read clouds) then scaffold those scaffolds with the BNG NGM (longer-range data), and

scaffold that set of scaffolds with the Hi-C data (longest-range data). Take care to avoid naming

collisions as many software packages will name new scaffolds after a simple naming scheme

(e.g., scaffold_1, scaffold_2, …, scaffold_N) and can complicate the situation (and may even

create errors) if newly-created scaffolds from a “higher” level of scaffolding have the same name

as one of the scaffolds from a previous round of scaffolding.

www.manaraa.com

 278

Moreover, when using more than one data source for scaffolding, we recommend keeping

track of how to convert the contig-level assembly into the final scaffold-level assembly. If your

scaffolders outputs an AGP file (or information sufficient to create one from it), you can

programmatically propagate the information through each file to create a master AGP file with

evidence for each type of join. This will be helpful when it comes time to submit to the assembly

to NCBI. You can submit the contig-level assembly and the AGP file describing the joins. Note

that any changes made during polishing to scaffolds would need to be retroactively applied to the

contig-level assembly and/or master AGP file. Currently, this requires custom scripting as no

software has been published to handle this.

Recommendations for New Projects

As of the time of this writing (Spring 2021), we recommend PacBio HiFi reads as the

basis for the assembly. As a side note, some sequencing centers may ask you if you want the raw

reads or just the HiFi reads, alternately, they may not even ask and just provide the HiFi reads.

We encourage you to get and store the raw reads in addition to the HiFi reads as certain

circumstances may benefit from using the underlying CLRs (e.g., if PacBio publishes an update

to their consensus algorithm). Unless your project requires an assembly of every haplotype in the

specimen, we recommend planning on generating a single haploid representation of the genome.

Speak with your sequencing provider or PacBio about the necessary sequencing depth for your

organism. We also recommend generating Hi-C data for scaffolding. If you intend to perform

annotation or hope that NCBI will include your assembly in RefSeq and annotate it for you, we

advise doing some form of RNA-seq (PacBio Iso-Seq being strongly recommended). While any

assembler should work fine (e.g., Falcon, HiCanu, Hifiasm, and Peregrine), we recommend

www.manaraa.com

 279

Hifiasm. If your assembler outputs separate primary and alternate assemblies, use the primary

assembly for the next step. Use purge_dups to split the assembly into primary and alternate

assemblies. If your assembler already did this, combine the two alternate assemblies into a single

file and use the primary assembly from purge_dups as your primary assembly. While you can

polish at this stage, we advise waiting to polish until you have scaffolds. We do not recommend

polishing with short reads. Scaffold with Hi-C data using SALSA and polish with GCpp

(Arrow). For a more in-depth process, including code, and for up-to-date suggestions, see what

the VGP (Vertebrate Genomes Project) is currently doing as recorded in their GitHub repository

(https://github.com/VGP/vgp-assembly). This is an excellent resource, especially if you also

wish to use other sources of information, such as linked-reads for polishing or BNG NGM for

scaffolding. We also recommend generating short reads for genome size estimation and quality

control steps.

Bioinformatics Best-practices for Genome Assembly

Any experienced bioinformatician knows how easy it is to forget what you did one

week/month/year ago. Just as any wet-lab scientist should take careful notes of their

experiments, bioinformaticians should do the same thing. Genome assembly, in particular, has so

many moving parts and can have many iterations. So, take careful notes, use descriptive

directory and file names, write down the version number and options used for each run of a

program, and think twice, type once (measure twice, cut once). Be sure to record the justification

(and sources, if appropriate) for decisions you make. Your future self will thank your present-day

self when it comes time to justify your methods, publish a paper, or replicate the analysis on a

different sample/species/project/etc.

www.manaraa.com

 280

On a related note, our experience is that sequencing details and sample information are

easily lost or forgotten. Proper project planning and management will help avoid issues, but often

a bioinformatician joins a project at analysis time, not having been able to provide input

previously. In such cases, the prudent bioinformatician will relentlessly pursue key pieces of

information at the beginning of a project. If necessary, bioinformaticians may refuse to perform

any more of the analysis (in this case, genome assembly) until you acquire the requisite

information. For sequencing data sets, you will need the following set of details at minimum: (a)

sample collection details, (b) sample storage and transfer details (i.e., shipped on dry ice, stored

at -80°C), (c) library preparation protocol, including kit names and numbers, methods for

quantifying (and values of) concentrations and other quality control procedures, PCR times and

temperatures (if using PCR), images of any gels, sequencing adapters, unique molecular

identifiers (i.e., barcodes), etc., (d) sequencing machine (e.g., Illumina Hi-Seq 2500), (e) number

of cycles (if Illumina; movie length for PacBio; run time for ONT), and (f) date of the

sequencing run. For sample collection, you will need the following details: (a) species of the

sample, (b) number of individuals, (c) tissue(s) collected, (d) collection date(s), (e) how long the

sample was “left out” before being preserved, (f) longitude and latitude (when collected), (g)

description of the collection site (i.e., collection medium (was it sandy, muddy, grassy, etc.),

collection locality (e.g., near a reef (front or back), water depth, height up a tree, etc.), broad

environment (e.g., ocean, tropical, rain forest, glacier, etc.)), (h) one or more of strain, isolate,

cultivar, and ecotype (if none of these four, makeup a unique identifier and assign it to isolate),

and (i) any other detail needed to create an NCBI BioSample for the sample(s). Do not rely on

core facilities, sequencing centers, web-lab technicians, collaborators, principal investigators, or

www.manaraa.com

 281

anyone else to record, recall, or otherwise estimate these details. Again, it is your responsibility

to ensure you have all the details recorded and backed up yourself.

Finally, data security is a critical task for bioinformaticians. Keep backups of all project-

related documents on the cloud and/or other external drive from your primary workstation. If at

all possible, automate this process. Similarly, keep backups of all original data and final results,

which may be on some kind of cluster or cloud computing resource. Specific details will vary

between institutions, but a common concept in high-performance computing (HPC) is a

“scratch” space. Scratch spaces are typically faster storage drives (which makes computing more

efficient) and are not backed up. In most situations, it is not practical to keep backups of all work

and intermediate files; however, some method to keep two or more copies of raw data files (e.g.,

FASTQ files from a sequencing machine) and results (e.g., corrected reads, final contig- and

scaffold-level assemblies, etc.) on separate drives, ideally in different physical locations, must be

employed. Again, if possible, automate the backup process (copying one copy to another

location). When raw data or final results are generated, copy them to the non-scratch drive. HPC

centers can experience critical drive failures and can result in enormous losses of time, money,

and other resources if a good data backup policy was not employed.

CONCLUSIONS & FUTURE DIRECTIONS

Every genome sequencing project is unique. Decisions about library preparations,

sequencing technologies, read depth, read correction, assembly strategy, polishing, sources of

long-range information for scaffolding, annotation pipelines, etc. will vary depending on the

unique characteristics of the organism in question, the intended purpose of the whole genome

sequence, and the available funding. Moreover, as the field and sequencing technologies

www.manaraa.com

 282

continue to rapidly advance, the ideal technology (or, more likely, combination of technologies)

will change. As the changes occur, the field would be greatly benefited by formal experiments

designed to test the various sequencing technologies (and combinations of technologies) for their

utility in various aspects of genome assembly projects. Of the several critical questions that

remain unanswered about current and emerging options, we prioritize the following questions:

How well will ONT ultra-long reads perform for gap-filling in HiFi assemblies? What is the best

way to incorporate these two data types together – specifically, can they be incorporated into a

hybrid graph and what is the best way to do this? How can we share graph information between

runs of different graph-based software packages? How can we combine multiple sources of

evidence during the scaffolding process in an automated fashion, in particular, how can we

combine optical mapping data (e.g., BNG NGM) and Hi-C? How can we enable non-specialists

to correctly handle segmental duplications (SDs), telomeres, higher-order repeats (HORs), and

centromeres? How much money and time does it realistically take to train someone to do

genome assembly, assuming only a general understanding of genome biology with basic

scripting and HPC skills? Answers to these and other questions will instruct future assembly and

annotation projects and enable scientists to trust empirically tested sequencing and assembly

strategies.

ABBREVIATIONS

API: Application Programming Interface
BED: Browser Extensible Data
BNG: BioNano Genomics
3C: Chromosome Conformation Capture
CPT-seq: Contiguity-preserving Transposition Sequencing
DG: Dovetail Genomics
DNA: Deoxyribonucleic Acid
GFF: Generic Feature Format
Hi-C: High-throughput (All-vs-all) 3C

www.manaraa.com

 283

HPC: High-performance Computing
HTS: High-throughput Sequencing
INSDC: International Nucleotide Sequence Database Collaboration
MP: Mate-pair
MPS: Massively-parallel Sequencing
NCBI: National Center for Biotechnology Information
NGM: Next-generation Mapping
NGS: Next-generation Sequencing
ONT: Oxford Nanopore Technologies
PE: Paired-end
PacBio: Pacific Biosciences
RAD: Restriction site Associated DNA
RNA: Ribonucleic Acid
RNA-seq: RNA Sequencing
SGS: Second-generation Sequencing
SLR: Synthetic Long Reads
TGS: Third-generation Sequencing
TSLR: Truseq-SLR
T2T: Telomere-to-Telomere
UTR: Untranslated Region
10XG: 10X Genomics

AUTHOR CONTRIBUTIONS

JSKK: Conceptualization; Funding Acquisition; Investigation; Supervision; Resources;

Writing - Review & Editing. BDP: Conceptualization; Data Curation; Formal Analysis;

Investigation; Methodology; Software; Visualization; Writing - Original Draft Preparation;

Writing - Review & Editing. PGR: Conceptualization; Funding Acquisition; Supervision;

Resources; Writing - Review & Editing.

ACKNOWLEDGEMENTS

We thank the Brigham Young University (https://byu.edu) DNA Sequencing Center

(https://dnasc.byu.edu) and Office of Research Computing (https://rc.byu.edu) for their

www.manaraa.com

 284

continued support of our research. We are grateful to Dennis K. Shiozawa for suggestions which

improved the readability of the manuscript.

FUNDING

Not Applicable.

CONFLICT OF INTERESTS

None declared.

TABLES & FIGURES
============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

 285

Table 1. Reviews of sequencing, assembly, and related topics.

Reference Description
(Pettersson et al. 2009) Review of sequencing technologies.

(Schatz et al. 2010)
Describes how genomes can be assembled with NGS sequences if
Sanger is used to fill gaps. Great section on NGS technologies.
Great section on assembly.

(Earl et al. 2011) Assemblathon 1 – Comparison of sequence assembly software.
(Quail et al. 2012) Comparison of Ion Torrent, PacBio, and Illumina.
(Bradnam et al. 2013) Assemblathon 2 – Comparison of sequence assembly software.

(Ekblom and Wolf 2014)
A review / field guide on sequencing, assembly, and annotation
written for those with backgrounds in conservation genetics.
Assumes the reader has limited background understanding.

(Fierst 2015) Review on using linkage maps with assembly, but it has a helpful
section on NGS and de novo assembly.

(Simpson and Pop 2015) Review of assembly algorithms (not software performance).
(Heather and Chain 2016) A brief history of DNA sequencing.

(Shendure et al. 2017) Review of sequencing technologies and its current and predicted
impact. Commemorates 40 years of DNA sequencing.

(Sedlazeck et al. 2018) Review of long-range sequencing and mapping technologies and
their applications.

(van Dijk et al. 2018) Review of the third “revolution” in DNA sequencing with a
discussion on the relative qualities of each technology.

(Logsdon et al. 2020a)

Review of long-read genome sequencing and its applications.
Exceptional sections on the technologies and the practical
implications of their respective use in de novo assembly. If you
read any one of these, read this one.

(Howe et al. 2021) Review of manual curation and its effects on assembly quality.

(Li 2021)

Blog post providing definitions to key terms in assembly,
specifically referring to phased assembly; phased assembly
without a reference is possible only because of trios and/or
accurate long-reads (HiFi).

www.manaraa.com

 286

Figure 1. Cost of Genome Sequencing. The estimated cost of sequencing over time based on data reported by the
U.S. National Human Genome Research Institute (NHGRI; https://www.genome.gov). The cost per genome is based
on a 3 Gbp (haploid) genome. The advent of Massively Parallel Sequencing (MPS) platforms (e.g., Roche/454
systems and Illumina/Solexa systems) in the mid- to late-2000’s enabled the precipitous decline in raw sequencing
cost (Mardis 2011).

www.manaraa.com

 287

Figure 2. Genome Statistics Available on NCBI. The number of sequences and bases of the genomes available as
NCBI GenBank and WGS submissions (https://www.ncbi.nlm.nih.gov/genbank/statistics). These statistics serve as a
proxy for the number of genomes being sequenced over time.

www.manaraa.com

 288

Figure 3. Flow chart showing the self-, hybrid-, and dual-correction strategies on an Albula glossodonta
genome. Software choices are labeled above the connecting lines.

www.manaraa.com

 289

Figure 4. Comparison of self-, hybrid-, and dual-correction strategies on an Albula glossodonta genome. Plots
of the contig-level NGx and LGx after Canu-based assembly for PacBio CLRs that were self-corrected (blue),
hybrid-corrected (red), and dual-corrected (green). Note that the short reads were (probably unnecessarily) corrected
before being used. Subsequent experiments with other genomes yielded inconsistent results, except that short-read
only (i.e., “hybrid” correction) was the worst in terms of contiguity.

www.manaraa.com

 290

REFERENCES

10x Genomics. 2016. An Introduction to Linked-Read Technology for a More Comprehensive
Genome and Exome Analysis. Pleasanton, CA: 10X Genomics, p 1-5.

10x Genomics. 2020. Discontinuation of Linked-Reads. URL:
https://www.10xgenomics.com/products/linked-reads [accessed April 21].

Adey, A., J. O. Kitzman, J. N. Burton, R. Daza, A. Kumar, L. Christiansen, M. Ronaghi, S.
Amini, K. L. Gunderson, F. J. Steemers, and J. Shendure. 2014. In vitro, long-range
sequence information for de novo genome assembly via transposase contiguity. Genome
Research. 24:2041-2049.

Alkan, C., S. Sajjadian, and E. E. Eichler. 2011. Limitations of next-generation genome sequence
assembly. Nature Methods. 8:61-65.

Amini, S., D. Pushkarev, L. Christiansen, E. Kostem, T. Royce, C. Turk, N. Pignatelli, A. Adey,
J. O. Kitzman, K. Vijayan, M. Ronaghi, J. Shendure, K. L. Gunderson, and F. J.
Steemers. 2014. Haplotype-resolved whole-genome sequencing by contiguity-preserving
transposition and combinatorial indexing. Nature Genetics. 46:1343-1349.

Assefa, S., T. M. Keane, T. D. Otto, C. Newbold, and M. Berriman. 2009. ABACAS: Algorithm-
based automatic contiguation of assembled sequences. Bioinformatics. 25:1968-1969.

Aston, C., B. Mishra, and D. C. Schwartz. 1999. Optical mapping and its potential for large-scale
sequencing projects. Trends in Biotechnology. 17:297-302.

Babraham Bioinformatics Group. 2015. FASTQC: A quality control tool for high throughput
sequence data. Babraham Institute. URL: https://www.bioinformatics.babraham.ac.uk/
projects/fastqc.

Baday, M., A. Cravens, A. Hastie, H. Kim, D. E. Kudeki, P. Y. Kwok, M. Xiao, and P. R.
Selvin. 2012. Multicolor super-resolution DNA imaging for genetic analysis. Nano
Letters. 12:3861-3866.

Badouin, H., J. Gouzy, C. J. Grassa, F. Murat, S. E. Staton, L. Cottret, C. Lelandais-Brière, G. L.
Owens, S. Carrère, B. Mayjonade, L. Legrand, N. Gill, N. C. Kane, J. E. Bowers, S.
Hubner, A. Bellec, A. Bérard, H. Bergès, N. Blanchet, M.-C. Boniface, D. Brunel, O.
Catrice, N. Chaidir, C. Claudel, C. Donnadieu, T. Faraut, G. Fievet, N. Helmstetter, M.
King, S. J. Knapp, Z. Lai, M.-C. Le Paslier, Y. Lippi, L. Lorenzon, J. R. Mandel, G.
Marage, G. Marchand, E. Marquand, E. Bret-Mestries, E. Morien, S. Nambeesan, T.
Nguyen, P. Pegot-Espagnet, N. Pouilly, F. Raftis, E. Sallet, T. Schiex, J. Thomas, C.
Vandecasteele, D. Varès, F. Vear, S. Vautrin, M. Crespi, B. Mangin, J. M. Burke, J.
Salse, S. Muños, P. Vincourt, L. H. Rieseberg, and N. B. Langlade. 2017. The sunflower
genome provides insights into oil metabolism, flowering and Asterid evolution. Nature.
546:148-152.

www.manaraa.com

 291

Bao, E., T. Jiang, and T. Girke. 2014. AlignGraph: algorithm for secondary de novo genome
assembly guided by closely related references. Bioinformatics. 30:i319-i328.

Bashir, A., A. A. Klammer, W. P. Robins, C.-S. Chin, D. Webster, E. Paxinos, D. Hsu, M.
Ashby, S. Wang, P. Peluso, R. Sebra, J. Sorenson, J. Bullard, J. Yen, M. Valdovino, E.
Mollova, K. Luong, S. Lin, B. Lamay, A. Joshi, L. Rowe, M. Frace, C. L. Tarr, M.
Turnsek, B. M. Davis, A. Kasarskis, J. J. Mekalanos, M. K. Waldor, and E. E. Schadt.
2012. A hybrid approach for the automated finishing of bacterial genomes. Nature
Biotechnology. 30:701-707.

Belton, J.-M., R. P. Mccord, J. H. Gibcus, N. Naumova, Y. Zhan, and J. Dekker. 2012. Hi-C: A
comprehensive technique to capture the conformation of genomes. Methods. 58:268-276.

Berlin, K., S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, and A. M. Phillippy. 2015.
Assembling large genomes with single-molecule sequencing and locality-sensitive
hashing. Nature Biotechnology. 33:623-630.

Bickhart, D. M., B. D. Rosen, S. Koren, B. L. Sayre, A. R. Hastie, S. Chan, J. Lee, E. T. Lam, I.
Liachko, S. T. Sullivan, J. N. Burton, H. J. Huson, C. M. Kelley, J. L. Hutchison, Y.
Zhou, J. Sun, A. Crisa, F. A. Ponce De Leon, J. C. Schwartz, J. A. Hammond, G. C.
Waldbieser, S. G. Schroeder, G. E. Liu, M. J. Dunham, J. Shendure, T. S. Sonstegard, A.
M. Phillippy, C. P. Van Tassell, and T. P. L. Smith. 2016. Single-molecule sequencing
and conformational capture enable de novo mammalian reference genomes. Journal of
Chemical Information and Modeling. 53:1689-1699.

Bodily, P. M., M. S. Fujimoto, Q. Snell, D. Ventura, and M. J. Clement. 2015.
ScaffoldScaffolder: solving contig orientation via bidirected to directed graph reduction.
Bioinformatics. 32:btv548.

Boetzer, M., C. V. Henkel, H. J. Jansen, D. Butler, and W. Pirovano. 2011. Scaffolding pre-
assembled contigs using SSPACE. Bioinformatics. 27:578-579.

Boetzer, M. and W. Pirovano. 2014. SSPACE-LongRead: scaffolding bacterial draft genomes
using long read sequence information. BMC Bioinformatics. 15:211.

Bosi, E., B. Donati, M. Galardini, S. Brunetti, M. F. Sagot, P. Lió, P. Crescenzi, R. Fani, and M.
Fondi. 2015. MeDuSa: A multi-draft based scaffolder. Bioinformatics. 31:2443-2451.

Bradnam, K. R., J. N. Fass, A. Alexandrov, P. Baranay, M. Bechner, I. Birol, S. Boisvert, J. A.
Chapman, G. Chapuis, R. Chikhi, H. Chitsaz, W.-C. Chou, J. Corbeil, C. Del Fabbro, T.
R. Docking, R. Durbin, D. Earl, S. Emrich, P. Fedotov, N. A. Fonseca, G. Ganapathy, R.
A. Gibbs, S. Gnerre, E. Godzaridis, S. Goldstein, M. Haimel, G. Hall, D. Haussler, J. B.
Hiatt, I. Y. Ho, J. Howard, M. Hunt, S. D. Jackman, D. B. Jaffe, E. D. Jarvis, H. Jiang, S.
Kazakov, P. J. Kersey, J. O. Kitzman, J. R. Knight, S. Koren, T.-W. Lam, D. Lavenier, F.
Laviolette, Y. Li, Z. Li, B. Liu, Y. Liu, R. Luo, I. Maccallum, M. D. Macmanes, N.
Maillet, S. Melnikov, D. Naquin, Z. Ning, T. D. Otto, B. Paten, O. S. Paulo, A. M.
Phillippy, F. Pina-Martins, M. Place, D. Przybylski, X. Qin, C. Qu, F. J. Ribeiro, S.
Richards, D. S. Rokhsar, J. G. Ruby, S. Scalabrin, M. C. Schatz, D. C. Schwartz, A.

www.manaraa.com

 292

Sergushichev, T. Sharpe, T. I. Shaw, J. Shendure, Y. Shi, J. T. Simpson, H. Song, F.
Tsarev, F. Vezzi, R. Vicedomini, B. M. Vieira, J. Wang, K. C. Worley, S. Yin, S.-M.
Yiu, J. Yuan, G. Zhang, H. Zhang, S. Zhou, and I. F. Korf. 2013. Assemblathon 2:
evaluating de novo methods of genome assembly in three vertebrate species.
GigaScience. 2:10.

Breitwieser, F. P., M. Pertea, A. V. Zimin, and S. L. Salzberg. 2019. Human contamination in
bacterial genomes has created thousands of spurious proteins. Genome Research.
29(6):954-960.

Brown, S. D., S. M. Utturkar, T. S. Magnuson, A. E. Ray, F. L. Poole, W. A. Lancaster, M. P.
Thorgersen, M. W. W. Adams, and D. A. Elias. 2014. Complete Genome Sequence of
Pelosinus sp. Strain UFO1 Assembled Using Single-Molecule Real-Time DNA
Sequencing Technology. Genome Announcements. 2:e00881-00814-e00881-00814.

Burton, J. N., A. Adey, R. P. Patwardhan, R. Qiu, J. O. Kitzman, and J. Shendure. 2013.
Chromosome-scale scaffolding of de novo genome assemblies based on chromatin
interactions. Nature Biotechnology. 31:1119-1125.

Butler, J., I. Maccallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte, E. S. Lander, C.
Nusbaum, and D. B. Jaffe. 2008. ALLPATHS: De novo assembly of whole-genome
shotgun microreads. Genome Research. 18(5):810-820.

Campbell, M. S., M. Law, C. Holt, J. C. Stein, G. D. Moghe, D. E. Hufnagel, J. Lei, R.
Achawanantakun, D. Jiao, C. J. Lawrence, D. Ware, S.-H. Shiu, K. L. Childs, Y. Sun, N.
Jiang, and M. Yandell. 2014. MAKER-P: A Tool Kit for the Rapid Creation,
Management, and Quality Control of Plant Genome Annotations. Plant Physiology.
164:513-524.

Chaisson, M., E. Eichler, and T. Marschall. 2020. Representing structural haplotypes and
complex genetic variation in pan-genome graphs. Funded by National Institutes of Health
(NIH). Grant #1U01HG010973.

Chen, S., J. Xu, C. Liu, Y. Zhu, D. R. Nelson, S. Zhou, C. Li, L. Wang, X. Guo, Y. Sun, H. Luo,
Y. Li, J. Song, B. Henrissat, A. Levasseur, J. Qian, J. Li, X. Luo, L. Shi, L. He, L. Xiang,
X. Xu, Y. Niu, Q. Li, M. V. Han, H. Yan, J. Zhang, H. Chen, A. Lv, Z. Wang, M. Liu, D.
C. Schwartz, and C. Sun. 2012. Genome sequence of the model medicinal mushroom
Ganoderma lucidum. Nature Communications. 3:913.

Cheng, H., G. T. Concepcion, X. Feng, H. Zhang, and H. Li. 2021. Haplotype-resolved de novo
assembly using phased assembly graphs with hifiasm. Nature Methods. 18(2):170-175.

Chin, C.-S., D. H. Alexander, P. Marks, A. A. Klammer, J. Drake, C. Heiner, A. Clum, A.
Copeland, J. Huddleston, E. E. Eichler, S. W. Turner, and J. Korlach. 2013. Nonhybrid,
finished microbial genome assemblies from long-read SMRT sequencing data. Nature
Methods. 10:563-569.

www.manaraa.com

 293

Chin, C.-S. and A. Khalak. 2019. Human Genome Assembly in 100 Minutes. bioRxiv.
https://www.biorxiv.org/content/10.1101/705616v1.

Chin, C.-S., P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion, A. Clum, C. Dunn, R.
O'malley, R. Figueroa-Balderas, A. Morales-Cruz, G. R. Cramer, M. Delledonne, C. Luo,
J. R. Ecker, D. Cantu, D. R. Rank, and M. C. Schatz. 2016. Phased diploid genome
assembly with single-molecule real-time sequencing. Nature Methods. 13(12):1050-1054.

Chow, W., K. Brugger, M. Caccamo, I. Sealy, J. Torrance, and K. Howe. 2016. gEVAL — a
web-based browser for evaluating genome assemblies. Bioinformatics. 32(16):2508-
2510.

Crepeau, M. W., C. H. Langley, and K. A. Stevens. 2017. From Pine Cones to Read Clouds:
Rescaffolding the Megagenome of Sugar Pine (Pinus lambertiana). G3: Genes,
Genomes, Genetics. 7:1563-1568.

Daccord, N., J.-M. Celton, G. Linsmith, C. Becker, N. Choisne, E. Schijlen, H. Van De Geest, L.
Bianco, D. Micheletti, R. Velasco, E. A. Di Pierro, J. Gouzy, D. J. G. Rees, P. Guérif, H.
Muranty, C.-E. Durel, F. Laurens, Y. Lespinasse, S. Gaillard, S. Aubourg, H.
Quesneville, D. Weigel, E. Van De Weg, M. Troggio, and E. Bucher. 2017. High-quality
de novo assembly of the apple genome and methylome dynamics of early fruit
development. Nature Genetics. 49:1099-1106.

Das, S. K., M. D. Austin, M. C. Akana, P. Deshpande, H. Cao, and M. Xiao. 2010. Single
molecule linear analysis of DNA in nano-channel labeled with sequence specific
fluorescent probes. Nucleic Acids Research. 38:1-8.

Dayarian, A., T. P. Michael, and A. M. Sengupta. 2010. SOPRA: Scaffolding algorithm for
paired reads via statistical optimization. BMC Bioinformatics. 11:345.

Dekker, J., K. Rippe, M. Dekker, and N. Kleckner. 2002. Capturing Chromosome Conformation.
Science. 295(5558):1306-1311.

Denton, J. F., J. Lugo-Martinez, A. E. Tucker, D. R. Schrider, W. C. Warren, and M. W. Hahn.
2014. Extensive error in the number of genes inferred from draft genome assemblies.
PLoS Computational Biology. 10(12):e1003998.

Dimalanta, E. T., A. Lim, R. Runnheim, C. Lamers, C. Churas, D. K. Forrest, J. J. De Pablo, M.
D. Graham, S. N. Coppersmith, S. Goldstein, and D. C. Schwartz. 2004. A Microfluidic
System for Large DNA Molecule Arrays. Analytical Chemistry. 76:5293-5301.

Dohm, J. C., C. Lottaz, T. Borodina, and H. Himmelbauer. 2008. Substantial biases in ultra-short
read data sets from high-throughput DNA sequencing. Nucleic Acids Research. 36:e105-
e105.

Doležel, J., J. Bartoš, H. Voglmayr, and J. Greilhuber. 2003. Nuclear DNA Content and Genome
Size of Trout and Human. Cytometry. 51A(2):127-128.

www.manaraa.com

 294

Dong, Y., M. Xie, Y. Jiang, N. Xiao, X. Du, W. Zhang, G. Tosser-Klopp, J. Wang, S. Yang, J.
Liang, W. Chen, J. Chen, P. Zeng, Y. Hou, C. Bian, S. Pan, Y. Li, X. Liu, W. Wang, B.
Servin, B. Sayre, B. Zhu, D. Sweeney, R. Moore, W. Nie, Y. Shen, R. Zhao, G. Zhang, J.
Li, T. Faraut, J. Womack, Y. Zhang, J. Kijas, N. Cockett, X. Xu, S. Zhao, J. Wang, and
W. Wang. 2012. Sequencing and automated whole-genome optical mapping of the
genome of a domestic goat (Capra hircus). Nature Biotechnology. 31:135-141.

Donmez, N. and M. Brudno. 2013. SCARPA: Scaffolding reads with practical algorithms.
Bioinformatics. 29:428-434.

Dou, J., H. Dou, C. Mu, L. Zhang, Y. Li, J. Wang, T. Li, Y. Li, X. Hu, S. Wang, and Z. Bao.
2017. Whole-Genome Restriction Mapping by “Subhaploid”-Based RAD Sequencing:
An Efficient and Flexible Approach for Physical Mapping and Genome Scaffolding.
Genetics. 206(3):1237-1250.

Dudchenko, O., S. S. Batra, A. D. Omer, S. K. Nyquist, M. Hoeger, N. C. Durand, M. S.
Shamim, I. Machol, E. S. Lander, A. P. Aiden, and E. L. Aiden. 2017. De novo assembly
of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science.
356(6333):92.

Dunne, M. P. and S. Kelly. 2017. OrthoFiller: utilising data from multiple species to improve the
completeness of genome annotations. BMC Genomics. 18:390.

Earl, D., K. Bradnam, J. St. John, A. Darling, D. Lin, J. Fass, H. O. K. Yu, V. Buffalo, D. R.
Zerbino, M. Diekhans, N. Nguyen, P. N. Ariyaratne, W. K. Sung, Z. Ning, M. Haimel, J.
T. Simpson, N. A. Fonseca, I. Birol, T. R. Docking, I. Y. Ho, D. S. Rokhsar, R. Chikhi,
D. Lavenier, G. Chapuis, D. Naquin, N. Maillet, M. C. Schatz, D. R. Kelley, A. M.
Phillippy, S. Koren, S. P. Yang, W. Wu, W. C. Chou, A. Srivastava, T. I. Shaw, J. G.
Ruby, P. Skewes-Cox, M. Betegon, M. T. Dimon, V. Solovyev, I. Seledtsov, P. Kosarev,
D. Vorobyev, R. Ramirez-Gonzalez, R. Leggett, D. Maclean, F. Xia, R. Luo, Z. Li, Y.
Xie, B. Liu, S. Gnerre, I. Maccallum, D. Przybylski, F. J. Ribeiro, T. Sharpe, G. Hall, P.
J. Kersey, R. Durbin, S. D. Jackman, J. A. Chapman, X. Huang, J. L. Derisi, M.
Caccamo, Y. Li, D. B. Jaffe, R. E. Green, D. Haussler, I. Korf, and B. Paten. 2011.
Assemblathon 1: A competitive assessment of de novo short read assembly methods.
Genome Research. 21:2224-2241.

Ekblom, R. and J. B. W. Wolf. 2014. A field guide to whole-genome sequencing, assembly and
annotation. Evolutionary Applications.n/a-n/a.

El-Metwally, S., T. Hamza, M. Zakaria, and M. Helmy. 2013. Next-Generation Sequence
Assembly: Four Stages of Data Processing and Computational Challenges. PLoS
Computational Biology. 9:e1003345.

English, A. C., S. Richards, Y. Han, M. Wang, V. Vee, J. Qu, X. Qin, D. M. Muzny, J. G. Reid,
K. C. Worley, and R. A. Gibbs. 2012. Mind the Gap: Upgrading Genomes with Pacific
Biosciences RS Long-Read Sequencing Technology. PLoS ONE. 7:1-12.

www.manaraa.com

 295

Farrant, G. K., M. Hoebeke, F. Partensky, G. Andres, E. Corre, and L. Garczarek. 2015.
WiseScaffolder: an algorithm for the semi-automatic scaffolding of Next Generation
Sequencing data. BMC Bioinformatics. 16:281.

Fiddes, I. T., J. Armstrong, M. Diekhans, S. Nachtweide, Z. N. Kronenberg, J. G. Underwood, D.
Gordon, D. Earl, T. Keane, E. E. Eichler, D. Haussler, M. Stanke, and B. Paten. 2018.
Comparative Annotation Toolkit (CAT)—simultaneous clade and personal genome
annotation. Genome Research. 28(7):1029-1038.

Fierst, J. L. 2015. Using linkage maps to correct and scaffold de novo genome assemblies:
Methods, challenges, and computational tools. Frontiers in Genetics. 6:1-8.

Fox, E. J., K. S. Reid-Bayliss, M. J. Emond, and L. A. Loeb. 2014. Accuracy of Next Generation
Sequencing Platforms. Journal of Next Generation Sequencing & Applications.
1(1):1000106.

Fu, S., A. Wang, and K. F. Au. 2019. A comparative evaluation of hybrid error correction
methods for error-prone long reads. Genome Biology. 20(1):26.

Ganapathy, G., J. T. Howard, J. M. Ward, J. Li, B. Li, Y. Li, Y. Xiong, Y. Zhang, S. Zhou, D. C.
Schwartz, M. Schatz, R. Aboukhalil, O. Fedrigo, L. Bukovnik, T. Wang, G. Wray, I.
Rasolonjatovo, R. Winer, J. R. Knight, S. Koren, W. C. Warren, G. Zhang, A. M.
Phillippy, and E. D. Jarvis. 2014. High-coverage sequencing and annotated assemblies of
the budgerigar genome. GigaScience. 3:11.

Gao, S., W.-K. Sung, and N. Nagarajan. 2011. Opera: Reconstructing Optimal Genomic
Scaffolds with High-Throughput Paired-End Sequences. 18:1681-1691.

Garalde, D. R., E. A. Snell, D. Jachimowicz, B. Sipos, J. H. Lloyd, M. Bruce, N. Pantic, T.
Admassu, P. James, A. Warland, M. Jordan, J. Ciccone, S. Serra, J. Keenan, S. Martin, L.
Mcneill, E. J. Wallace, L. Jayasinghe, C. Wright, J. Blasco, S. Young, D. Brocklebank, S.
Juul, J. Clarke, A. J. Heron, and D. J. Turner. 2018. Highly parallel direct RNA
sequencing on an array of nanopores. Nature Methods. 15:201-206.

Gardner, M. J., H. Tettelin, D. J. Carucci, L. M. Cummings, L. Aravind, E. V. Koonin, S.
Shallom, T. Mason, K. Yu, C. Fujii, J. Pederson, K. Shen, J. Jing, C. Aston, Z. Lai, D. C.
Schwartz, M. Pertea, S. Salzberg, L. Zhou, G. G. Sutton, R. Clayton, O. White, H. O.
Smith, C. M. Fraser, M. D. Adams, J. C. Venter, and S. L. Hoffman. 1998. Chromosome
2 sequence of the human malaria parasite Plasmodium falciparum. Science. 282:1126-
1132.

Garg, S., A. Fungtammasan, A. Carroll, M. Chou, A. Schmitt, X. Zhou, S. Mac, P. Peluso, E.
Hatas, J. Ghurye, J. Maguire, M. Mahmoud, H. Cheng, D. Heller, J. M. Zook, T.
Moemke, T. Marschall, F. J. Sedlazeck, J. Aach, C.-S. Chin, G. M. Church, and H. Li.
2020. Accurate chromosome-scale haplotype-resolved assembly of human genomes.
bioRxiv. https://biorxiv.org/content/early/2020/07/01/810341.abstract.

www.manaraa.com

 296

Garrison, E. and G. Marth. 2012. Haplotype-based variant detection from short-read sequencing.
arXiv. https://arxiv.org/abs/1207.3907.

Ghurye, J., M. Pop, S. Koren, D. Bickhart, and C.-S. Chin. 2017. Scaffolding of long read
assemblies using long range contact information. BMC Genomics. 18(1):1-11.

Ghurye, J., A. Rhie, B. P. Walenz, A. Schmitt, S. Selvaraj, M. Pop, A. M. Phillippy, and S.
Koren. 2019. Integrating Hi-C links with assembly graphs for chromosome-scale
assembly. PLoS Computational Biology. 15(8):e1007273.

Gill, S. R., M. Pop, R. T. Deboy, P. B. Eckburg, P. J. Turnbaugh, B. S. Samuel, J. I. Gordon, D.
A. Relman, C. M. Fraser-Liggett, and K. E. Nelson. 2006. Metagenomic Analysis of the
Human Distal Gut Microbiome. Science. 312(5778):1355.

Giongo, A., H. L. Tyler, U. N. Zipperer, and E. W. Triplett. 2010. Two genome sequences of the
same bacterial strain, Gluconacetobacter diazotrophicus PAl 5, suggest a new standard in
genome sequence submission. Standards in Genomic Sciences. 2:309-317.

Glenn, T. C. 2011. Field guide to next-generation DNA sequencers. Molecular Ecology
Resources. 11:759-769.

Gnerre, S., I. Maccallum, D. Przybylski, F. J. Ribeiro, J. N. Burton, B. J. Walker, T. Sharpe, G.
Hall, T. P. Shea, S. Sykes, A. M. Berlin, D. Aird, M. Costello, R. Daza, L. Williams, R.
Nicol, A. Gnirke, C. Nusbaum, E. S. Lander, and D. B. Jaffe. 2011. High-quality draft
assemblies of mammalian genomes from massively parallel sequence data. Proceedings
of the National Academy of Sciences. 108:1513-1518.

Golicz, A. A., P. E. Bayer, G. C. Barker, P. P. Edger, H. Kim, P. A. Martinez, C. K. K. Chan, A.
Severn-Ellis, W. R. Mccombie, I. a. P. Parkin, A. H. Paterson, J. C. Pires, A. G. Sharpe,
H. Tang, G. R. Teakle, C. D. Town, J. Batley, and D. Edwards. 2016. The pangenome of
an agronomically important crop plant Brassica oleracea. Nature Communications.
7:13390.

Goodwin, S., J. Gurtowski, S. Ethe-Sayers, P. Deshpande, M. C. Schatz, and W. R. Mccombie.
2015. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a
eukaryotic genome. Genome Research. 25:1750-1756.

Goodwin, S., J. D. Mcpherson, and W. R. Mccombie. 2016. Coming of age: ten years of next-
generation sequencing technologies. Nature Reviews Genetics. 17:333-351.

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L.
Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind,
F. Di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev.
2011. Full-length transcriptome assembly from RNA-Seq data without a reference
genome. Nature Biotechnology. 29(7):644-652.

Green, R. E., J. Krause, A. W. Briggs, T. Maricic, U. Stenzel, M. Kircher, N. Patterson, H. Li,
W. Zhai, M. H.-Y. Fritz, N. F. Hansen, E. Y. Durand, A.-S. Malaspinas, J. D. Jensen, T.

www.manaraa.com

 297

Marques-Bonet, C. Alkan, K. Prüfer, M. Meyer, H. A. Burbano, J. M. Good, R. Schultz,
A. Aximu-Petri, A. Butthof, B. Höber, B. Höffner, M. Siegemund, A. Weihmann, C.
Nusbaum, E. S. Lander, C. Russ, N. Novod, J. Affourtit, M. Egholm, C. Verna, P. Rudan,
D. Brajkovic, Ž. Kucan, I. Gušic, V. B. Doronichev, L. V. Golovanova, C. Lalueza-Fox,
M. De La Rasilla, J. Fortea, A. Rosas, R. W. Schmitz, P. L. F. Johnson, E. E. Eichler, D.
Falush, E. Birney, J. C. Mullikin, M. Slatkin, R. Nielsen, J. Kelso, M. Lachmann, D.
Reich, and S. Pääbo. 2010. A Draft Sequence of the Neandertal Genome. Science.
328(5979):710.

Gregory, T. R. 2021. Animal Genome Size Database. URL: http://www.genomesize.com.

Grice, E. A., H. H. Kong, S. Conlan, C. B. Deming, J. Davis, A. C. Young, G. G. Bouffard, R.
W. Blakesley, P. R. Murray, E. D. Green, M. L. Turner, and J. A. Segre. 2009.
Topographical and Temporal Diversity of the Human Skin Microbiome. Science.
324(5931):1190.

Gritsenko, A. A., J. F. Nijkamp, M. J. T. Reinders, and D. De Ridder. 2012. GRASS: A generic
algorithm for scaffolding next-generation sequencing assemblies. Bioinformatics.
28:1429-1437.

Guan, D., S. A. Mccarthy, J. Wood, K. Howe, Y. Wang, and R. Durbin. 2020. Identifying and
removing haplotypic duplication in primary genome assemblies. Bioinformatics.
36(9):2896-2898.

Gui, S., J. Peng, X. Wang, Z. Wu, R. Cao, J. Salse, H. Zhang, Z. Zhu, Q. Xia, Z. Quan, L. Shu,
W. Ke, and Y. Ding. 2018. Improving Nelumbo nucifera genome assemblies using high-
resolution genetic maps and BioNano genome mapping reveals ancient chromosome
rearrangements. The Plant Journal. 94:721-734.

Haas, B. J., A. Papanicolaou, M. Yassour, M. Grabherr, P. D. Blood, J. Bowden, M. B. Couger,
D. Eccles, B. Li, M. Lieber, M. D. Macmanes, M. Ott, J. Orvis, N. Pochet, F. Strozzi, N.
Weeks, R. Westerman, T. William, C. N. Dewey, R. Henschel, R. D. Leduc, N.
Friedman, and A. Regev. 2013. De novo transcript sequence reconstruction from RNA-
seq using the Trinity platform for reference generation and analysis. Nature Protocols.
8:1494-1512.

Hakim, O. and T. Misteli. 2012. SnapShot: Chromosome Conformation Capture. Cell. 148:1068-
1068.e1062.

Hardie, D. C., T. R. Gregory, and P. D. N. Hebert. 2002. From Pixels to Picograms: A Beginners'
Guide to Genome Quantification by Feulgen Image Analysis Densitometry. Journal of
Histochemistry & Cytochemistry. 50(6):735-749.

Hare, E. E. and J. S. Johnston. 2012. Genome Size Determination Using Flow Cytometry of
Propidium Iodide-Stained Nuclei. Pages 3-12 in V. Orgogozo and M. V. Rockman,
Editors. Molecular Methods for Evolutionary Genetics, 1 Ed. Humana Press, New York
City, New York, USA.

www.manaraa.com

 298

Hastie, A. R., L. Dong, A. Smith, J. Finklestein, E. T. Lam, N. Huo, H. Cao, P.-Y. Kwok, K. R.
Deal, J. Dvorak, M.-C. Luo, Y. Gu, and M. Xiao. 2013. Rapid Genome Mapping in
Nanochannel Arrays for Highly Complete and Accurate De Novo Sequence Assembly of
the Complex Aegilops tauschii Genome. PLoS ONE. 8:e55864.

Heather, J. M. and B. Chain. 2016. The sequence of sequencers: The history of sequencing DNA.
Genomics. 107:1-8.

High Performance Assembly Group - Wellcome Sanger Institute. 2019. PretextView v0.0.1.

High Performance Assembly Group - Wellcome Sanger Institute. 2020. PretextMap v0.1.4.
URL: https://github.com/wtsi-hpag/PretextMap.

Hirsch, C. N., J. M. Foerster, J. M. Johnson, R. S. Sekhon, G. Muttoni, B. Vaillancourt, F.
Penagaricano, E. Lindquist, M. A. Pedraza, K. Barry, N. De Leon, S. M. Kaeppler, and
C. R. Buell. 2014. Insights into the Maize Pan-Genome and Pan-Transcriptome. The
Plant Cell. 26:121-135.

Hoff, K. J., S. Lange, A. Lomsadze, M. Borodovsky, and M. Stanke. 2016. BRAKER1:
Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and
AUGUSTUS. Bioinformatics. 32:767-769.

Holt, C. and M. Yandell. 2011. MAKER2: an annotation pipeline and genome-database
management tool for second-generation genome projects. BMC Bioinformatics. 12:491.

Holt, C. and M. Yandell. 2018. MAKER Tutorial for WGS Assembly and Annotation Winter
School 2018. The Yandell Lab, MAKER Wiki. URL: http://weatherby.genetics.utah.edu/
MAKER/wiki/index.php/MAKER_Tutorial_for_WGS_Assembly_and_Annotation_
Winter_School_2018 [accessed 1 March 2018].

Hon, T., K. Mars, G. Young, Y.-C. Tsai, J. W. Karalius, J. M. Landolin, N. Maurer, D. Kudrna,
M. A. Hardigan, C. C. Steiner, S. J. Knapp, D. Ware, B. Shapiro, P. Peluso, and D. R.
Rank. 2020. Highly accurate long-read HiFi sequencing data for five complex genomes.
Scientific Data. 7(1):399.

Howe, K., W. Chow, J. Collins, S. Pelan, D.-L. Pointon, Y. Sims, J. Torrance, A. Tracey, and J.
Wood. 2021. Significantly improving the quality of genome assemblies through curation.
GigaScience. 10(1):giaa153.

Howe, K. and J. M. Wood. 2015. Using optical mapping data for the improvement of vertebrate
genome assemblies. GigaScience. 4:10.

Huang, L., P. Chen, J. Zhuang, Y. Zhang, and S. Walt. 2013. Metabolic Cost, Mechanical Work,
and Efficiency During Normal Walking in Obese and Normal-Weight Children. Research
Quarterly for Exercise and Sport. 84:S72-S79.

Hulse-Kemp, A. M., S. Maheshwari, K. Stoffel, T. A. Hill, D. Jaffe, S. R. Williams, N.
Weisenfeld, S. Ramakrishnan, V. Kumar, P. Shah, M. C. Schatz, D. M. Church, and A.

www.manaraa.com

 299

Van Deynze. 2018. Reference quality assembly of the 3.5-Gb genome of Capsicum
annuum from a single linked-read library. Horticulture Research. 5:4.

Hunt, M., C. Newbold, M. Berriman, and T. D. Otto. 2014. A comprehensive evaluation of
assembly scaffolding tools. Genome Biology. 15:R42.

Huson, D. H., K. Reinert, and E. W. Myers. 2002. The greedy path-merging algorithm for contig
scaffolding. Journal of the ACM. 49:603-615.

International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of
the human genome. Nature. 409(6822):860-921.

Jackman, S. D., B. P. Vandervalk, H. Mohamadi, J. Chu, S. Yeo, S. A. Hammond, G. Jahesh, H.
Khan, L. Coombe, R. L. Warren, and I. Birol. 2017. ABySS 2.0: resource-efficient
assembly of large genomes using a Bloom filter. Genome Research. 27(5):768-777.

Jain, M., S. Koren, K. H. Miga, J. Quick, A. C. Rand, T. A. Sasani, J. R. Tyson, A. D. Beggs, A.
T. Dilthey, I. T. Fiddes, S. Malla, H. Marriott, T. Nieto, J. O'grady, H. E. Olsen, B. S.
Pedersen, A. Rhie, H. Richardson, A. R. Quinlan, T. P. Snutch, L. Tee, B. Paten, A. M.
Phillippy, J. T. Simpson, N. J. Loman, and M. Loose. 2018. Nanopore sequencing and
assembly of a human genome with ultra-long reads. Nature Biotechnology. 36(4):338-
345.

Jansen, H., R. P. Dirks, M. Liem, C. V. Henkel, G. P. H. Van Heusden, R. J. L. F. Lemmers, T.
Omer, S. Shao, P. J. Punt, and H. P. Spaink. 2017. De novo whole-genome assembly of a
wild type yeast isolate using nanopore sequencing. F1000 Research. 6:618.

Jaratlerdsiri, W., E. K. F. Chan, D. C. Petersen, C. Yang, P. I. Croucher, M. S. R. Bornman, P.
Sheth, and V. M. Hayes. 2017. Next generation mapping reveals novel large genomic
rearrangements in prostate cancer. Oncotarget. 8:23588-23602.

Jiao, W.-B., G. G. Accinelli, B. Hartwig, C. Kiefer, D. Baker, E. Severing, E.-M. Willing, M.
Piednoel, S. Woetzel, E. Madrid-Herrero, B. Huettel, U. Hümann, R. Reinhard, M. A.
Koch, D. Swan, B. Clavijo, G. Coupland, and K. Schneeberger. 2017. Improving and
correcting the contiguity of long-read genome assemblies of three plant species using
optical mapping and chromosome conformation capture data. Genome Research. 27:778-
786.

Jing, J., Z. Lai, C. Aston, J. Lin, D. J. Carucci, M. J. Gardner, B. Mishra, T. S. Anantharaman, H.
Tettelin, L. M. Cummings, S. L. Hoffman, J. C. Venter, and D. C. Schwartz. 1999.
Optical mapping of Plasmodium falciparum chromosome 2. Genome Research. 9:175-
181.

Kajitani, R., K. Toshimoto, H. Noguchi, A. Toyoda, Y. Ogura, M. Okuno, M. Yabana, M.
Harada, E. Nagayasu, H. Maruyama, Y. Kohara, A. Fujiyama, T. Hayashi, and T. Itoh.
2014. Efficient de novo assembly of highly heterozygous genomes from whole-genome
shotgun short reads. Genome Research. 24:1384-1395.

www.manaraa.com

 300

Karlsson, E., A. Lärkeryd, A. Sjödin, M. Forsman, and P. Stenberg. 2015. Scaffolding of a
bacterial genome using MinION nanopore sequencing. Scientific Reports. 5:11996.

Kelley, D. R., M. C. Schatz, and S. L. Salzberg. 2010. Quake: quality-aware detection and
correction of sequencing errors. Genome Biology. 11:R116.

Kent, W. J. 2002. BLAT—The BLAST-Like Alignment Tool. Genome Research. 12:656-664.

Kent, W. J., C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and A. D.
Haussler. 2002. The Human Genome Browser at UCSC. Genome Research. 12:996-
1006.

Kerpedjiev, P., N. Abdennur, F. Lekschas, C. Mccallum, K. Dinkla, H. Strobelt, J. M. Luber, S.
B. Ouellette, A. Azhir, N. Kumar, J. Hwang, S. Lee, B. H. Alver, H. Pfister, L. A. Mirny,
P. J. Park, and N. Gehlenborg. 2018. HiGlass: web-based visual exploration and analysis
of genome interaction maps. Genome Biology. 19(1):125.

Kingan, S. B., Z. N. Kronenberg, and A. M. Wenger. 2020. Beyond Contiguity: Evaluating the
Accuracy of de novo Genome Assemblies. poster in Plant and Animal Genome XXVIII
Conference, San Diego, California, USA.

Kingsford, C., M. C. Schatz, and M. Pop. 2010. Assembly complexity of prokaryotic genomes
using short reads. BMC Bioinformatics. 11:21.

Kokot, M., M. Długosz, and S. Deorowicz. 2017. KMC 3: counting and manipulating k-mer
statistics. Bioinformatics. 33(17):2759-2761.

Kolmogorov, M., B. Raney, B. Paten, and S. Pham. 2014. Ragout - A reference-assisted
assembly tool for bacterial genomes. Bioinformatics. 30:302-309.

Koren, S. and A. M. Phillippy. 2015. One chromosome, one contig: Complete microbial
genomes from long-read sequencing and assembly. Current Opinion in Microbiology.
23:110-120.

Koren, S., A. Rhie, B. P. Walenz, A. T. Dilthey, D. M. Bickhart, S. B. Kingan, S. Hiendleder, J.
L. Williams, T. P. L. Smith, and A. M. Phillippy. 2018. De novo assembly of haplotype-
resolved genomes with trio binning. Nature Biotechnology. 36(12):1174-1182.

Koren, S., M. C. Schatz, B. P. Walenz, J. Martin, J. T. Howard, G. Ganapathy, Z. Wang, D. A.
Rasko, W. R. Mccombie, E. D. Jarvis, and A. M. Phillippy. 2012. Hybrid error correction
and de novo assembly of single-molecule sequencing reads. Nature Biotechnology.
30:693-700.

Koren, S., T. J. Treangen, and M. Pop. 2011. Bambus 2: Scaffolding metagenomes.
Bioinformatics. 27:2964-2971.

www.manaraa.com

 301

Koren, S., B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M. Phillippy. 2017.
Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
separation. Genome Research. 27(5):722-736.

Kriventseva, E. V., D. Kuznetsov, F. Tegenfeldt, M. Manni, R. Dias, F. A. Simão, and E. M.
Zdobnov. 2019. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist,
bacterial and viral genomes for evolutionary and functional annotations of orthologs.
Nucleic Acids Research. 47(D1):D807-D811.

Kuleshov, V., C. Jiang, W. Zhou, F. Jahanbani, S. Batzoglou, and M. Snyder. 2015. Synthetic
long-read sequencing reveals intraspecies diversity in the human microbiome. Nature
Biotechnology. 34:64-69.

Kuleshov, V., M. P. Snyder, and S. Batzoglou. 2016. Genome assembly from synthetic long read
clouds. Bioinformatics. 32:i216-i224.

Laird Smith, M., N. Delaney, N. L. Hepler, D. Alexander, D. Katzenstein, M. Brown, and E.
Paxinos. 2016. An Improved Circular Consensus Algorithm with an Application to
Detect HIV-1 Drug Resistance Associated Mutations (DRAMs). poster in ASM Microbe
2016 by American Society for Microbiology, Boston, Massachusettes, USA.

Lajoie, B. R., J. Dekker, and N. Kaplan. 2015. The Hitchhiker’s guide to Hi-C analysis: Practical
guidelines. Methods. 72:65-75.

Lam, E. T., A. Hastie, C. Lin, D. Ehrlich, S. K. Das, M. D. Austin, P. Deshpande, H. Cao, N.
Nagarajan, M. Xiao, and P.-Y. Kwok. 2012. Genome mapping on nanochannel arrays for
structural variation analysis and sequence assembly. Nature Biotechnology. 30:771-776.

Lander, E. S. 2011. Initial impact of the sequencing of the human genome. Nature.
470(7333):187-197.

Latreille, P., S. Norton, B. S. Goldman, J. Henkhaus, N. Miller, B. Barbazuk, H. B. Bode, C.
Darby, Z. Du, S. Forst, S. Gaudriault, B. Goodner, H. Goodrich-Blair, and S. Slater.
2007. Optical mapping as a routine tool for bacterial genome sequence finishing. BMC
Genomics. 8:321.

Leuchtenberger, C. 1954. Critical Evaluation of Feulgen Microspectrophotometry for Estimating
Amount of DNA in Cell Nuclei. Science. 120(3129):1022.

Levy-Sakin, M. and Y. Ebenstein. 2013. Beyond sequencing: Optical mapping of DNA in the
age of nanotechnology and nanoscopy. Current Opinion in Biotechnology. 24:690-698.

Li, G., L. W. Hillier, R. A. Grahn, A. V. Zimin, V. A. David, M. Menotti-Raymond, R.
Middleton, S. Hannah, S. Hendrickson, A. Makunin, S. J. O?Brien, P. Minx, R. K.
Wilson, L. A. Lyons, W. C. Warren, and W. J. Murphy. 2016. A High-Resolution SNP
Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and
Provides Detailed Patterns of Recombination. G3: Genes, Genomes, Genetics. 6:1607-
1616.

www.manaraa.com

 302

Li, H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping
and population genetical parameter estimation from sequencing data. Bioinformatics.
27(21):2987-2993.

Li, H. 2016. Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences. Bioinformatics. 32(14):2103-2110.

Li, H. 2020a. auN: a new metric to measure assembly contiguity in Heng Li’s Blog. URL:
http://lh3.github.io/2020/04/08/a-new-metric-on-assembly-contiguity [accessed 2020
April 08].

Li, H. 2020b. yak: Yet another k-mer analyzer v0.1 (r56). GitHub. URL: https://github.com/lh3/
yak.

Li, H. 2021. Concepts in phased assemblies in Heng Li’s Blog. URL: http://lh3.github.io/2021/
04/17/concepts-in-phased-assemblies [accessed 2021/04/24].

Li, H., X. Feng, and C. Chu. 2020. The design and construction of reference pangenome graphs.
arXiv. https://arxiv.org/abs/2003.06079.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R.
Durbin, and G. P. D. P. Subgroup. 2009. The Sequence Alignment/Map format and
SAMtools. Bioinformatics. 25(16):2078-2079.

Li, R., H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kristiansen, S. Li, H.
Yang, J. Wang, and J. Wang. 2010. De novo assembly of human genomes with massively
parallel short read sequencing. Genome Research. 20(2):265-272.

Lieberman-Aiden, E., N. L. Van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I.
Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A.
Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and
J. Dekker. 2009. Comprehensive Mapping of Long-Range Interactions Reveals Folding
Principles of the Human Genome. Science. 326:289-293.

Lin, J., R. Qi, C. Aston, J. Jing, T. S. Anantharaman, B. Mishra, O. White, M. J. Daly, K. W.
Minton, J. C. Venter, and D. C. Schwartz. 1999. Whole-Genome Shotgun Optical
Mapping of Deinococcus radiodurans. Science. 285:1558-1562.

Lindblad-Toh, K., C. M. Wade, T. S. Mikkelsen, E. K. Karlsson, D. B. Jaffe, M. Kamal, M.
Clamp, J. L. Chang, E. J. Kulbokas, M. C. Zody, E. Mauceli, X. Xie, M. Breen, R. K.
Wayne, E. A. Ostrander, C. P. Ponting, F. Galibert, D. R. Smith, P. J. Dejong, E.
Kirkness, P. Alvarez, T. Biagi, W. Brockman, J. Butler, C.-W. Chin, A. Cook, J. Cuff, M.
J. Daly, D. Decaprio, S. Gnerre, M. Grabherr, M. Kellis, M. Kleber, C. Bardeleben, L.
Goodstadt, A. Heger, C. Hitte, L. Kim, K.-P. Koepfli, H. G. Parker, J. P. Pollinger, S. M.
J. Searle, N. B. Sutter, R. Thomas, C. Webber, J. Baldwin, A. Abebe, A. Abouelleil, L.
Aftuck, M. Ait-Zahra, T. Aldredge, N. Allen, P. An, S. Anderson, C. Antoine, H.
Arachchi, A. Aslam, L. Ayotte, P. Bachantsang, A. Barry, T. Bayul, M. Benamara, A.
Berlin, D. Bessette, B. Blitshteyn, T. Bloom, J. Blye, L. Boguslavskiy, C. Bonnet, B.

www.manaraa.com

 303

Boukhgalter, A. Brown, P. Cahill, N. Calixte, J. Camarata, Y. Cheshatsang, J. Chu, M.
Citroen, A. Collymore, P. Cooke, T. Dawoe, R. Daza, K. Decktor, S. Degray, N.
Dhargay, K. Dooley, K. Dooley, P. Dorje, K. Dorjee, L. Dorris, N. Duffey, A. Dupes, O.
Egbiremolen, R. Elong, J. Falk, A. Farina, S. Faro, D. Ferguson, P. Ferreira, S. Fisher, M.
Fitzgerald, K. Foley, C. Foley, A. Franke, D. Friedrich, D. Gage, M. Garber, G. Gearin,
G. Giannoukos, T. Goode, A. Goyette, J. Graham, E. Grandbois, K. Gyaltsen, N. Hafez,
D. Hagopian, B. Hagos, J. Hall, C. Healy, R. Hegarty, T. Honan, A. Horn, N. Houde, L.
Hughes, L. Hunnicutt, M. Husby, B. Jester, C. Jones, A. Kamat, B. Kanga, C. Kells, D.
Khazanovich, A. C. Kieu, P. Kisner, M. Kumar, K. Lance, T. Landers, M. Lara, W. Lee,
J.-P. Leger, N. Lennon, L. Leuper, S. Levine, J. Liu, X. Liu, Y. Lokyitsang, T.
Lokyitsang, A. Lui, J. Macdonald, J. Major, R. Marabella, K. Maru, C. Matthews, S.
Mcdonough, T. Mehta, J. Meldrim, A. Melnikov, L. Meneus, A. Mihalev, T. Mihova, K.
Miller, R. Mittelman, V. Mlenga, L. Mulrain, G. Munson, A. Navidi, J. Naylor, T.
Nguyen, N. Nguyen, C. Nguyen, T. Nguyen, R. Nicol, N. Norbu, C. Norbu, N. Novod, T.
Nyima, P. Olandt, B. O'neill, K. O'neill, S. Osman, L. Oyono, C. Patti, D. Perrin, P.
Phunkhang, F. Pierre, M. Priest, A. Rachupka, S. Raghuraman, R. Rameau, V. Ray, C.
Raymond, F. Rege, C. Rise, J. Rogers, P. Rogov, J. Sahalie, S. Settipalli, T. Sharpe, T.
Shea, M. Sheehan, N. Sherpa, J. Shi, D. Shih, J. Sloan, C. Smith, T. Sparrow, J. Stalker,
N. Stange-Thomann, S. Stavropoulos, C. Stone, S. Stone, S. Sykes, P. Tchuinga, P.
Tenzing, S. Tesfaye, D. Thoulutsang, Y. Thoulutsang, K. Topham, I. Topping, T.
Tsamla, H. Vassiliev, V. Venkataraman, A. Vo, T. Wangchuk, T. Wangdi, M. Weiand, J.
Wilkinson, A. Wilson, S. Yadav, S. Yang, X. Yang, G. Young, Q. Yu, J. Zainoun, L.
Zembek, A. Zimmer, E. S. Lander, and M. Broad Sequencing Platform. 2005. Genome
sequence, comparative analysis and haplotype structure of the domestic dog. Nature.
438(7069):803-819.

Lindsay, J., H. Salooti, I. Măndoiu, and A. Zelikovsky. 2014. ILP-based maximum likelihood
genome scaffolding. BMC Bioinformatics. 15 Suppl 9:S9.

Liu, L., Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, and M. Law. 2012. Comparison of
Next-Generation Sequencing Systems. Journal of Biomedicine and Biotechnology.
2012:1-11.

Logsdon, G. A., M. R. Vollger, and E. E. Eichler. 2020a. Long-read human genome sequencing
and its applications. Nature Reviews Genetics. 21(10):597-614.

Logsdon, G. A., M. R. Vollger, P. Hsieh, Y. Mao, M. A. Liskovykh, S. Koren, S. Nurk, L.
Mercuri, P. C. Dishuck, A. Rhie, L. G. De Lima, D. Porubsky, A. V. Bzikadze, M.
Kremitzki, T. A. Graves-Lindsay, C. Jain, K. Hoekzema, S. C. Murali, K. M. Munson, C.
Baker, M. Sorensen, A. M. Lewis, U. Surti, J. L. Gerton, V. Larionov, M. Ventura, K. H.
Miga, A. M. Phillippy, and E. E. Eichler. 2020b. The structure, function, and evolution of
a complete human chromosome 8. bioRxiv. https://www.biorxiv.org/content/10.1101/
2020.09.08.285395v1.

Loman, N. J., R. V. Misra, T. J. Dallman, C. Constantinidou, S. E. Gharbia, J. Wain, and M. J.
Pallen. 2012. Performance comparison of benchtop high-throughput sequencing
platforms. Nature Biotechnology. 30:562-562.

www.manaraa.com

 304

Loman, N. J., J. Quick, and J. T. Simpson. 2015. A complete bacterial genome assembled de
novo using only nanopore sequencing data. Nature Methods. 12(8):733-735.

Luo, J., J. Wang, Z. Zhang, M. Li, and F.-X. Wu. 2017. BOSS: a novel scaffolding algorithm
based on an optimized scaffold graph. Bioinformatics. 33:169-176.

Luo, R., B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu, J. Tang, G.
Wu, H. Zhang, Y. Shi, Y. Liu, C. Yu, B. Wang, Y. Lu, C. Han, D. W. Cheung, S.-M.
Yiu, S. Peng, Z. Xiaoqian, G. Liu, X. Liao, Y. Li, H. Yang, J. Wang, T.-W. Lam, and J.
Wang. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de
novo assembler. GigaScience. 1(1):18.

Madoui, M.-A., S. Engelen, C. Cruaud, C. Belser, L. Bertrand, A. Alberti, A. Lemainque, P.
Wincker, and J.-M. Aury. 2015. Genome assembly using Nanopore-guided long and
error-free DNA reads. BMC Genomics. 16:327.

Mak, A. C. Y., Y. Y. Y. Lai, E. T. Lam, T.-P. Kwok, A. K. Y. Leung, A. Poon, Y. Mostovoy, A.
R. Hastie, W. Stedman, T. Anantharaman, W. Andrews, X. Zhou, A. W. C. Pang, H. Dai,
C. Chu, C. Lin, J. J. K. Wu, C. M. L. Li, J.-W. Li, A. K. Y. Yim, S. Chan, J. Sibert, E. D
Akula, H. Cao, S.-M. Yiu, T.-F. Chan, K. Y. Yip, M. Xiao, and P.-Y. Kwok. 2016.
Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel
Arrays. Genetics. 202:351-362.

Mandric, I. and A. Zelikovsky. 2015. ScaffMatch: Scaffolding algorithm based on maximum
weight matching. Bioinformatics. 31:2632-2638.

Marcais, G. and C. Kingsford. 2011. A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics. 27(6):764-770.

Mardis, E. R. 2011. A decade’s perspective on DNA sequencing technology. Nature.
470(7333):198-203.

Markelz, R. J. C., M. F. Covington, M. T. Brock, U. K. Devisetty, D. J. Kliebenstein, C. Weinig,
and J. N. Maloof. 2017. Using RNA-seq for Genomic Scaffold Placement, Correcting
Assemblies, and Genetic Map Creation in a Common Brassica rapa Mapping Population.
G3: Genes, Genomes, Genetics.g3.117.043000.

Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet.journal. 17(1):10-12.

Mascher, M., H. Gundlach, A. Himmelbach, S. Beier, S. O. Twardziok, T. Wicker, V. Radchuk,
C. Dockter, P. E. Hedley, J. Russell, M. Bayer, L. Ramsay, H. Liu, G. Haberer, X.-Q.
Zhang, Q. Zhang, R. A. Barrero, L. Li, S. Taudien, M. Groth, M. Felder, A. Hastie, H.
Šimková, H. Staňková, J. Vrána, S. Chan, M. Muñoz-Amatriaín, R. Ounit, S.
Wanamaker, D. Bolser, C. Colmsee, T. Schmutzer, L. Aliyeva-Schnorr, S. Grasso, J.
Tanskanen, A. Chailyan, D. Sampath, D. Heavens, L. Clissold, S. Cao, B. Chapman, F.
Dai, Y. Han, H. Li, X. Li, C. Lin, J. K. Mccooke, C. Tan, P. Wang, S. Wang, S. Yin, G.
Zhou, J. A. Poland, M. I. Bellgard, L. Borisjuk, A. Houben, J. Doležel, S. Ayling, S.

www.manaraa.com

 305

Lonardi, P. Kersey, P. Langridge, G. J. Muehlbauer, M. D. Clark, M. Caccamo, A. H.
Schulman, K. F. X. Mayer, M. Platzer, T. J. Close, U. Scholz, M. Hansson, G. Zhang, I.
Braumann, M. Spannagl, C. Li, R. Waugh, and N. Stein. 2017. A chromosome
conformation capture ordered sequence of the barley genome. Nature. 544:427-433.

Mccoy, R. C., R. W. Taylor, T. A. Blauwkamp, J. L. Kelley, M. Kertesz, D. Pushkarev, D. A.
Petrov, and A.-S. Fiston-Lavier. 2014. Illumina TruSeq Synthetic Long-Reads Empower
De Novo Assembly and Resolve Complex, Highly-Repetitive Transposable Elements.
PLoS ONE. 9:e106689.

Meier, J. I., P. A. Salazar, M. Kučka, R. W. Davies, A. Dréau, I. Aldás, O. B. Power, N. J.
Nadeau, J. R. Bridle, C. Rolian, N. H. Barton, W. O. Mcmillan, C. D. Jiggins, and Y. F.
Chan. 2020. Haplotype tagging reveals parallel formation of hybrid races in two butterfly
species. bioRxiv. https://www.biorxiv.org/content/10.1101/2020.05.25.113688v2.

Michaeli, Y. and Y. Ebenstein. 2012. Channeling DNA for optical mapping. Nature
Biotechnology. 30:762-763.

Miga, K. H., S. Koren, A. Rhie, M. R. Vollger, A. Gershman, A. Bzikadze, S. Brooks, E. Howe,
D. Porubsky, G. A. Logsdon, V. A. Schneider, T. Potapova, J. Wood, W. Chow, J.
Armstrong, J. Fredrickson, E. Pak, K. Tigyi, M. Kremitzki, C. Markovic, V. Maduro, A.
Dutra, G. G. Bouffard, A. M. Chang, N. F. Hansen, A. B. Wilfert, F. Thibaud-Nissen, A.
D. Schmitt, J.-M. Belton, S. Selvaraj, M. Y. Dennis, D. C. Soto, R. Sahasrabudhe, G.
Kaya, J. Quick, N. J. Loman, N. Holmes, M. Loose, U. Surti, R. A. Risques, T. A. Graves
Lindsay, R. Fulton, I. Hall, B. Paten, K. Howe, W. Timp, A. Young, J. C. Mullikin, P. A.
Pevzner, J. L. Gerton, B. A. Sullivan, E. E. Eichler, and A. M. Phillippy. 2020. Telomere-
to-telomere assembly of a complete human X chromosome. Nature. 585(7823):79-84.

Mikkelsen, T. S., M. J. Wakefield, B. Aken, C. T. Amemiya, J. L. Chang, S. Duke, M. Garber,
A. J. Gentles, L. Goodstadt, A. Heger, J. Jurka, M. Kamal, E. Mauceli, S. M. J. Searle, T.
Sharpe, M. L. Baker, M. A. Batzer, P. V. Benos, K. Belov, M. Clamp, A. Cook, J. Cuff,
R. Das, L. Davidow, J. E. Deakin, M. J. Fazzari, J. L. Glass, M. Grabherr, J. M. Greally,
W. Gu, T. A. Hore, G. A. Huttley, M. Kleber, R. L. Jirtle, E. Koina, J. T. Lee, S.
Mahony, M. A. Marra, R. D. Miller, R. D. Nicholls, M. Oda, A. T. Papenfuss, Z. E.
Parra, D. D. Pollock, D. A. Ray, J. E. Schein, T. P. Speed, K. Thompson, J. L.
Vandeberg, C. M. Wade, J. A. Walker, P. D. Waters, C. Webber, J. R. Weidman, X. Xie,
M. C. Zody, J. Baldwin, A. Abdouelleil, J. Abdulkadir, A. Abebe, B. Abera, J. Abreu, S.
C. Acer, L. Aftuck, A. Alexander, P. An, E. Anderson, S. Anderson, H. Arachi, M. Azer,
P. Bachantsang, A. Barry, T. Bayul, A. Berlin, D. Bessette, T. Bloom, J. Blye, L.
Boguslavskiy, C. Bonnet, B. Boukhgalter, I. Bourzgui, A. Brown, P. Cahill, S. Channer,
Y. Cheshatsang, L. Chuda, M. Citroen, A. Collymore, P. Cooke, M. Costello, K. D'aco,
R. Daza, G. De Haan, S. Degray, C. Demaso, N. Dhargay, K. Dooley, E. Dooley, M.
Doricent, P. Dorje, K. Dorjee, A. Dupes, R. Elong, J. Falk, A. Farina, S. Faro, D.
Ferguson, S. Fisher, C. D. Foley, A. Franke, D. Friedrich, L. Gadbois, G. Gearin, C. R.
Gearin, G. Giannoukos, T. Goode, J. Graham, E. Grandbois, S. Grewal, K. Gyaltsen, N.
Hafez, B. Hagos, J. Hall, C. Henson, A. Hollinger, T. Honan, M. D. Huard, L. Hughes, B.
Hurhula, M. E. Husby, A. Kamat, B. Kanga, S. Kashin, D. Khazanovich, P. Kisner, K.

www.manaraa.com

 306

Lance, M. Lara, W. Lee, N. Lennon, F. Letendre, R. Levine, A. Lipovsky, X. Liu, J. Liu,
S. Liu, T. Lokyitsang, Y. Lokyitsang, R. Lubonja, A. Lui, P. Macdonald, V. Magnisalis,
K. Maru, C. Matthews, W. Mccusker, S. Mcdonough, T. Mehta, J. Meldrim, L. Meneus,
O. Mihai, A. Mihalev, T. Mihova, R. Mittelman, V. Mlenga, A. Montmayeur, L. Mulrain,
A. Navidi, J. Naylor, T. Negash, T. Nguyen, N. Nguyen, R. Nicol, C. Norbu, N. Norbu,
N. Novod, B. O'neill, S. Osman, E. Markiewicz, O. L. Oyono, C. Patti, P. Phunkhang, F.
Pierre, M. Priest, S. Raghuraman, F. Rege, R. Reyes, C. Rise, P. Rogov, K. Ross, E.
Ryan, S. Settipalli, T. Shea, N. Sherpa, L. Shi, D. Shih, T. Sparrow, J. Spaulding, J.
Stalker, N. Stange-Thomann, S. Stavropoulos, C. Stone, C. Strader, S. Tesfaye, T.
Thomson, Y. Thoulutsang, D. Thoulutsang, K. Topham, I. Topping, T. Tsamla, H.
Vassiliev, A. Vo, T. Wangchuk, T. Wangdi, M. Weiand, J. Wilkinson, A. Wilson, S.
Yadav, G. Young, Q. Yu, L. Zembek, D. Zhong, A. Zimmer, Z. Zwirko, D. B. Jaffe, P.
Alvarez, W. Brockman, J. Butler, C. Chin, S. Gnerre, I. Maccallum, J. a. M. Graves, C. P.
Ponting, M. Breen, P. B. Samollow, E. S. Lander, K. Lindblad-Toh, P. Broad Institute
Genome Sequencing, and T. Broad Institute Whole Genome Assembly. 2007. Genome of
the marsupial Monodelphis domestica reveals innovation in non-coding sequences.
Nature. 447(7141):167-177.

Morisse, P., C. Lamaitre, and F. Legeai. 2021a. LRez: C++ API and tookit for analyzing and
managing Linked-Reads data. arXiv. https://arxiv.org/abs/2103.14419.

Morisse, P., T. Lecroq, and A. Lefebvre. 2020. Long-read error correction: a survey and
qualitative comparison. bioRxiv. https://www.biorxiv.org/content/10.1101/
2020.03.06.977975v2.

Morisse, P., C. Marchet, A. Limasset, T. Lecroq, and A. Lefebvre. 2021b. Scalable long read
self-correction and assembly polishing with multiple sequence alignment. Scientific
Reports. 11(1):761.

Mortazavi, A., E. M. Schwarz, B. Williams, L. Schaeffer, I. Antoshechkin, B. J. Wold, and P. W.
Sternberg. 2010. Scaffolding a Caenorhabditis nematode genome with RNA-seq. Genome
Research. 20:1740-1747.

Mortazavi, A., B. A. Williams, K. Mccue, L. Schaeffer, and B. Wold. 2008. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nature Methods. 5:621-628.

Mostovoy, Y., M. Levy-Sakin, J. Lam, E. T. Lam, A. R. Hastie, P. Marks, J. Lee, C. Chu, C. Lin,
Ž. Džakula, H. Cao, S. A. Schlebusch, K. Giorda, M. Schnall-Levin, J. D. Wall, and P.-
Y. Kwok. 2016. A hybrid approach for de novo human genome sequence assembly and
phasing. Nature Methods. 13:12-17.

Mouse Genome Sequencing Consortium. 2002. Initial sequencing and comparative analysis of
the mouse genome. Nature. 420(6915):520-562.

Mudge, J. M. and J. Harrow. 2016. The state of play in higher eukaryote gene annotation. Nature
Reviews Genetics. 17:758-772.

www.manaraa.com

 307

Mulyukov, Z. and P. A. Pevzner. 2002. EULER-PCR: finishing experiments for repeat
resolution. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.
7:199-210.

Myers, E. W., G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan, S. A.
Kravitz, C. M. Mobarry, K. H. J. Reinert, K. A. Remington, E. L. Anson, R. A. Bolanos,
H.-H. Chou, C. M. Jordan, A. L. Halpern, S. Lonardi, E. M. Beasley, R. C. Brandon, L.
Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R. Nusskern, M. Zhan, Q. Zhang, X. Zheng, G. M.
Rubin, M. D. Adams, and J. C. Venter. 2000. A Whole-Genome Assembly of
Drosophila. Science. 287(5461):2196-2204.

Nagarajan, N. and M. Pop. 2009. Parametric Complexity of Sequence Assembly: Theory and
Applications to Next Generation Sequencing. Journal of Computational Biology. 16:897-
908.

Nature Editors. 2010. The human genome at ten. Nature. 464(7289):649-650.

Neely, R. K., P. Dedecker, J.-I. Hotta, G. Urbanavičiūtė, S. Klimašauskas, and J. Hofkens. 2010.
DNA fluorocode: A single molecule, optical map of DNA with nanometre resolution.
Chemical Science. 1:453.

Neely, R. K., J. Deen, and J. Hofkens. 2011. Optical mapping of DNA: Single-molecule-based
methods for mapping genomes. Biopolymers. 95:298-311.

Neto, M., G. Skorski, D. Thevenot, and E. Loukiadis. 2011. Optical maps : methodology and
applications in microbiology. Euro Reference. 5:38-46.

Nowoshilow, S., S. Schloissnig, J.-F. Fei, A. Dahl, A. W. C. Pang, M. Pippel, S. Winkler, A. R.
Hastie, G. Young, J. G. Roscito, F. Falcon, D. Knapp, S. Powell, A. Cruz, H. Cao, B.
Habermann, M. Hiller, E. M. Tanaka, and E. W. Myers. 2018. The axolotl genome and
the evolution of key tissue formation regulators. Nature. 554:50-55.

Nurk, S., A. Bankevich, D. Antipov, A. Gurevich, A. Korobeynikov, and Lapidus. 2013.
Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads. Research in
Computational Molecular Biology. Beijing, China: Springer Berlin Heidelberg, p 158-
170.

Nurk, S., B. P. Walenz, A. Rhie, M. R. Vollger, G. A. Logsdon, R. Grothe, K. H. Miga, E. E.
Eichler, A. M. Phillippy, and S. Koren. 2020. HiCanu: accurate assembly of segmental
duplications, satellites, and allelic variants from high-fidelity long reads. Genome
Research.

O'rourke, J. A. 2014. Genetic and Physical Map Correlation. Pages 1-7. eLS. John Wiley &
Sons, Ltd, Chichester, UK.

O’bleness, M., V. B. Searles, C. Dickens, D. Astling, D. Albracht, A. C. Y. Mak, Y. Y. Y. Lai,
C. Lin, C. Chu, T. Graves, P.-Y. Kwok, R. K. Wilson, and J. M. Sikela. 2014. Finished

www.manaraa.com

 308

sequence and assembly of the DUF1220-rich 1q21 region using a haploid human
genome. BMC Genomics. 15:387.

Pacific Biosciences. 2020. Beyond Contiguity – Assessing the Quality of Genome Assemblies
with the 3 C’s in Pacific Biosciences Blog. URL: https://www.pacb.com/blog/beyond-
contiguity [accessed 2021/04/23].

Parker, D., A. Narechania, R. Sebra, G. Deikus, S. Larussa, C. Ryan, H. Smith, A. Prince, B.
Mathema, A. J. Ratner, B. Kreiswirth, and P. J. Planet. 2014. Genome Sequence of
Bacterial Interference Strain Staphylococcus aureus 502A. Genome Announcements.
2:e00284-00214-e00284-00214.

Peter, Matthew, Mark, and J. Yang. 2012. Five Years of GWAS Discovery. The American
Journal of Human Genetics. 90(1):7-24.

Pettersson, E., J. Lundeberg, and A. Ahmadian. 2009. Generations of sequencing technologies.
Genomics. 93:105-111.

Pevzner, P. A., H. Tang, and M. S. Waterman. 2001. An Eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences. 98:9748-9753.

Pickett, B. D., J. R. Glass, P. G. Ridge, and J. S. K. Kauwe. 2021. De novo genome assembly of
the marine teleost, Bluefin Trevally (Caranx melampygus). G3: Genes, Genomes,
Genetics.

Pinoli, P. a. C. D. a. M. M. a. a. M. a. B. C. a. a. B. J. a. a. B. D. a. B. H. a. C. J. 2015.
Computational algorithms to predict Gene Ontology annotations. BMC Bioinformatics.
16(Suppl 6):S4.

Pirovano, W., M. Boetzer, M. F. L. Derks, and S. Smit. 2015. NCBI-compliant genome
submissions: tips and tricks to save time and money: Table 1. Briefings in Bioinformatics.
18:bbv104.

Pop, M., D. S. Kosack, and S. L. Salzberg. 2004. Hierarchical scaffolding with Bambus. Genome
Research. 14:149-159.

Proux-Wéra, E., D. Armisén, K. P. Byrne, and K. H. Wolfe. 2012. A pipeline for automated
annotation of yeast genome sequences by a conserved-synteny approach. BMC
Bioinformatics. 13:237.

Putnam, N. H., B. L. O'connell, J. C. Stites, B. J. Rice, M. Blanchette, R. Calef, C. J. Troll, A.
Fields, P. D. Hartley, C. W. Sugnet, D. Haussler, D. S. Rokhsar, and R. E. Green. 2016.
Chromosome-scale shotgun assembly using an in vitro method for long-range linkage.
Genome Research. 26:342-350.

Quail, M., M. E. Smith, P. Coupland, T. D. Otto, S. R. Harris, T. R. Connor, A. Bertoni, H. P.
Swerdlow, and Y. Gu. 2012. A tale of three next generation sequencing platforms:

www.manaraa.com

 309

comparison of Ion torrent, pacific biosciences and illumina MiSeq sequencers. BMC
Genomics. 13:341.

Quick, J., N. J. Loman, S. Duraffour, J. T. Simpson, E. Severi, L. Cowley, J. A. Bore, R.
Koundouno, G. Dudas, A. Mikhail, N. Ouédraogo, B. Afrough, A. Bah, J. H. J. Baum, B.
Becker-Ziaja, J. P. Boettcher, M. Cabeza-Cabrerizo, Á. Camino-Sánchez, L. L. Carter, J.
Doerrbecker, T. Enkirch, I. G. Dorival, N. Hetzelt, J. Hinzmann, T. Holm, L. E.
Kafetzopoulou, M. Koropogui, A. Kosgey, E. Kuisma, C. H. Logue, A. Mazzarelli, S.
Meisel, M. Mertens, J. Michel, D. Ngabo, K. Nitzsche, E. Pallasch, L. V. Patrono, J.
Portmann, J. G. Repits, N. Y. Rickett, A. Sachse, K. Singethan, I. Vitoriano, R. L.
Yemanaberhan, E. G. Zekeng, T. Racine, A. Bello, A. A. Sall, O. Faye, O. Faye, N. F.
Magassouba, C. V. Williams, V. Amburgey, L. Winona, E. Davis, J. Gerlach, F.
Washington, V. Monteil, M. Jourdain, M. Bererd, A. Camara, H. Somlare, A. Camara,
M. Gerard, G. Bado, B. Baillet, D. Delaune, K. Y. Nebie, A. Diarra, Y. Savane, R. B.
Pallawo, G. J. Gutierrez, N. Milhano, I. Roger, C. J. Williams, F. Yattara, K.
Lewandowski, J. Taylor, P. Rachwal, D. J. Turner, G. Pollakis, J. A. Hiscox, D. A.
Matthews, M. K. O. Shea, A. M. Johnston, D. Wilson, E. Hutley, E. Smit, A. Di Caro, R.
Wölfel, K. Stoecker, E. Fleischmann, M. Gabriel, S. A. Weller, L. Koivogui, B. Diallo, S.
Keïta, A. Rambaut, P. Formenty, S. Günther, and M. W. Carroll. 2016. Real-time,
portable genome sequencing for Ebola surveillance. Nature. 530(7589):228-232.

Quinlan, A. R. and I. M. Hall. 2010. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 26(6):841-842.

Rahman, A. and L. Pachter. 2016. SWALO: scaffolding with assembly likelihood optimization.
bioRxiv.1-17.

Räihä, K.-J. and E. Ukkonen. 1981. The shortest common supersequence problem over binary
alphabet is NP-complete. Theoretical Computer Science. 16:187-198.

Rajaraman, A., E. Tannier, and C. Chauve. 2013. FPSAC: Fast phylogenetic scaffolding of
ancient contigs. Bioinformatics. 29:2987-2994.

Ramani, V., D. A. Cusanovich, R. J. Hause, W. Ma, R. Qiu, X. Deng, C. A. Blau, C. M.
Disteche, W. S. Noble, J. Shendure, and Z. Duan. 2016. Mapping 3D genome
architecture through in situ DNase Hi-C. Nature Protocols. 11(11):2104-2121.

Ranallo-Benavidez, T. R., K. S. Jaron, and M. C. Schatz. 2020. GenomeScope 2.0 and
Smudgeplot for reference-free profiling of polyploid genomes. Nature Communications.
11(1):1432.

Rat Genome Sequencing Project Consortium. 2004. Genome sequence of the Brown Norway rat
yields insights into mammalian evolution. Nature. 428(6982):493-521.

Redin, D., E. Borgström, M. He, H. Aghelpasand, M. Käller, and A. Ahmadian. 2017. Droplet
Barcode Sequencing for targeted linked-read haplotyping of single DNA molecules.
Nucleic Acids Research. 45(13):e125.

www.manaraa.com

 310

Rhie, A., B. P. Walenz, S. Koren, and A. M. Phillippy. 2020. Merqury: reference-free quality,
completeness, and phasing assessment for genome assemblies. Genome Biology.
21(1):245.

Rhoads, A. and K. F. Au. 2015. PacBio Sequencing and Its Applications. Genomics, Proteomics
& Bioinformatics. 13:278-289.

Riba-Grognuz, O., L. Keller, L. Falquet, I. Xenarios, and Y. Wurm. 2011. Visualization and
quality assessment of de novo genome assemblies. Bioinformatics. 27:3425-3426.

Ribeiro, F. J., D. Przybylski, S. Yin, T. Sharpe, S. Gnerre, A. Abouelleil, A. M. Berlin, A.
Montmayeur, T. P. Shea, B. J. Walker, S. K. Young, C. Russ, C. Nusbaum, I. Maccallum,
and D. B. Jaffe. 2012. Finished bacterial genomes from shotgun sequence data. Genome
Research. 22:2270-2277.

Roach, M. J., S. A. Schmidt, and A. R. Borneman. 2018. Purge Haplotigs: allelic contig
reassignment for third-gen diploid genome assemblies. BMC Bioinformatics. 19(1):460.

Robinson, J. T., D. Turner, N. C. Durand, H. Thorvaldsdóttir, J. P. Mesirov, and E. L. Aiden.
2018. Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data. Cell
Systems. 6(2):256-258.

Ruan, J. and H. Li. 2019. Fast and accurate long-read assembly with wtdbg2. bioRxiv.
https://www.biorxiv.org/content/10.1101/530972v1.

Ruan, J. and H. Li. 2020. Fast and accurate long-read assembly with wtdbg2. Nature Methods.
17(2):155-158.

Sahlin, K., F. Vezzi, B. Nystedt, J. Lundeberg, and L. Arvestad. 2014. BESST--efficient
scaffolding of large fragmented assemblies. BMC Bioinformatics. 15:281.

Salmela, L., V. Mäkinen, N. Välimäki, J. Ylinen, and E. Ukkonen. 2011. Fast scaffolding with
small independent mixed integer programs. Bioinformatics. 27:3259-3265.

Sanger, F. 1975. The Croonian Lecture, 1975: Nucleotide Sequences in DNA. Proceedings of the
Royal Society B: Biological Sciences. 191:317-333.

Sanger, F. and A. R. Coulson. 1975. A rapid method for determining sequences in DNA by
primed synthesis with DNA polymerase. Journal of Molecular Biology. 94:441-448.

Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating
inhibitors. Proceedings of the National Academy of Sciences. 74:5463-5467.

Schatz, M. C., A. L. Delcher, and S. L. Salzberg. 2010. Assembly of large genomes using
second-generation sequencing. Genome Research. 20:1165-1173.

Schneeberger, K., S. Ossowski, F. Ott, J. D. Klein, X. Wang, C. Lanz, L. M. Smith, J. Cao, J.
Fitz, N. Warthmann, S. R. Henz, D. H. Huson, and D. Weigel. 2011. Reference-guided

www.manaraa.com

 311

assembly of four diverse Arabidopsis thaliana genomes. Proceedings of the National
Academy of Sciences. 108:10249-10254.

Sedlazeck, F. J., H. Lee, C. A. Darby, and M. C. Schatz. 2018. Piercing the dark matter:
bioinformatics of long-range sequencing and mapping. Nature Reviews Genetics. 19:329-
346.

Sharon, I., M. Kertesz, L. A. Hug, D. Pushkarev, T. A. Blauwkamp, C. J. Castelle, M.
Amirebrahimi, B. C. Thomas, D. Burstein, S. G. Tringe, K. H. Williams, and J. F.
Banfield. 2015. Accurate, multi-kb reads resolve complex populations and detect rare
microorganisms. Genome Research. 25:534-543.

Shendure, J., S. Balasubramanian, G. M. Church, W. Gilbert, J. Rogers, J. A. Schloss, and R. H.
Waterston. 2017. DNA sequencing at 40: past, present and future. Nature. 550:345-353.

Shumate, A. and S. L. Salzberg. 2020. Liftoff: accurate mapping of gene annotations.
Bioinformatics.

Silva, G. G., B. E. Dutilh, T. Matthews, K. Elkins, R. Schmieder, E. A. Dinsdale, R. A. Edwards,
M. Imelfort, D. Edwards, M. Boetzer, C. Henkel, H. Jansen, D. Butler, W. Pirovano, R.
Edwards, G. Olsen, S. Maloy, B. Chevreux, T. Pfisterer, B. Drescher, A. Driesel, W.
Müller, T. Wetter, S. Suhai, M. Pop, A. Phillippy, A. Delcher, S. Salzberg, S. Gnerre, E.
Lander, K. Lindblad-Toh, D. Jaffe, Y. Boucher, O. Cordero, A. Takemura, D. Hunt, K.
Schliep, E. Bapteste, P. Lopez, C. Tarr, M. Polz, T. Matthews, R. Edwards, S. Maloy, T.
Matthews, S. Maloy, S. Gao, W.-K. Sung, N. Nagarajan, M. Barton, H. Barton, M.
Galardini, E. Biondi, M. Bazzicalupo, A. Mengoni, S. V. Hijum, A. Zomer, O. Kuipers,
J. Kok, S. Assefa, T. Keane, T. Otto, C. Newbold, M. Berriman, F. Vezzi, F. Cattonaro,
A. Policriti, M. Margulies, M. Egholm, W. Altman, S. Attiya, J. Bader, L. Bemben, J.
Berka, M. Braverman, Y.-J. Chen, Z. Chen, S. Dewell, L. Du, J. Fierro, X. Gomes, B.
Godwin, W. He, S. Helgesen, C. Ho, C. Ho, G. Irzyk, S. Jando, M. Alenquer, T. Jarvie,
K. Jirage, J.-B. Kim, J. Knight, J. Lanza, J. Leamon, S. Lefkowitz, M. Lei, R. Overbeek,
T. Begley, R. Butler, J. Choudhuri, H.-Y. Chuang, M. Cohoon, V. D. Crécy-Lagard, N.
Diaz, T. Disz, R. Edwards, M. Fonstein, E. Frank, S. Gerdes, E. Glass, A. Goesmann, A.
Hanson, D. Iwata-Reuyl, R. Jensen, N. Jamshidi, L. Krause, M. Kubal, N. Larsen, B.
Linke, A. Mchardy, F. Meyer, H. Neuweger, G. Olsen, R. Olson, A. Osterman, V.
Portnoy, K. Mcelroy, F. Luciani, T. Thomas, S. Kurtz, A. Phillippy, A. Delcher, M.
Smoot, M. Shumway, C. Antonescu, S. Salzberg, S. Needleman, C. Wunsch, S. Altschul,
W. Gish, W. Miller, E. Myers, D. Lipman, R. Edwards, J. Haggerty, N. Cassman, J.
Busch, K. Aguinaldo, S. Chinta, M. Vaughn, R. Morey, T. Harkins, C. Teiling, K.
Fredrikson, E. Dinsdale, E. Schadt, S. Turner, A. Kasarskis, S. V. Hijum, A. Zomer, O.
Kuipers, J. Kok, R. Helm, S. Maloy, A. Darling, B. Mau, and N. Perna. 2013. Combining
de novo and reference-guided assembly with scaffold_builder. Source Code for Biology
and Medicine. 8:23.

Simão, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov. 2015.
BUSCO: assessing genome assembly and annotation completeness with single-copy
orthologs. Bioinformatics. 31(19):3210-3212.

www.manaraa.com

 312

Simpson, J. T., R. Durbin, D. R. Zerbino, E. Birney, K. Wong, and S. D. Jackman. 2012.
Efficient de novo assembly of large genomes using compressed data structures sequence
data. Genome Research.549-556.

Simpson, J. T. and M. Pop. 2015. The Theory and Practice of Genome Sequence Assembly.
Annual Review of Genomics and Human Genetics. 16:153-172.

Simpson, J. T., K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones, and I. Birol. 2009. ABySS:
A parallel assembler for short read sequence data. Genome Research. 19(6):1117-1123.

Simpson, J. T., R. E. Workman, P. C. Zuzarte, M. David, L. J. Dursi, and W. Timp. 2017.
Detecting DNA cytosine methylation using nanopore sequencing. Nature Methods.
14(4):407-410.

Song, L. and L. Florea. 2015. Rcorrector: efficient and accurate error correction for Illumina
RNA-seq reads. GigaScience. 4(48)

Song, L., D. S. Shankar, and L. Florea. 2016. Rascaf: Improving Genome Assembly with RNA
Sequencing Data. The Plant Genome. 9(3):1-12.

Staden, R. 1979. A strategy of DNA sequencing employing computer programs. Nucleic Acids
Research. 6:2601-2610.

Staňková, H., A. R. Hastie, S. Chan, J. Vrána, Z. Tulpová, M. Kubaláková, P. Visendi, S.
Hayashi, M. Luo, J. Batley, D. Edwards, J. Doležel, and H. Šimková. 2016. BioNano
genome mapping of individual chromosomes supports physical mapping and sequence
assembly in complex plant genomes. Plant Biotechnology Journal. 14:1523-1531.

Stein, L. D. 2010. The case for cloud computing in genome informatics. Genome Biology.
11(5):207.

Teague, B., M. S. Waterman, S. Goldstein, K. Potamousis, S. Zhou, S. Reslewic, D. Sarkar, A.
Valouev, C. Churas, J. M. Kidd, S. Kohn, R. Runnheim, C. Lamers, D. Forrest, M. A.
Newton, E. E. Eichler, M. Kent-First, U. Surti, M. Livny, and D. C. Schwartz. 2010.
High-resolution human genome structure by single-molecule analysis. Proceedings of the
National Academy of Sciences. 107:10848-10853.

Teh, B. T., K. Lim, C. H. Yong, C. C. Y. Ng, S. R. Rao, V. Rajasegaran, W. K. Lim, C. K. Ong,
K. Chan, V. K. Y. Cheng, P. S. Soh, S. Swarup, S. G. Rozen, N. Nagarajan, and P. Tan.
2017. The draft genome of tropical fruit durian (Durio zibethinus). Nature Genetics.
49:1633-1641.

Terabayashi, Y., A. Juan, H. Tamotsu, N. Ashimine, K. Nakano, M. Shimoji, A. Shiroma, K.
Teruya, K. Satou, and T. Hirano. 2014. First Complete Genome Sequence of Salmonella
enterica subsp. enterica Serovar Typhimurium Strain ATCC 13311 (NCTC 74), a
Reference Strain of Multidrug Resistance, as Achieved by Use of PacBio Single-
Molecule Real-Time Technology. Genome Announcements. 2:e00986-00914-e00986-
00914.

www.manaraa.com

 313

The 1000 Genomes Project Consortium. 2015. A global reference for human genetic variation.
Nature. 526(7571):68-74.

The Chimpanzee Sequencing and Analysis Consortium. 2005. Initial sequence of the
chimpanzee genome and comparison with the human genome. Nature. 437(7055):69-87.

The International Hapmap Consortium. 2010. Integrating common and rare genetic variation in
diverse human populations. Nature. 467(7311):52-58.

The Wellcome Trust Case Control Consortium. 2007. Genome-wide association study of 14,000
cases of seven common diseases and 3,000 shared controls. Nature. 447(7145):661-678.

Thibaud-Nissen, F., A. Souvorov, T. Murphy, M. Dicuccio, and P. Kitts. 2013. Eukaryotic
Genome Annotation Pipeline. Pages 135-158 in The NCBI Handbook, 2 Ed. National
Center for Biotechnology Information, Bethesda, MD.

Tsai, K. J., M.-Y. J. Lu, K.-J. Yang, M. Li, Y. Teng, S. Chen, M. S. B. Ku, and W.-H. Li. 2016.
Assembling the Setaria italica L. Beauv. genome into nine chromosomes and insights into
regions affecting growth and drought tolerance. Scientific Reports. 6:35076.

Urban, J. M., J. Bliss, C. E. Lawrence, and S. A. Gerbi. 2015. Sequencing ultra-long DNA
molecules with the Oxford Nanopore MinION. bioRxiv.1-26.

Van Dijk, E. L., Y. Jaszczyszyn, D. Naquin, and C. Thermes. 2018. The Third Revolution in
Sequencing Technology. Trends in Genetics. 34(9):666-681.

Van Heesch, S., W. P. Kloosterman, N. Lansu, F.-P. Ruzius, E. Levandowsky, C. C. Lee, S.
Zhou, S. Goldstein, D. C. Schwartz, T. T. Harkins, V. Guryev, and E. Cuppen. 2013.
Improving mammalian genome scaffolding using large insert mate-pair next-generation
sequencing. BMC Genomics. 14:257.

Van Oene, M. 2017. Product Obsolescence Notification. Illumina. URL:
https://mkt.illumina.com/rs/600-XEX-927/images/PON0216%20NeoPrep%20Final.pdf
[accessed 2021/04/21].

Vaser, R. and M. Šikić. 2021. Raven: a de novo genome assembler for long reads. bioRxiv.
http://biorxiv.org/content/early/2021/02/22/2020.08.07.242461.abstract.

Vaser, R., I. Sović, N. Nagarajan, and M. Šikić. 2017. Fast and accurate de novo genome
assembly from long uncorrected reads. Genome Research. 27(5):737-746.

Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M.
Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Amanatides, R. M. Ballew, D. H.
Huson, J. R. Wortman, Q. Zhang, C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski, G.
Subramanian, P. D. Thomas, J. Zhang, G. L. Gabor Miklos, C. Nelson, S. Broder, A. G.
Clark, J. Nadeau, V. A. Mckusick, N. Zinder, A. J. Levine, R. J. Roberts, M. Simon, C.
Slayman, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L.
Florea, A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K.

www.manaraa.com

 314

Remington, J. Abu-Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M.
Cargill, I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, V. D. Francesco, P.
Dunn, K. Eilbeck, C. Evangelista, A. E. Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P.
Guan, T. J. Heiman, M. E. Higgins, R.-R. Ji, Z. Ke, K. A. Ketchum, Z. Lai, Y. Lei, Z. Li,
J. Li, Y. Liang, X. Lin, F. Lu, G. V. Merkulov, N. Milshina, H. M. Moore, A. K. Naik, V.
A. Narayan, B. Neelam, D. Nusskern, D. B. Rusch, S. Salzberg, W. Shao, B. Shue, J.
Sun, Z. Y. Wang, A. Wang, X. Wang, J. Wang, M.-H. Wei, R. Wides, C. Xiao, C. Yan,
A. Yao, J. Ye, M. Zhan, W. Zhang, H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong,
S. C. Zhu, S. Zhao, D. Gilbert, S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T.
Woodage, F. Ali, H. An, A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow, K.
Beeson, D. Busam, A. Carver, A. Center, M. L. Cheng, L. Curry, S. Danaher, L.
Davenport, R. Desilets, S. Dietz, K. Dodson, L. Doup, S. Ferriera, N. Garg, A.
Gluecksmann, B. Hart, J. Haynes, C. Haynes, C. Heiner, S. Hladun, D. Hostin, J. Houck,
T. Howland, C. Ibegwam, J. Johnson, F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann,
D. May, S. Mccawley, T. Mcintosh, I. Mcmullen, M. Moy, L. Moy, B. Murphy, K.
Nelson, C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon, R. Rodriguez, Y.-H.
Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter, M. Smallwood, E. Stewart, R. Strong,
E. Suh, R. Thomas, N. N. Tint, S. Tse, C. Vech, G. Wang, J. Wetter, S. Williams, M.
Williams, S. Windsor, E. Winn-Deen, K. Wolfe, J. Zaveri, K. Zaveri, J. F. Abril, R.
Guigó, M. J. Campbell, K. V. Sjolander, B. Karlak, A. Kejariwal, H. Mi, B. Lazareva, T.
Hatton, A. Narechania, K. Diemer, A. Muruganujan, N. Guo, S. Sato, V. Bafna, S. Istrail,
R. Lippert, R. Schwartz, B. Walenz, S. Yooseph, D. Allen, A. Basu, J. Baxendale, L.
Blick, M. Caminha, J. Carnes-Stine, P. Caulk, Y.-H. Chiang, M. Coyne, C. Dahlke, A. D.
Mays, M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fosler, H. Gire, S.
Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham, B. Gropman, M. Harris, J.
Heil, S. Henderson, J. Hoover, D. Jennings, C. Jordan, J. Jordan, J. Kasha, L. Kagan, C.
Kraft, A. Levitsky, M. Lewis, X. Liu, J. Lopez, D. Ma, W. Majoros, J. Mcdaniel, S.
Murphy, M. Newman, T. Nguyen, N. Nguyen, M. Nodell, S. Pan, J. Peck, M. Peterson,
W. Rowe, R. Sanders, J. Scott, M. Simpson, T. Smith, A. Sprague, T. Stockwell, R.
Turner, E. Venter, M. Wang, M. Wen, D. Wu, M. Wu, A. Xia, A. Zandieh, and X. Zhu.
2001. The Sequence of the Human Genome. Science. 291(5507):1304.

Vollger, M. R., G. A. Logsdon, P. A. Audano, A. Sulovari, D. Porubsky, P. Peluso, A. M.
Wenger, G. T. Concepcion, Z. N. Kronenberg, K. M. Munson, C. Baker, A. D. Sanders,
D. C. J. Spierings, P. M. Lansdorp, U. Surti, M. W. Hunkapiller, and E. E. Eichler. 2020.
Improved assembly and variant detection of a haploid human genome using single-
molecule, high-fidelity long reads. Annals of Human Genetics. 84(2):125-140.

Voskoboynik, A., N. F. Neff, D. Sahoo, A. M. Newman, D. Pushkarev, W. Koh, B. Passarelli, H.
C. Fan, G. L. Mantalas, K. J. Palmeri, K. J. Ishizuka, C. Gissi, F. Griggio, R. Ben-
Shlomo, D. M. Corey, L. Penland, R. A. White, I. L. Weissman, and S. R. Quake. 2013.
The genome sequence of the colonial chordate, Botryllus schlosseri. eLife. 2:1-24.

Vurture, G. W., F. J. Sedlazeck, M. Nattestad, C. J. Underwood, H. Fang, J. Gurtowski, and M.
C. Schatz. 2017. GenomeScope: fast reference-free genome profiling from short reads.
Bioinformatics. 33(14):2202-2204.

www.manaraa.com

 315

Walenz, B., A. Rhie, S. Nurk, S. Koren, and A. M. Phillippy. 2020. A genomic k-mer counter
(and sequence utility) with nice features. Github. URL: https://github.com/marbl/meryl
[accessed 7 February 2020].

Walker, B. J., T. Abeel, T. Shea, M. Priest, A. Abouelliel, S. Sakthikumar, C. A. Cuomo, Q.
Zeng, J. Wortman, S. K. Young, and A. M. Earl. 2014. Pilon: An Integrated Tool for
Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS
ONE. 9:e112963.

Wang, O., R. Chin, X. Cheng, M. K. Y. Wu, Q. Mao, J. Tang, Y. Sun, E. Anderson, H. K. Lam,
D. Chen, Y. Zhou, L. Wang, F. Fan, Y. Zou, Y. Xie, R. Y. Zhang, S. Drmanac, D.
Nguyen, C. Xu, C. Villarosa, S. Gablenz, N. Barua, S. Nguyen, W. Tian, J. S. Liu, J.
Wang, X. Liu, X. Qi, A. Chen, H. Wang, Y. Dong, W. Zhang, A. Alexeev, H. Yang, J.
Wang, K. Kristiansen, X. Xu, R. Drmanac, and B. A. Peters. 2019. Efficient and unique
cobarcoding of second-generation sequencing reads from long DNA molecules enabling
cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome
Research. 29(5):798-808.

Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-Seq: a revolutionary tool for transcriptomics.
Nature Reviews Genetics. 10:57-63.

Warren, R. L., C. Yang, B. P. Vandervalk, B. Behsaz, A. Lagman, S. J. Jones, and I. Birol. 2015.
LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads.
GigaScience. 4:35.

Weisenfeld, N. I., V. Kumar, P. Shah, D. M. Church, and D. B. Jaffe. 2017. Direct determination
of diploid genome sequences. Genome Research. 27:757-767.

Wenger, A. M., P. Peluso, W. J. Rowell, P.-C. Chang, R. J. Hall, G. T. Concepcion, J. Ebler, A.
Fungtammasan, A. Kolesnikov, N. D. Olson, A. Töpfer, M. Alonge, M. Mahmoud, Y.
Qian, C.-S. Chin, A. M. Phillippy, M. C. Schatz, G. Myers, M. A. Depristo, J. Ruan, T.
Marschall, F. J. Sedlazeck, J. M. Zook, H. Li, S. Koren, A. Carroll, D. R. Rank, and M.
W. Hunkapiller. 2019. Accurate circular consensus long-read sequencing improves
variant detection and assembly of a human genome. Nature Biotechnology. 37(10):1155-
1162.

Wu, C.-W., T. M. Schramm, S. Zhou, D. C. Schwartz, and A. M. Talaat. 2009. Optical mapping
of the Mycobacterium avium subspecies paratuberculosis genome. BMC Genomics.
10:25.

Xiao, M., A. Phong, C. Ha, T.-F. Chan, D. Cai, L. Leung, E. Wan, A. L. Kistler, J. L. Derisi, P.
R. Selvin, and P.-Y. Kwok. 2007. Rapid DNA mapping by fluorescent single molecule
detection. Nucleic Acids Research. 35:e16-e16.

Xue, W., J.-T. Li, Y.-P. Zhu, G.-Y. Hou, X.-F. Kong, Y.-Y. Kuang, and X.-W. Sun. 2013.
L_RNA_scaffolder: scaffolding genomes with transcripts. BMC Genomics. 14:604.

www.manaraa.com

 316

Yandell, M. and D. Ence. 2012. A beginner's guide to eukaryotic genome annotation. Nature
Reviews Genetics. 13:329-342.

Yang, J., D. Liu, X. Wang, C. Ji, F. Cheng, B. Liu, Z. Hu, S. Chen, D. Pental, Y. Ju, P. Yao, X.
Li, K. Xie, J. Zhang, J. Wang, F. Liu, W. Ma, J. Shopan, H. Zheng, S. A. Mackenzie, and
M. Zhang. 2016. The genome sequence of allopolyploid Brassica juncea and analysis of
differential homoeolog gene expression influencing selection. Nature Genetics. 48:1225-
1232.

Yao, W., G. Li, H. Zhao, G. Wang, X. Lian, and W. Xie. 2015. Exploring the rice dispensable
genome using a metagenome-like assembly strategy. Genome Biology. 16:187.

Yeo, S., L. Coombe, J. Chu, R. L. Warren, and I. Birol. 2017. ARCS: Assembly Roundup by
Chromium Scaffolding. bioRxiv.1-13.

Yuan, Y., P. E. Bayer, J. Batley, and D. Edwards. 2017. Improvements in Genomic
Technologies: Application to Crop Genomics. Trends in Biotechnology. 35:547-558.

Zapata, L., J. Ding, E.-M. Willing, B. Hartwig, D. Bezdan, W.-B. Jiao, V. Patel, G. Velikkakam
James, M. Koornneef, S. Ossowski, and K. Schneeberger. 2016. Chromosome-level
assembly of Arabidopsis thaliana L er reveals the extent of translocation and inversion
polymorphisms. Proceedings of the National Academy of Sciences. 113:E4052-E4060.

Zerbino, D. R. and E. Birney. 2008. Velvet: Algorithms for de novo short read assembly using de
Bruijn graphs. Genome Research. 18(5):821-829.

Zhang, F., L. Christiansen, J. Thomas, D. Pokholok, R. Jackson, N. Morrell, Y. Zhao, M. Wiley,
E. Welch, E. Jaeger, A. Granat, S. J. Norberg, A. Halpern, M. C Rogert, M. Ronaghi, J.
Shendure, N. Gormley, K. L. Gunderson, and F. J. Steemers. 2017. Haplotype phasing of
whole human genomes using bead-based barcode partitioning in a single tube. Nature
Biotechnology. 35(9):852-857.

Zhang, H., C. Jain, and S. Aluru. 2020. A comprehensive evaluation of long read error correction
methods. BMC Genomics. 21(6):889.

Zhang, S. V., L. Zhuo, and M. W. Hahn. 2016. AGOUTI: improving genome assembly and
annotation using transcriptome data. GigaScience. 5:31.

Zhou, S., M. C. Bechner, M. Place, C. P. Churas, L. Pape, S. A. Leong, R. Runnheim, D. K.
Forrest, S. Goldstein, M. Livny, and D. C. Schwartz. 2007. Validation of rice genome
sequence by optical mapping. BMC Genomics. 8:278.

Zhou, S., F. Wei, J. Nguyen, M. Bechner, K. Potamousis, S. Goldstein, L. Pape, M. R. Mehan, C.
Churas, S. Pasternak, D. K. Forrest, R. Wise, D. Ware, R. A. Wing, M. S. Waterman, M.
Livny, and D. C. Schwartz. 2009. A Single Molecule Scaffold for the Maize Genome.
PLoS Genetics. 5:e1000711.

www.manaraa.com

 317

Zhu, B. H., Y. N. Song, W. Xue, G. C. Xu, J. Xiao, M. Y. Sun, X. W. Sun, and J. T. Li. 2016.
PEP-scaffolder: Using (homologous) proteins to scaffold genomes. Bioinformatics.
32:3193-3195.

Zimin, A. V., G. Marcais, D. Puiu, M. Roberts, S. L. Salzberg, and J. A. Yorke. 2013. The
MaSuRCA genome assembler. Bioinformatics. 29:2669-2677.

Zimin, A. V., K. A. Stevens, M. W. Crepeau, D. Puiu, J. L. Wegrzyn, J. A. Yorke, C. H.
Langley, D. B. Neale, and S. L. Salzberg. 2017. An improved assembly of the loblolly
pine mega-genome using long-read single-molecule sequencing. GigaScience. 6:1-4.

www.manaraa.com

 318

APPENDIX 1

Chapter 1 – Supplementary File 1

This is Supplementary File 1 from “Lingering Taxonomic Challenges Hinder

Conservation and Management of Global Bonefishes”. The following is a tree in Newick format,

with bootstrap support values provided when greater than 90. No branch lengths are specified.

For more information, see the main manuscript and Wallace (2014), from which this tree was

taken.

((('Albula pacifica','Albula nemoptera'):92,((('Albula argentea','Albula virgata'):100,'Albula
oligolepis'):99,('Albula koreana',(('Albula gilberti',('Albula sp. cf. vulpes','Albula
esuncula')):92,('Albula goreensis',('Albula vulpes','Albula glossodonta')))))):100,('Anguilla
rostrata','Pterothrissus gissu'):100);

www.manaraa.com

 319

APPENDIX 2

Chapter 2 – Additional File 1

SUPPLEMENTARY BIOINFORMATICS METHODS

An overview of the methods used in this study was provided in the main manuscript.

Where appropriate, additional details, such as the code for custom scripts and the commands

used to run software, are provided here.

S.1 – Tissue Collection and Preservation

Not applicable.

S.2 – Sequencing

Not applicable.

S.3 – Read Error Correction

S.3.1 – Illumina DNA

An estimate of the number of k-mers present in the reads is required to run BFCounter.

This number is really just a simple math problem based on the number of reads, the length of the

reads, and k-mer size according to this equation:

𝑇 = 𝑛(𝑙 − 𝑘 + 1)

Where n is the number of reads, l is the read length, and k is the k-mer size, and T is the

total number of k-mers (not necessarily unique or distinct) present in the reads. Of course, this

www.manaraa.com

 320

assumes a uniform read length. If the reads are paired-end, n is still the number of reads, not the

number of pairs of reads. Since ntCard v1.0.1 (Hamid et al. 2017) was used to quickly get a

picture for the k-mer coverage histogram, its reported value F0 was used instead of the equation

as it is an estimate for T. ntCard was run according to the following command:

ntcard \

 -k 19\

 -t ${THREADS} \

 -p ${OUTPUT_FILE_BASE_NAME} \

 ${INPUT_FASTQ_FILES[@]}

To generate q‑mer counts BFCounter v0.2 (Melsted and Pritchard 2011) was used to count and

dump the q-mers according to the following commands:

BFCounter count\

 -k 19\

-n ${TOTAL_NUMBER_OF_KMERS} \

-s ${RANDOM_SEED} \

-t ${THREADS} \

-o ${COUNTS_FILE_NAME} \

--quake \

--quality-scale=33 \

${INPUT_FASTQ_FILES[@]}

BFCounter dump\

 -k 19\

-i ${COUNTS_FILE_NAME} \

-o ${OUTPUT_FILE_NAME} \

--quake

Quake v0.3.5 (Kelley et al. 2010) was run in two stages where the first identifies a q-mer

cutoff and the second corrects the reads based on that cutoff. The suggested q‑mer cutoff was

2.33, which was subsequently used by the correction phase of Quake. The two steps were

executed according to the following commands:

cov_model.py \

${BFCOUNTER_DUMP_FILE}

www.manaraa.com

 321

correct \

 -k 19 -q 33 \

-m ${QMER_COUNTS_FILE} \

-o ${OUTPUT_FILE_NAME} \

-f ${INPUT_FASTQ_FILES[@]} \

-p ${THREADS} \

-c ${CUTOFF} \

-u --headers --log

Quake was developed quite some time ago, and the installation process was made

difficult as dependencies were updated and function calls were broken. Multiple solutions likely

exist to remedy the problem, but we found success by installing Quake with R v3.4.0

(https://www.r-project.org) with package VGAM v0.7-8 (https://CRAN.R-project.org/package=

VGAM) (Yee and Wild 1996).

S.3.2 – Illumina RNA

Since no corrections were made by Rcorrector v1.0.2 (Song and Florea 2015) and the

command is fairly straightforward, little additional detail is necessary. Recall that BFCounter

was used instead of the built-in Jellyfish to generate the counts. Also note that this process was

run separately for each tissue. The commands used are the following:

www.manaraa.com

 322

BFCounter count\

 -k 19\

-n ${TOTAL_NUMBER_OF_KMERS} \

-s ${RANDOM_SEED} \

-t ${THREADS} \

-o ${COUNTS_FILE_NAME} \

--quality-scale=33 \

${INPUT_FASTQ_FILES[@]}

BFCounter dump\

 -k 19\

-i ${COUNTS_FILE_NAME} \

-o ${DUMP_FILE_NAME} \

rcorrector \

 -k 19 \

-c ${DUMP_FILE_NAME} \

-od ${OUTPUT_DIR_NAME} \

-p ${INPUT_FASTQ_FILES[@]} \

-t ${THREADS}

S.3.3 – PacBio CLRs

First the process to correct the PacBio CLRs will be described. Next, the experiments

with other correction strategies will be briefly described.

S.3.3.1 – Dual Correction Strategy

Typically, a “hybrid” correction strategy is defined as one in which more than one data

type (i.e., PacBio CLRs and Illumina short reads) are employed. This differs from a “self”

correction strategy in which only the PacBio CLRs are used to correct themselves. We employed

a strategy that is “hybrid”, but that is not fully described by the word “hybrid”. We have referred

to this strategy as “dual” correction. First, “self” correction is completed. Second, “hybrid”

correction is done on the already self-corrected reads. The self-corrected reads were generated

using Canu v1.6 (Koren et al. 2017) with the following command:

www.manaraa.com

 323

canu -correct \

 -s ${SETTINGS_FILE} \

-d ${OUTPUT_DIR_NAME} \

-p ${OUTPUT_PREFIX} \

-pacbio-raw \

${INPUT_PACBIO_READS[@]}

The relevant lines of the setting file are included here:

genomeSize=932813000

ovsMethod=sequential

gridEngine=slurm

The self-corrected reads were provided to CoLoRMap downloaded April 2018

(Haghshenas et al. 2016) as the “uncorrected” input reads. Please note that you will need to

combine and interleave all Illumina short reads into a single file. All PacBio reads will also need

to be in a single file, and the headers will need to be unique up to the first space, so some

modification to the headers may be necessary. CoLoRMap is really a pipeline with a very basic

wrapper script. In practice, it makes more sense to run each step in the wrapper script as separate

jobs to avoid re-computing if a failure (e.g., too much RAM or time) occurs in a downstream

step. If nothing else, a simple addition of logical checks can be added to the wrapper script to

ensure subsequent steps aren’t run if the previous step failed. If run without any such

modifications, the commands to run CoLoRMap are the following:

runCorr.sh \

 ${INPUT_SELF_CORRECTED_PACBIO_READS} \

${INPUT_ILLUMINA_READS} \

${OUTPUT_CORRECTED_PACBIO_READS_DIR} \

${OUTPUT_CORRECTED_PACBIO_READS_PREFIX} \

${THREADS}

runOEA.sh \

 ${INPUT_COLORMAP_CORRECTED_READS} \

${INPUT_ILLUMINA_READS} \

${OUTPUT_CORRECTED_PACBIO_READS_DIR} \

${OUTPUT_CORRECTED_PACBIO_READS_PREFIX} \

${THREADS}

www.manaraa.com

 324

Once the correction and overlap error extension assembly phases are completed, the now “dual”

corrected reads are ready for assembly.

S.3.3.2 – Correction Experiments

We explored the effects on assembly continuity of several correction strategies before

settling on the chosen strategy. Ignoring failed strategies due to software failures, three

strategies were employed: (a) “self” correction (only PacBio CLRs, (b) “hybrid” correction

(using only Illumina reads to correct the PacBio CLRs), and (c) “dual” correction (using Illumina

reads to correct already self-corrected PacBio CLRs). These correction strategies are described

visually in the following flow chart:

The table and two plots show the NGx and LGx plots where x is a number between 0 and

100 representing the percentage of the genome size. NGx and LGx statistics are similar to the Nx

and Lx statistics except they are scaled to the genome size instead of the assembly size. In

theory, assemblies improve by maximizing and minimizing the areas under the NG and LG

curves, respectively. Plainly, the “dual” correction strategy is superior in terms of continuity.

www.manaraa.com

 325

S.4 – Genome Size Estimation

ntCard v1.0.1 (Hamid et al. 2017) was used to estimate the k-mer coverage histogram

using the following command:

ntcard \

 -k 19 \

 -t ${THREADS} \

 -p ${OUTPUT_FILE_BASE_NAME} \

 ${INPUT_FASTQ_FILES[@]}

 The equation described in the main manuscript was used to determine the genome size from the

ntCard output, implemented as a simple AWK program. First, the k-mer coverage histogram

must be processed to match the output format of Jellyfish’s histo command (Marcais and

Kingsford 2011).

www.manaraa.com

 326

tail -n +3 ${NTCARD_OUTPUT_FILE} \

 | tr -d "f" \

 > ${HISTO_FILE}

awk -f ${AWK_SCRIPT} ${HISTO_FILE}

Where the AWK program referred to as ${AWK_SCRIPT} is the following:

BEGIN {

 x = 0; # x at max y

 y = 0; # max y

 s = 0; # genome size

}

{

 if ($2 >= y) {

 y = $2;

 x = NR;

 }

 s += $1 * $2

}

END {

 print "peak: " x "," y "; sum: " s "; size: " s / x;

}

S.5 – Genome Assembly, Polishing, and Scaffolding

The individual steps of genome assembly, polishing, and scaffolding will each be

described separately. Calculation of assembly summary statistics will also be described.

S.5.1 – Genome Assembly

The assembly was created with Canu v1.6 (Koren et al. 2017) using the already reads

from the “dual” correction strategy using the following command:

canu -trim-assemble \

 -s ${SETTINGS_FILE} \

 -d ${OUTPUT_DIR_NAME} \

 -p ${OUTPUT_PREFIX} \

 -pacbio-corrected \

 ${INPUT_DUAL_CORRECTED_PACBIO_READS_FILE}

S.5.2 – Polishing

www.manaraa.com

 327

Before polishing the contigs, the corrected Illumina WGS reads required slight

modification of the headers because spaces were not allowed. The exact modifications required

to make sequence headers match RaCon’s expectations may vary, but the following AWK

program worked in our case:

BEGIN {

 FS = " ";

}

{

 if (NR % 4 ==) {

 print $1 "-" substr($2, 1, 1);

 } else {

 print $0;

 }

}

RaCon also required mapping these short reads to the contigs before it would run. The

alignments were performed with BWA v0.7.17-r1998 (Li 2013) and converted from SAM format

to BAM format using SAMtools v1.6 (Li et al. 2009):

bwa index \

 -p ${CONTIGS_INDEX_PREFIX} \

 ${CONTIGS_FASTQ_FILE}

bwa mem \

 -t ${THREADS} \

 -p ${CONTIGS_INDEX_PREFIX} \

 ${ILLUMINA_SHORT_READS_FILE} \

 > ${ALIGNMENT_SAM_FILE}

samtools view \

 -buS ${ALIGNMENT_SAM_FILE} \

 | samtools sort \

 -@ ${THREADS} \

 > ${ALIGNMENT_BAM_FILE}

Polishing with the corrected Illumina WGS reads using RaCon v1.3.1 (Vaser et al. 2017) was

accomplished using the following command:

www.manaraa.com

 328

racon \

 --include-unpolished \

 --threads ${THREADS} \

 ${ILLUMINA_SHORT_READS_FILE} \

 ${ILLUMINA2CONTIGS_ALIGNMENTS_BAM} \

 ${CONTIGS_FILE} \

 > ${POLISHED_CONTIGS_FILE}

This process of alignment and polishing was repeated for a second round with the polished

output contigs from the first round acting as “unpolished” contigs for the second round.

S.5.3 – Scaffolding

The polished contigs were scaffolded in a stepwise fashion using two types of long-range

information: Hi-C and RNA-seq reads.

S.5.3.1 – Hi-C Scaffolding

The Hi-C data alignments were performed following the Arima Genomics (San Diego,

California, USA; https://arimagenomics.com) Mapping Pipeline (https://github.com/

ArimaGenomics/mapping_pipeline), which relied on bwa v0.7.17-r1998 (Li 2013), Picard

v2.19.2 (Broad Institute 2019), and SAMtools v1.6 (Li et al. 2009). As the pipeline is reasonably

well-documented, it will be only summarized here:

1. The assembly (polished contigs) is indexed using SAMtools faidx.

2. The assembly is indexed with bwa index and the Hi-C reads are mapped to the

assembly with bwa mem.

3. The alignments are converted from SAM to BAM format with SAMtools view.

4. The 5’ ends are filtered using SAMtools view and the Arima Genomics Perl

(https://www.perl.org) script filter_five_end.pl.

www.manaraa.com

 329

5. Paired-end reads are combined into a single file with the Arima Genomics Perl script

two_read_bam_combiner.pl and sorted with SAMtools sort. These reads will be

treated as single-end hereafter.

6. Read groups are added to the BAM file using Picard AddOrReplaceReadGroups.

7. Merge technical replicates. This step was skipped because no such replicates existed.

8. Duplicates in the BAM file were marked using Picard MarkDuplicates.

9. Merge biological replicates. This step was skipped because no such replicates existed.

10. The final BAM file was indexed with SAMtools index.

11. Stats were reported with the Arima Genomics Perl script get_stats.pl.

Scaffolding was performed on the polished contigs using the final BAM file from the

Arima Genomics Mapping Pipeline with SALSA downloaded 29 May 2019 (Ghurye et al. 2017;

Ghurye et al. 2019). First, some pre-processing was required with BEDTools v2.28.0 (Quinlan

and Hall 2010) to convert the final BAM file from the mapping pipeline to BED format; this was

then sorted. The BEDTools, sorting, and SALSA commands are listed here (note that the

${RESTRICTION_ENZYME_SEQ} was GATC):

bedtools bamtobed \

 -i ${FINAL_ARIMA_BAM_FILE} \

 > ${HIC_BED_FILE}

sort -k 4 \

 ${HIC_BED_FILE} \

 > ${SORTED_HIC_BED_FILE}

run_pipeline.py \

 -a ${POLISHED_CONTIGS_FILE} \

 -l ${POLISHED_CONTIGS_FAIDX_FILE} \

 -b ${SORTED_HIC_BED_FILE} \

 -e ${RESTRICTION_ENZYME_SEQ} \

 -s ${GENOME_SIZE} \

 -m yes \

 -o ${OUTPUT_SALSA_DIR}

www.manaraa.com

 330

Note that all newly-created gaps from SALSA will all be assigned a length of 500

nucleotides (i.e., 500 Ns in a row). Assuming these are gaps of unknown size, these will ideally

be changed to 100 nucleotides for any submissions to GenBank. If you have multiple sources of

evidence for gaps (e.g., Hi-C and RNA-seq), you will want to keep track of which gaps were

supported by each type of evidence.

S.5.3.2 – RNA-seq Scaffolding

The RNA-seq data were aligned using HiSat v0.1.6-beta (Kim et al. 2015), and the

alignments were converted from SAM to BAM format and sorted using SAMtools v1.6 (Li et al.

2009). First, the assembly (scaffolds from Hi-C) was indexed with HiSat. For each tissue (i.e.,

heart, gill, and liver), HiSat aligned reads to the assembly, SAMtools sorted and compressed the

output alignments, and Rascaf downloaded June 2018 (Song et al. 2016) computed how

scaffolding could be done. The actual scaffolding was done with Rascaf in a single step after all

steps had been completed for each tissue. The process is described in the following script:

hisat-build \

 ${HISAT_IDX_PREFIX} \

 ${HIC_SCAFFOLDS}

for TISSUE in {gill,heart,liver}

do

 RNASEQ_READS_LEFT=${TISSUE}_L.fq.gz

 RNASEQ_READS_RIGHT=${TISSUE}_R.fq.gz

 ALIGNMENT_SAM=${TISSUE}_aln.sam

 hisat \

 -p ${THREADS} \

 --phred33 -q -t \

 -x ${HISAT_IDX_PREFIX} \

 -1 ${RNASEQ_READS_LEFT} \

 -2 ${RNASEQ_READS_RIGHT} \

 -S ${ALIGNMENT_SAM}

www.manaraa.com

 331

 samtools view \

 -buh ${ALIGNMENT_SAM} \

 | samtools sort \

 -@ ${THREADS} \

 -m ${MEMORY}M \

 -O BAM \

 -o ${ALIGNMENT_BAM}

 rascaf \

 -breakN 1 \

 -b ${ALIGNMENT_BAM} \

 -f ${HIC_SCAFFOLDS} \

 -o ${TISSUE}.out

done

rascaf-join \

 -r gill.out \

 -r heart.out \

 -r liver.out \

 -o ${OUTPUT_FILE_PREFIX}

Note that the -breakN 1 option breaks all scaffolds at gaps of any size (1 or more Ns)

while it determines which sequences it can join. Broken gaps are then restored to their original

length and location when additional gaps are added based on the RNA-seq read pairs. If the

RNA-seq evidence disagrees with any pre-existing gaps, it will remove them. Also note that

newly-created gaps from Rascaf will all be assigned a length of 17 nucleotides (i.e., 17 Ns in a

row). For submission to GenBank, these will ideally be changed to 100 nucleotides. If you have

multiple sources of evidence (e.g., Hi-C and RNA-seq), you will want to keep track of which

gaps were supported by each type of evidence.

S.5.4 – Assembly Statistics

Assembly continuity statistics, e.g., N50 and auN (Li 2020), were calculated with caln50

downloaded April 2020 (https://github.com/lh3/calN50) and a custom Python

(https://www.python.org) script. caln50 is run using the following simple command:

www.manaraa.com

 332

caln50 \

 -s 0.01 \

 -L ${GENOME_SIZE} \

 ${CONTIGS_OR_SCAFFOLDS_FILE} \

 > ${STATISTICS_FILE}

The custom Python script is not efficient, but it does calculate Nx, Lx, NGx, and LGx, as

well as a few other interesting points about sequences in a fasta file. This script is too long to

realistically represent when embedded in the text; it is available on GitHub at https://github.com/

pickettbd/basicAsmStatsCalcInPy.

Assembly correctness was assessed using single-copy orthologs with BUSCO v4.0.6

(Simão et al. 2015) and OrthoDB v10 (Kriventseva et al. 2019). The BUSCO config file was the

not modified from the default aside from the locations of OrthoDB v10 and the binary

executables for BUSCO. It was run based on the following command structure:

busco \

 --offline \

 --config ${BUSCO_CONFIG_FILE} \

 --cpu ${THREADS} \

 --in ${CONTIGS_OR_SCAFFOLDS_FASTA} \

 --out_path ${OUTPUT_DIR} \

 --out ${OUTPUT_FILE_PREFIX} \

 --mode genome \

 --lineage actinopterygii \

 --augustus_species zebrafish

S.6 – Transcriptome Assembly

The transcripts were assembled using Trinity v2.6.6 (Grabherr et al. 2011), which

depended on Bowtie v2.3.4.3 (Langmead and Salzberg 2012), Jellyfish v2.2.10 (Marcais and

Kingsford 2011), salmon v0.12 (Patro et al. 2017), and SAMtools v1.6 (Li et al. 2009):

www.manaraa.com

 333

trinity \

 --no_version_check \

 --max_memory ${MEMORY} \

 --CPU ${THREADS} \

 --long_reads ${DUAL_CORRECTED_PACBIO_READS} \

 --seqType fq \

 --left ${RNASEQ_READS_LEFT} \

 --right ${RNASEQ_READS_RIGHT} \

 --SS_lib_type FR \

 --normalize_max_read_cov 50 \

 --normalize_by_read_set \

 --min_contig_length 200 \

 --output ${TRINITY_OUTPUT_DIR}

Assembly correctness was assessed using single-copy orthologs with BUSCO v4.0.6

(Simão et al. 2015) and OrthoDB v10 (Kriventseva et al. 2019). The command and config file

were a match to how BUSCO was run to assess genome assembly correctness, except that the --

mode option was transcriptome instead of genome.

S.7 – Computational Annotation

The MAKER v3.01.02-beta (Holt and Yandell 2011) pipeline was used to annotate the

assembly. With a large enough cluster with MPI support, MAKER runs relatively quickly for

each round. The general process was described in prose in the main manuscript, but it can be

summarized in outline form here:

I. MAKER round #1

II. ab initio gene predictors

a. AUGUSTUS

b. GeneMark-ES

c. SNAP

III. MAKER round #2

IV. ab initio gene predictors

www.manaraa.com

 334

a. AUGUSTUS

b. SNAP

V. MAKER round #3

VI. MAKER post-processing & functional annotation

As each round of MAKER was run in a nearly identical fashion, the process will be

described once, followed by differences between the rounds. Similarly, AUGUSTUS and SNAP

will also be described once.

S.7.1 – MAKER Round #1

The command to run MAKER is straight-forward, though may vary slightly depending

on the implementation of MPI employed by the cluster. The MAKER documentation says to run

MAKER with the mpiexec command, but mpirun was successful for our setup. Running

MAKER from a working directory on an NFS drive will almost certainly result in failure unless

MAKER is directed where to do its work in a non-NFS temporary directory. This required some

extra attention to job cleanup on our cluster, but it was successful when we pointed MAKER to

the local drives on the nodes on which it was run, which were mounted at /tmp. When calling

MAKER from the directory in which the control files exist, the command to start MAKER looks

like this:

mpirun maker \

-cpus ${CPUS} \

-TMP ${MAKER_TMP_DIR}

The truly critical parts are in the MAKER control files. Assuming one has a successfully

installed and configured version of MAKER available, default control files can be generated in

the working directory by running the following command: maker -CTL. No modifications were

made to the maker_evm.ctl file. The maker_bopt.ctl file was left unchanged as well. Note

that use_rapsearch was set to 0 and blast_type was set to ncbi+. The maker_exe.ctl file

www.manaraa.com

 335

was modified as needed only to set correct paths to the executables for MAKER’s dependencies.

The following shows the modified or otherwise relevant lines from the maker_opts.ctl file:

genome

genome=/path/to/scaffolds.fa

organism_type=eukaryotic

#re-annotation

maker_gff=

est_pass=0

protein_pass=0

rm_pass=0

model_pass=0

pred_pass=0

other_pass=0

est/rna-seq

est=/path/to/Trinity/transcripts.fa

est_gff=

protein homology

protein=/path/to/uniprot_sprot.fa

protein_gff=

repeat masking

model_org=all

rmlib=/path/to/RepeatModeler/results/assembly-db-families.fa

repeat_protein=/path/to/maker-install-dir/data/te_proteins.fa

rm_gff=

softmask=1

gene prediction

snaphmm=

gmhmm=

augustus_species=

pred_gff=

model_gff=

run_evm=0

est2genome=1

protein2genome=1

trna=0

maker behavior

max_dna_len=1000000

min_contig=20000

www.manaraa.com

 336

pred_flank=200

pred_stats=0

AED_threshold=1

min_protein=0

alt_splice=0

always_complete=0

map_forward=0

keep_preds=0

split_hit=10000

min_intron=20

single_exon=0

single_length=250

correct_est_fusion=0

Once MAKER has completed, a few MAKER accessory scripts can be run to extract the

results from its datastore located at ${PROJECT_DIR}/maker/rnd1/*.datastore. Additional

modifications (shown), can also be employed to make output names more palatable. For sake of

demonstration, we assume the master datastore index log file is prefixed with scaffolds, and

the output base (-o option for fasta_merge) is agloss-rnd1 (A. glossodonta round 1)):

cd maker/rnd1/scaffolds.maker.output

fasta_merge \

 -o agloss-rnd1 \

 -d scaffolds_ master_datastore_index.log

gff3_merge \

 -n -s \

 -d scaffolds_ master_datastore_index.log \
 > agloss-rnd1_noSeq.gff

cd scaffolds_datastore

rename 's/.all.maker./_/' *.fasta # Perl rename, not Linux util

rename 's/fasta/fa/' *.fasta # Perl rename, not Linux util

awk '{if ($2 == "est2genome") print $0}' \

 agloss-rnd1_noSeq.gff \

 > agloss-rnd1_est2genome.gff

awk '{if ($2 == "protein2genome") print $0}' \

 agloss-rnd1_noSeq.gff \

 > agloss-rnd1_protein2genome.gff

www.manaraa.com

 337

awk '{if ($2 ~ "repeat") print $0}' \

 agloss-rnd1_noSeq.gff \

 > agloss-rnd1_repeats.gff

mv agloss-rnd1*.fa agloss-rnd1*.gff ../..

cd ../../../..

S.7.2 – ab initio Gene Prediction

Three ab initio gene prediction programs were run between MAKER rounds 1 and 2.

AUGUSTUS and SNAP can take gene models as input, and they are thus able to be run with

new models after rounds 1 and 2 of MAKER in preparation for rounds 2 and 3, respectively.

GeneMark-ES does not take gene models as input, and it thus needs to be run only one time.

S.7.2.1 – GeneMark-ES

GeneMark-ES required a software key to be run, which can be obtained or re-obtained

for free for academic use at any time. GeneMark-ES also requires a configuration file to be run;

the default configuration file was used. The following command demonstrates how to run

GeneMark-ES:

gmes_petap.pl \

 --ES \

 --usr_cfg ${COPY_OF_DEFAULT_CONFIG_FILE} \

 --cores ${THREADS} \

 --sequence ${SCAFFOLDS_ASSEMBLY_FILE}

S.7.2.2 – AUGUSTUS

AUGUSTUS training can be handled with BUSCO. Before AUGUSTUS can be trained,

configuration files and data from AUGUSTUS and BUSCO will need to be copied to the

working directory for this part of the analysis, and the relevant environment variables will need

to be reset (which assumes they are properly set in the first place):

www.manaraa.com

 338

cp -r ${AUGUSTUS_CONFIG_PATH} ${PROJECT_DIR}/augustus_config

export AUGUSTUS_CONFIG_PATH=${PROJECT_DIR}/augustus_config

cp ${BUSCO_CONFIG_FILE} ${PROJECT_DIR}/busco_config.ini

export BUSCO_CONFIG_FILE=${PROJECT_DIR}/busco_config.ini

No changes were made to the AUGUSTUS files. The only change made to the BUSCO

configuration file was to set download_path=/path/to/odb10 instead of ./busco_download.

This is assuming OrthoDB v10 has already been downloaded to that location and that the

‑‑offline flag will be used when running BUSCO. Before training AUGUSTUS, candidate gene

regions need to be extracted. This was done with a custom Python script (available at

https://github.com/pickettbd/albula-glossodonta_assembly-paper_misc-scripts) and BEDTools

v2.28.0 (Quinlan and Hall 2010).

python3 generateBedForMrnaExtraction.py \

 maker/rnd1/agloss-rnd1_noSeq.gff \

 scaffolds.fa \

 candidates-rnd1.bed

bedtools getfasta \

 -fi scaffolds.fa \

 -bed candidates-rnd1.bed \

 -fo candidates-rnd1.fa

AUGUSTUS was trained by running BUSCO with the same command described in the

section S.5.4 (i.e., mode=genome, lineage=actinopterygii, augustus_species=zebrafish).

To make the AUGUSTUS training parameters generated after running BUSCO available to the

next round of MAKER, some post-processing is required:

make dir for final results

mkdir augustus_config/species/agloss

move to results location

cd "busco-augustus/agloss-rnd1/

 run_actinopterygii_odb10/augustus_output/

 retraining_parameters/BUSCO_agloss-rnd1"

www.manaraa.com

 339

rename some files and their references to eachother

rename \ # Perl rename, not Linux util

 's/BUSCO_(agloss-rnd1_)/$1/' \

 ./*

sed \ # gnu sed

 -i -r \

 's/BUSCO_(agloss-rnd1_)/\1/' \

 ./agloss-rnd1_parameters.cfg*

do it again, removing the rnd info

rename \ # Perl rename, not Linux util

 's/(agloss)-rnd1)/$1/' \

 ./*

sed \ # gnu sed

 -i -r \

 's/(agloss)-rnd1/\1/' \

 ./*

copy the files to final results location

cp -f ./* ../../../../../../augustus_config/species/agloss/

move back to main project dir

cd –

S.7.2.3 – SNAP

Training with SNAP is much less resource intensive than training AUGUSTUS. Most, if

not all, of the commands can reasonably be run “locally” on a login node or other machine. The

final output file, genome.hmm, is what will be provided to the next round of MAKER. Inspection

of the log files was performed after each step. The process of training SNAP can be described by

the following commands:

mkdir -p snap/rnd1

ln -s \

 ../../maker/rnd1/agloss-rnd1_withSeq.gff \

 snap/rnd1/genome.gff

cd snap/rnd1

maker2zff genome.gff

www.manaraa.com

 340

fathom \

 genome.ann genome.dna \

 -gene-stats \

 > gene-stats.log

fathom \

 genome.ann genome.dna \

 -validate \

 > validate.log

fathom \

 genome.ann genome.dna \

 -categorize 1000 \

 > categorize.log

fathom \

 uni.ann uni.dna \

 -export 1000 -plus \

 > export.log

forge \

 export.ann export.dna \

 > forge.log

hmm-assembler.pl \

 genome params \

 > genome.hmm

S.7.3 – MAKER Round #2

The second round of MAKER was run much the same way as the first, with a few

modifications. First, the second round was run in a separate directory: maker/rnd2. The run_evm

flag was set to enable MAKER to run EVidenceModeler v1.1.1 (Haas et al. 2008). The control

files were copied from the first round and the following changes were made to maker_opts.ctl:

est/rna-seq

est=

est_gff=/path/to/project/maker/rnd1/agloss-rnd1_est2genome.gff

protein homology

protein=

protein_gff=/path/to/project/maker/rnd1/agloss-rnd1_protein2genome.gff

www.manaraa.com

 341

repeat masking

model_org=

rmlib=

repeat_protein=

rm_gff=/path/to/project/maker/rnd1/agloss-rnd1_repeats.gff

gene prediction

snaphmm=/path/to/project/snap/rnd1/genome.hmm

gmhmm=/path/to/project/gmes/output/gmhmm.mod

augustus_species=agloss

run_evm=1

est2genome=0

protein2genome=0

Additionally, the same accessory scripts, renaming, etc. was performed after this second round of

MAKER as with the first round. The only differences being that rnd1 was replaced with rnd2 in

all the commands and names and the awk commands were skipped.

S.7.4 – ab initio Gene Prediction

Since GeneMark-ES does not take gene models as input, only SNAP and AUGUSTUS

could be re-run after MAKER’s second round. Before training them, the models from MAKER

were filtered using gFACs v1.1.1 (Caballero and Wegrzyn 2019).

S.7.4.1 – gFACs Filtering

In an attempt to improve the quality of gene models being used for this final round of

training with AUGUSTUS and SNAP, gFACs was employed to filter out models with single-

exon genes, introns shorter than 20bp, etc. The gFACs command and relevant supporting

commands (e.g., creating working directories) are shown here:

mkdir -p gfacs/rnd2

ln -s \

 ../../maker/rnd2/agloss-rnd2_noSeq.gff \

 gfacs/rnd2/orig_noSeq.gff

www.manaraa.com

 342

ln -s \

 ../../assembly/scaffolds.fa \

 gfacs/rnd2/assembly.fa

awk \

 'BEGIN{x=0;}/^##FASTA/{x=1;}{if(x){print $0;}}' \

 maker/rnd2/agloss-rnd2_withSeq.gff \

 > gfacs/rnd2/orig_onlySeq.gff

cd gfacs/rnd2

gFACs.pl \

 -f "maker_2.31.9_gff" \

 -p ./output/agloss-rnd2_noSeq \

 --statistics-at-every-step \

 --statistics \

 --rem-monoexonics \

 --min-exon-size 20 \

 --min-intron-size 20 \

 --min-CDS-size 74 \

 --fasta assembly.fa \

 --splice-table \

 --nt-content \

 --canonical-only \

 --rem-genes-without-stop-codon \

 --allowed-inframe-stop-codons 0 \

 --create-gff3 \

 --get-fasta-with-introns \

 --get-fasta-without-introns \

 --get-protein-fasta \

 --distributions \

 exon_lengths \

 intron_lengths \

 CDS_lengths \

 gene_lengths \

 exon_position \

 exon_position_data \

 intron_position \

 intron_position_data \

 -O ./output \

 orig_noSeq.gff

www.manaraa.com

 343

ln -s \

 agloss-rnd2_noSeq_out.gff3 \

 output/agloss-rnd2_noSeq.gff

cat \

 output/agloss-rnd2_noSeq.gff orig_onlySeq.gff \

 > output/agloss-rnd2_withSeq.gff

cd ../..

S.7.4.2 – AUGUSTUS

Training AUGUSTUS after the second round of MAKER in preparation for the third

round occurred in the same manner as the first time. The exceptions were that (a) the input GFF3

file came from gFACs instead of directly from MAKER, (b) augustus_species=agloss was

used instead of augustus_species=zebrafish, and (c) the occurrences of rnd1 in the

commands and names were changed to rnd2. The commands are replicated (and appropriately

modified) again here:

python3 generateBedForMrnaExtraction.py \

 gfacs/rnd2/output/agloss-rnd2_noSeq.gff \

 scaffolds.fa \

 candidates-rnd2.bed

bedtools getfasta \

 -fi scaffolds.fa \

 -bed candidates-rnd2.bed \

 -fo candidates-rnd2.fa

AUGUSTUS was trained by running BUSCO with the same command described in the section

S.5.4 (i.e., mode=genome and lineage=actinopterygii) except that

augustus_species=agloss instead of zebrafish. To make the AUGUSTUS training

parameters generated after running BUSCO available to the next round of MAKER, some post-

processing is required:

www.manaraa.com

 344

move to results location

cd "busco-augustus/agloss-rnd2/

 run_actinopterygii_odb10/augustus_output/

 retraining_parameters/BUSCO_agloss-rnd2"

rename some files and their references to each other

rename \ # Perl rename, not Linux util

 's/BUSCO_(agloss-rnd2_)/$1/' \

 ./*

sed \ # gnu sed

 -i -r \

 's/BUSCO_(agloss-rnd2_)/\1/' \

 ./agloss-rnd1_parameters.cfg*

do it again, removing the rnd info

rename \ # Perl rename, not Linux util

 's/(agloss)-rnd2)/$1/' \

 ./*

sed \ # gnu sed

 -i -r \

 's/(agloss)-rnd2/\1/' \

 ./*

copy the files to final results location

cp -f ./* ../../../../../../augustus_config/species/agloss/

move back to main project dir

cd –

S.7.4.3 – SNAP

Training SNAP after the second round of MAKER in preparation for the third round

occurred in the same manner as the first time. The exceptions were that (a) the input GFF3 file

came from gFACs instead of directly from MAKER, (b) the maker2zff command had to be

modified, and (c) the occurrences of rnd1 in the commands and names were changed to rnd2.

The maker2zff script provided by MAKER that was modified is referred to as maker2zff_v2.

The only change required was to use exon instead of CDS on line 142. The commands are

replicated (and appropriately modified) again here:

www.manaraa.com

 345

mkdir -p snap/rnd2

ln -s \

 ../../gfacs/rnd2/output/agloss-rnd2_withSeq.gff \

 snap/rnd2/genome.gff

cd snap/rnd2

maker2zff_v2 -n genome.gff

fathom \

 genome.ann genome.dna \

 -gene-stats \

 > gene-stats.log

fathom \

 genome.ann genome.dna \

 -validate \

 > validate.log

fathom \

 genome.ann genome.dna \

 -categorize 1000 \

 > categorize.log

fathom \

 uni.ann uni.dna \

 -export 1000 -plus \

 > export.log

forge \

 export.ann export.dna \

 > forge.log

hmm-assembler.pl \

 genome params \

 > genome.hmm

S.7.5 – MAKER Round #3

The third round of MAKER was run much the same way as the second, with a few

modifications. First, the third round was run in a separate directory: maker/rnd3. The trna flag

was used to ensure MAKER ran tRNAscan-SE v1.3.1 (Chan and Lowe 2019). The control files

were copied from the second round and the following changes were made to maker_opts.ctl:

www.manaraa.com

 346

gene prediction

snaphmm=/path/to/project/snap/rnd2/genome.hmm

trna=1

Additionally, the same accessory scripts, renaming, etc. was performed after this third round of

MAKER as with the second round. The only difference being rnd2 replaced with rnd3 in all the

commands and names (the awk commands were again skipped).

S.7.6 – MAKER Post-processing and Functional Annotation

The structural annotations created by MAKER required some modest post-processing

before adding functional annotations. MAKER accessory scripts were used to update sequence

names from the long MAKER names to friendlier ones. Other MAKER scripts were used to

update the fasta and/or gff3 files with functional annotations found with the BLAST+ Suite

v2.9.0 (Altschul et al. 1990; Camacho et al. 2009) and InterProScan v5.45-80.0 (Jones et al.

2014; Mitchell et al. 2019).

create and move to a working dir

mkdir -p maker/post

cd maker/post

copy the requisite output files

cp ../rnd3/*.gff ../rnd3/*.fa .

cp ../rnd1/agloss-rnd1_{repeats,{est,protein}2genome}.gff .

remove the rnd info

rename \ # Perl version, not Linux util

 's/-rnd[1-3]//' \

 *.fa *.gff

map new ids to MAKER names

NUM_SEQS=`grep -Ev '^#' agloss_noSeq.gff \

 | cut -d "\t" -f 9 | tr ';' '\n' \

 | cut -d '=' -f 2 | sort -u | wc -l`

www.manaraa.com

 347

maker_map_ids \

 --initial=1 \

 --prefix=Albula-glossodonta \

 --suffix='-?%' \

 --iterate=1 \

 --justify=${#NUM_SEQS} \

 agloss_withSeq.gff \

 > identifiers_map.tsv

rename based on new ids

for FASTA in *.fa

do

 cp -f "${FASTA}" "${FASTA%.fa}_renamed.fa"

 map_fasta_ids identifiers_map.tsv "${FASTA%.fa}_renamed.fa"

done

for GFF in *.gff

do

 cp -f "${GFF}" "${GFF%.gff}_renamed.gff"

 map_gff_ids identifiers_map.tsv "${GFF%.gff}_renamed.gff"

done

prep for functional annotation

cd /path/to/swissprot

makeblastdb \

 -dbtype prot \

 -in uniprot_sprot.fa \

 -input_type fasta \

 -title uniprot_sprot \

 -hash_index \

 -out uniprot_sprot \

 -logfile uniprot_sprot_makeblastdb.log

cd –

do the alignment for func. annot.

blastp \

 -task blastp \

 -query proteins_renamed.fa \

 -db /path/to/swissprot/uniprot_sprot \

 -num_threads ${THREADS} \

 -max_target_seqs 1 \

 -max_hsps 1 \

 -evalue 1e-6 \

 -outfmt 6 \

 -out proteins-x-uniprotSprot_fmt6.tsv

www.manaraa.com

 348

update the fasta and gff files with func. annots.

for FASTA in *_renamed.fa

do

 maker_functional_fasta \

 /path/to/swissprot/unitprot_sprot.fa \

 proteins-x-uniprotSprot_fmt6.tsv \

 ${FASTA} \

 > ${FASTA%.fa}_putative-function.fa

done

for GFF in *_renamed.gff

do

 maker_functional_gff \

 /path/to/swissprot/unitprot_sprot.fa \

 proteins-x-uniprotSprot_fmt6.tsv \

 ${GFF} \

 > ${GFF%.gff}_putative-function.gff

done

run interproscan for more func. annots.

interproscan.sh \

 -m "standalone" \

 -cpu ${THREADS} \

 -T "${TMP}" \

 -appl "pfam" \

 -dp \

 -f "TSV" \

 -goterms \

 -iprlookup \

 -pa \

 -t "p" \

 -i proteins_renamed.fa\

 -o proteins-interproscan.tsv

update the gff files with interproscan results

for GFF in {with,no}Seq_renamed_putative-function.gff

do

 ipr_update_gff \

 ${GFF} \

 proteins-interproscan.tsv \

 > ${GFF%.gff}_domain-added.gff

done

for GFF in {with,no}Seq_renamed.gff

do

 iprscan2gff3 \

 proteins-interproscan.tsv \

 ${GFF} \

 > ${GFF%.gff} _visible-iprscan-domains.gff
done

www.manaraa.com

 349

cd ../..

www.manaraa.com

 350

SUPPLEMENTAL REFERENCES

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic Local
Alignment Search Tool. Journal of Molecular Biology. 215:403-410.

Broad Institute. 2019. Picard Toolkit. Broad Institute, GitHub repository: Broad Institute.

Caballero, M. and J. Wegrzyn. 2019. gFACs: Gene Filtering, Analysis, and Conversion to Unify
Genome Annotations Across Alignment and Gene Prediction Frameworks. Genomics,
Proteomics & Bioinformatics. 17(3):305-310.

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden.
2009. BLAST+: architecture and applications. BMC Bioinformatics. 10:421.

Chan, P. P. and T. M. Lowe. 2019. tRNAscan-SE: Searching for tRNA Genes in Genomic
Sequences. Methods in Molecular Biology. 1962:1-14.

Ghurye, J., M. Pop, S. Koren, D. Bickhart, and C.-S. Chin. 2017. Scaffolding of long read
assemblies using long range contact information. BMC Genomics. 18(1):1-11.

Ghurye, J., A. Rhie, B. P. Walenz, A. Schmitt, S. Selvaraj, M. Pop, A. M. Phillippy, and S.
Koren. 2019. Integrating Hi-C links with assembly graphs for chromosome-scale
assembly. PLoS Computational Biology. 15(8):1–19.

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L.
Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind,
F. Di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev.
2011. Full-length transcriptome assembly from RNA-Seq data without a reference
genome. Nature Biotechnology. 29(7):644-652.

Haas, B. J., S. L. Salzberg, W. Zhu, M. Pertea, J. E. Allen, J. Orvis, O. White, C. R. Buell, and J.
R. Wortman. 2008. Automated eukaryotic gene structure annotation using
EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology.
9(1):R7.

Haghshenas, E., F. Hach, S. C. Sahinalp, and C. Chauve. 2016. CoLoRMap: Correcting Long
Reads by Mapping short reads. Bioinformatics. 32:i545-i551.

Hamid, M., H. Khan, and I. Birol. 2017. ntCard: a streaming algorithm for the cardinality
estimation of genomics data. Bioinformatics. 33(9):1324-1330.

Holt, C. and M. Yandell. 2011. MAKER2: an annotation pipeline and genome-database
management tool for second-generation genome projects. BMC Bioinformatics. 12:491.

Jones, P., D. Binns, H.-Y. Chang, M. Fraser, W. Li, C. Mcanulla, H. Mcwilliam, J. Maslen, A.
Mitchell, G. Nuka, S. Pesseat, A. F. Quinn, A. Sangrador-Vegas, M. Scheremetjew, S.-Y.

www.manaraa.com

 351

Yong, R. Lopez, and S. Hunter. 2014. InterProScan 5: genome-scale protein function
classification. Bioinformatics. 30(9):1236-1240.

Kelley, D. R., M. C. Schatz, and S. L. Salzberg. 2010. Quake: quality-aware detection and
correction of sequencing errors. Genome Biology. 11:R116.

Kim, D., B. Langmead, and S. L. Salzberg. 2015. HISAT: a fast spliced aligner with low
memory requirements. Nature Methods. 12(4):357-360.

Koren, S., B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M. Phillippy. 2017.
Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
separation. Genome research. 27(5):722-736.

Kriventseva, E. V., D. Kuznetsov, F. Tegenfeldt, M. Manni, R. Dias, F. A. Simão, and E. M.
Zdobnov. 2019. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist,
bacterial and viral genomes for evolutionary and functional annotations of orthologs.
Nucleic acids research. 47(D1):D807-D811.

Langmead, B. and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nature
Methods. 9(4):357-359.

Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
arXiv.

Li, H. 2020. auN: a new metric to measure assembly contiguity. Heng Li’s Blog.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R.
Durbin, and G. P. D. P. Subgroup. 2009. The Sequence Alignment/Map format and
SAMtools. Bioinformatics. 25(16):2078-2079.

Marcais, G. and C. Kingsford. 2011. A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics. 27(6):764-770.

Melsted, P. and J. K. Pritchard. 2011. Efficient counting of k-mers in DNA sequences using a
bloom filter. BMC Bioinformatics. 12(333)

Mitchell, A. L., T. K. Attwood, P. C. Babbitt, M. Blum, P. Bork, A. Bridge, S. D. Brown, H.-Y.
Chang, S. El-Gebali, M. I. Fraser, J. Gough, D. R. Haft, H. Huang, I. Letunic, R. Lopez,
A. Luciani, F. Madeira, A. Marchler-Bauer, H. Mi, D. A. Natale, M. Necci, G. Nuka, C.
Orengo, A. P. Pandurangan, T. Paysan-Lafosse, S. Pesseat, S. C. Potter, M. A. Qureshi,
N. D. Rawlings, N. Redaschi, L. J. Richardson, C. Rivoire, G. A. Salazar, A. Sangrador-
Vegas, C. J. A. Sigrist, I. Sillitoe, G. G. Sutton, N. Thanki, P. D. Thomas, S. C. E.
Tosatto, S.-Y. Yong, and R. D. Finn. 2019. InterPro in 2019: improving coverage,
classification and access to protein sequence annotations. Nucleic acids research.
47(D1):D351-D360.

Patro, R., G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford. 2017. Salmon provides fast
and bias-aware quantification of transcript expression. Nature Methods. 14(4):417-419.

www.manaraa.com

 352

Quinlan, A. R. and I. M. Hall. 2010. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 26(6):841-842.

R Core Team. 2017. R: A language and environment for statistical computing. Vienna, Austria:
R Foundation for Statistical Computing.

Simão, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov. 2015.
BUSCO: assessing genome assembly and annotation completeness with single-copy
orthologs. Bioinformatics. 31(19):3210-3212.

Song, L. and L. Florea. 2015. Rcorrector: efficient and accurate error correction for Illumina
RNA-seq reads. GigaScience. 4(48)

Song, L., D. S. Shankar, and L. Florea. 2016. Rascaf: Improving Genome Assembly with RNA
Sequencing Data. The Plant Genome. 9(3):1-12.

Vaser, R., I. Sović, N. Nagarajan, and M. Šikić. 2017. Fast and accurate de novo genome
assembly from long uncorrected reads. Genome research. 27(5):737-746.

Yee, T. W. and C. J. Wild. 1996. Vector Generalized Additive Models. Journal of Royal
Statistical Society, Series B. 58(3):481-493.

www.manaraa.com

 353

APPENDIX 3

Chapter 2 – Additional File 2

SUPPLEMENTAL TABLES

— for —

Genome Assembly of the Roundjaw Bonefish (Albula glossodonta), a Vulnerable

Circumtropical Sportfish

www.manaraa.com

 354

Table S1. Sampling sites for A. glossodonta for population genomic analyses. The number of individuals (N)
after data filtering are displayed for each atoll and island group.

Island Group Atoll N (Atoll) N (Island group)
Amirantes St Joseph 17 17
Farquhar Farquhar 8 17

 Providence 9
Aldabra Aldabra 8 14

 Cosmoledo 6
Mauritius St. Brandon 18 18

Table S2. BUSCO statistics for the RNA transcripts and genomic assemblies

 Complete
(%)

Complete
Single-Copy

(%)

Complete
Duplicated

(%)
Fragmented

(%)
Missing

(%) Total
Transcriptome

Trinity
Transcripts

3,144
(86.4)

1,241
(34.1)

1,903
(52.3)

128
(3.5)

368
(10.1) 3,640

Genome

Canu
Contigs

3,485
(95.7)

3,081
(84.6)

404
(11.1)

22
(0.6)

133
(3.7) 3,640

RaCon
Polished
Contigs

3,484
(95.7)

3,076
(84.5)

408
(11.2)

22
(0.6)

134
(3.7) 3,640

SALSA
Scaffolds

3,480
(95.6)

3,074
(84.5)

406
(11.2)

27
(0.7)

133
(3.7) 3,640

SALSA
+ Rascaf
Scaffolds

3,481
(95.6)

3,076
(84.5)

405
(11.1)

25
(0.7)

134
(3.7) 3,640

www.manaraa.com

 355

Table S3. Input parameters for ipyrad used to assemble ddRAD data to the A. glossodonta reference genome
Parameter Description Input
assembly_method Assembly method reference
datatype Datatype ddrad
restriction_overhang Restriction overhang (cut1,) or (cut1, cut2) TGCAG, CCG
max_low_qual_bases Max low quality base calls (Q<20) in a read 5
phred_Qscore_offset phred Q score offset 33
mindepth_statistical Min depth for statistical base calling 6
mindepth_majrule Min depth for majority-rule base calling 6
maxdepth Max cluster depth within samples 10000
clust_threshold Clustering threshold for de novo assembly 0.9
max_barcode_mismatch Max number of allowable mismatches in barcodes 0
filter_adapters Filter for adapters/primers 2
filter_min_trim_len Min length of reads after adapter trim 35
max_alleles_consens Max alleles per site in consensus sequences 2
max_Ns_consens Max N's (uncalled bases) in consensus 0.05
max_Hs_consens Max Hs (heterozygotes) in consensus 0.05
min_samples_locus Min # samples per locus for output 10
max_SNPs_locus Max # SNPs per locus 0.2
max_Indels_locus Max # of indels per locus 8
max_shared_Hs_locus Max # heterozygous sites per locus 0.5
trim_reads Trim raw read edges (R1>, <R1, R2>, <R2) 0, 0, 0, 0
trim_loci Trim locus edges (R1>, <R1, R2>, <R2) 0, 0, 0, 0

www.manaraa.com

 356

Table S4. Data filtering steps implemented in VCFtools and PLINK after assembly in ipyrad
SNP Quality Filters

Genotype Calls Remove individuals missing > 98% genotype calls
Indels Remove indels

Read Depth Remove loci with mean depth > 100

Singletons and minor alleles Retain sites with a minor allele frequency > 0.05 and
minor allele count ≥ 2

Biallelic SNPs Max alleles = 2
Missing Data
 Remove loci with genotype call rate < 40%
 Remove individuals missing > 60% genotype calls
 Remove loci with genotype call rate < 60%
 Remove individuals missing > 50% genotype calls
 Remove loci with genotype call rate < 75%
Hardy-Weinberg Equilibrium Remove loci out of HWE (0.05)
Linkage Disequilibrium Remove loci within 1kb windows with r2 > 0.6

Table S5. Observed heterozygosity (HO) and expected heterozygosity (HS) for each island group
Island Group HO HS
Amirantes 0.2800 0.2915
Farquhar 0.2901 0.2946
Aldabra 0.2589 0.2862
Mauritius 0.2829 0.2923

www.manaraa.com

 357

APPENDIX 4

Chapter 3 – Supplementary File 1

SUPPLEMENTARY BIOINFORMATICS METHODS

An overview of the methods used in this study was provided in the main manuscript.

Where appropriate, additional details, such as the code for custom scripts and the commands

used to run software, are provided here.

Read Error Correction

The self-corrected reads were generated using Canu v1.6 (Koren et al. 2017) with the

following command:

canu -correct \

 -s ${SETTINGS_FILE} \

-d ${OUTPUT_DIR_NAME} \

-p ${OUTPUT_PREFIX} \

-pacbio-raw \

${INPUT_PACBIO_READS[@]}

The relevant lines of the setting file are included here:

genomeSize=782400000

ovsMethod=sequential

gridEngine=slurm

Genome Assembly and Scaffolding

The individual steps of genome assembly and scaffolding will each be described

separately. Calculation of assembly summary statistics will also be described.

Genome Assembly

www.manaraa.com

 358

The assembly was created with Canu v1.6 (Koren et al. 2017) using the already corrected

reads from the “self” correction strategy using the following command:

canu -trim-assemble \

 -s ${SETTINGS_FILE} \

-d ${OUTPUT_DIR_NAME} \

-p ${OUTPUT_PREFIX} \

-pacbio-corrected \

${INPUT_SELF_CORRECTED_PACBIO_READS_FILE}

Scaffolding

The RNA-seq data were aligned using HiSat v0.1.6-beta (Kim et al. 2015), and the

alignments were converted from SAM to BAM format and sorted using SAMtools v1.6 (Li et al.

2009). First, the assembly (contigs from Canu) was indexed with HiSat. For each tissue (i.e.,

brain, eye, fin, gill, heart, kidney, liver, and muscle), HiSat aligned reads to the assembly,

SAMtools sorted and compressed the output alignments, and Rascaf downloaded June 2018

(Song et al. 2016) computed how scaffolding could be done. The actual scaffolding was done

with Rascaf in a single step after all steps had been completed for each tissue. The process is

described in the following script:

hisat-build \

${HISAT_IDX_PREFIX} \

${HIC_SCAFFOLDS}

for TISSUE in {brain,eye,fin,gill,heart,kidney,liver,muscle}

do

RNASEQ_READS_LEFT=${TISSUE}_L.fq.gz

RNASEQ_READS_RIGHT=${TISSUE}_R.fq.gz

ALIGNMENT_SAM=${TISSUE}_aln.sam

hisat \

-p ${THREADS} \

--phred33 -q -t \

-x ${HISAT_IDX_PREFIX} \

-1 ${RNASEQ_READS_LEFT} \

-2 ${RNASEQ_READS_RIGHT} \

-S ${ALIGNMENT_SAM}

www.manaraa.com

 359

samtools view \

-buh ${ALIGNMENT_SAM} \

| samtools sort \

-@ ${THREADS} \

-m ${MEMORY}M \

-O BAM \

-o ${ALIGNMENT_BAM}

rascaf \

-breakN 1 \

-b ${ALIGNMENT_BAM} \

-f ${HIC_SCAFFOLDS} \

-o ${TISSUE}.out

done

rascaf-join \

-r gill.out \

-r heart.out \

-r liver.out \

-o ${OUTPUT_FILE_PREFIX}

Assembly Statistics

Assembly continuity statistics, e.g., N50 and auN (Li 2020), were calculated with caln50

downloaded April 2020 (https://github.com/lh3/calN50) and a custom Python

(https://www.python.org) script. caln50 is run using the following simple command:

caln50 \

-s 0.01 \

-L ${GENOME_SIZE} \

${CONTIGS_OR_SCAFFOLDS_FILE} \

> ${STATISTICS_FILE}

The custom Python script is not efficient, but it does calculate Nx, Lx, NGx, and LGx, as well as

a few other interesting points about sequences in a fasta file. This script is too long to

realistically represent when embedded in the text; it is available on GitHub at

https://github.com/pickettbd/basicAsmStatsCalcInPy.

Assembly correctness was assessed using single-copy orthologs with BUSCO v4.0.6

(Simão et al. 2015) and OrthoDB v10 (Kriventseva et al. 2019). The BUSCO config file was the

www.manaraa.com

 360

not modified from the default aside from the locations of OrthoDB v10 and the binary

executables for BUSCO. It was run based on the following command structure:

busco \

--offline \

--config ${BUSCO_CONFIG_FILE} \

--cpu ${THREADS} \

--in ${CONTIGS_OR_SCAFFOLDS_FASTA} \

--out_path ${OUTPUT_DIR} \

--out ${OUTPUT_FILE_PREFIX} \

--mode genome \

--lineage actinopterygii \

--augustus_species zebrafish

Transcriptome Assembly

The transcripts were assembled using Trinity v2.6.6 (Grabherr et al. 2011), which

depended on Bowtie v2.3.4.3 (Langmead and Salzberg 2012), Jellyfish v2.2.10 (Marcais and

Kingsford 2011), salmon v0.12 (Patro et al. 2017), and SAMtools v1.6 (Li et al. 2009):

trinity \

--no_version_check \

--max_memory ${MEMORY} \

--CPU ${THREADS} \

--long_reads ${DUAL_CORRECTED_PACBIO_READS} \

--seqType fq \

--left ${RNASEQ_READS_LEFT} \

--right ${RNASEQ_READS_RIGHT} \

--SS_lib_type FR \

--normalize_max_read_cov 50 \

--normalize_by_read_set \

--min_contig_length 200 \

--output ${TRINITY_OUTPUT_DIR}

Assembly correctness was assessed using single-copy orthologs with BUSCO v4.0.6 (Simão et

al. 2015) and OrthoDB v10 (Kriventseva et al. 2019). The command and config file were a

match to how BUSCO was run to assess genome assembly correctness, except that the --mode

option was transcriptome instead of genome.

Computational Annotation

www.manaraa.com

 361

The MAKER v3.01.02-beta (Holt and Yandell 2011) pipeline was used to annotate the

assembly. With a large enough cluster with MPI support, MAKER runs relatively quickly for

each round. The general process was described in prose in the main manuscript, but it can be

summarized in outline form here:

I. MAKER round #1

II. ab initio gene predictors

a. AUGUSTUS

b. GeneMark-ES

c. SNAP

III. MAKER round #2

IV. ab initio gene predictors

d. AUGUSTUS

e. SNAP

V. MAKER round #3

VI. MAKER post-processing & functional annotation

As each round of MAKER was run in a nearly identical fashion, the process will be described

once, followed by differences between the rounds. Similarly, AUGUSTUS and SNAP will also

be described once.

MAKER Round #1

The command to run MAKER is straight-forward, though may vary slightly depending

on the implementation of MPI employed by the cluster. The MAKER documentation says to run

MAKER with the mpiexec command, but mpirun was successful for our setup. Running

MAKER from a working directory on an NFS drive will almost certainly result in failure unless

MAKER is directed where to do its work in a non-NFS temporary directory. This required some

www.manaraa.com

 362

extra attention to job cleanup on our cluster, but it was successful when we pointed MAKER to

the local drives on the nodes on which it was run, which were mounted at /tmp. When calling

MAKER from the directory in which the control files exist, the command to start MAKER looks

like this:

mpirun maker \

-cpus ${CPUS} \

-TMP ${MAKER_TMP_DIR}

The truly critical parts are in the MAKER control files. Assuming one has a successfully

installed and configured version of MAKER available, default control files can be generated in

the working directory by running the following command: maker -CTL. No modifications were

made to the maker_evm.ctl file. The maker_bopt.ctl file was left unchanged as well. Note

that use_rapsearch was set to 0 and blast_type was set to ncbi+. The maker_exe.ctl file

was modified as needed only to set correct paths to the executables for MAKER’s dependencies.

The following shows the modified or otherwise relevant lines from the maker_opts.ctl file:

genome

genome=/path/to/scaffolds.fa

organism_type=eukaryotic

#re-annotation

maker_gff=

est_pass=0

protein_pass=0

rm_pass=0

model_pass=0

pred_pass=0

other_pass=0

est/rna-seq

est=/path/to/Trinity/transcripts.fa

est_gff=

protein homology

protein=/path/to/uniprot_sprot.fa

protein_gff=

www.manaraa.com

 363

repeat masking

model_org=all

rmlib=/path/to/RepeatModeler/results/assembly-db-families.fa

repeat_protein=/path/to/maker-install-dir/data/te_proteins.fa

rm_gff=

softmask=1

gene prediction

snaphmm=

gmhmm=

augustus_species=

pred_gff=

model_gff=

run_evm=0

est2genome=1

protein2genome=1

trna=0

maker behavior

max_dna_len=1000000

min_contig=20000

pred_flank=200

pred_stats=0

AED_threshold=1

min_protein=0

alt_splice=0

always_complete=0

map_forward=0

keep_preds=0

split_hit=10000

min_intron=20

single_exon=0

single_length=250

correct_est_fusion=0

Once MAKER has completed, a few MAKER accessory scripts can be run to extract the

results from its datastore located at ${PROJECT_DIR}/maker/rnd1/*.datastore. Additional

modifications (shown) can also be employed to make output names more palatable. For sake of

demonstration, we assume the master datastore index log file is prefixed with scaffolds, and

the output base (-o option for fasta_merge) is cmel-rnd1 (C. melampygus round 1)):

cd maker/rnd1/scaffolds.maker.output

www.manaraa.com

 364

fasta_merge \

-o cmel-rnd1 \

-d scaffolds_ master_datastore_index.log

gff3_merge \

-n -s \

-d scaffolds_ master_datastore_index.log \
> cmel-rnd1_noSeq.gff

cd scaffolds_datastore

rename 's/.all.maker./_/' *.fasta # Perl rename, not Linux util

rename 's/fasta/fa/' *.fasta # Perl rename, not Linux util

awk '{if ($2 == "est2genome") print $0}' \

cmel-rnd1_noSeq.gff \

> cmel-rnd1_est2genome.gff

awk '{if ($2 == "protein2genome") print $0}' \

cmel-rnd1_noSeq.gff \

> cmel-rnd1_protein2genome.gff

awk '{if ($2 ~ "repeat") print $0}' \

cmel-rnd1_noSeq.gff \

> cmel-rnd1_repeats.gff

mv cmel-rnd1*.fa cmel-rnd1*.gff ../..

cd ../../../..

ab initio Gene Prediction

Three ab initio gene prediction programs were run between MAKER rounds 1 and 2.

AUGUSTUS and SNAP can take gene models as input, and they are thus able to be run with

new models after rounds 1 and 2 of MAKER in preparation for rounds 2 and 3, respectively.

GeneMark-ES does not take gene models as input, and it thus needs to be run only one time.

GeneMark-ES

GeneMark-ES required a software key to be run, which can be obtained or re-obtained

for free for academic use at any time. GeneMark-ES also requires a configuration file to be run;

www.manaraa.com

 365

the default configuration file was used. The following command demonstrates how to run

GeneMark-ES:

gmes_petap.pl \

--ES \

--usr_cfg ${COPY_OF_DEFAULT_CONFIG_FILE} \

--cores ${THREADS} \

--sequence ${SCAFFOLDS_ASSEMBLY_FILE}

AUGUSTUS

AUGUSTUS training can be handled with BUSCO. Before AUGUSTUS can be trained,

configuration files and data from AUGUSTUS and BUSCO will need to be copied to the

working directory for this part of the analysis, and the relevant environment variables will need

to be reset (which assumes they are properly set in the first place):

cp -r ${AUGUSTUS_CONFIG_PATH} ${PROJECT_DIR}/augustus_config

export AUGUSTUS_CONFIG_PATH=${PROJECT_DIR}/augustus_config

cp ${BUSCO_CONFIG_FILE} ${PROJECT_DIR}/busco_config.ini

export BUSCO_CONFIG_FILE=${PROJECT_DIR}/busco_config.ini

No changes were made to the AUGUSTUS files. The only change made to the BUSCO

configuration file was to set download_path=/path/to/odb10 instead of ./busco_download.

This is assuming OrthoDB v10 has already been downloaded to that location and that the

‑‑offline flag will be used when running BUSCO. Before training AUGUSTUS, candidate gene

regions need to be extracted. This was done with a custom Python script (available at

https://github.com/pickettbd/caranx-melampygus_assembly-paper_misc-scripts) and BEDTools

v2.28.0 (Quinlan and Hall 2010).

www.manaraa.com

 366

python3 generateBedForMrnaExtraction.py \

maker/rnd1/cmel-rnd1_noSeq.gff \

scaffolds.fa \

candidates-rnd1.bed

bedtools getfasta \

-fi scaffolds.fa \

-bed candidates-rnd1.bed \

-fo candidates-rnd1.fa

AUGUSTUS was trained by running BUSCO with the same command described in the

Assembly Statistics section (i.e., mode=genome, lineage=actinopterygii,

augustus_species=zebrafish). To make the AUGUSTUS training parameters generated after

running BUSCO available to the next round of MAKER, some post-processing is required:

make dir for final results

mkdir augustus_config/species/cmel

move to results location

cd "busco-augustus/cmel-rnd1/

run_actinopterygii_odb10/augustus_output/

retraining_parameters/BUSCO_cmel-rnd1"

rename some files and their references to eachother

rename \ # Perl rename, not Linux util

's/BUSCO_(cmel-rnd1_)/$1/' \

./*

sed \ # gnu sed

-i -r \

's/BUSCO_(cmel-rnd1_)/\1/' \

./cmel-rnd1_parameters.cfg*

do it again, removing the rnd info

rename \ # Perl rename, not Linux util

's/(cmel)-rnd1)/$1/' \

./*

sed \ # gnu sed

-i -r \

's/(cmel)-rnd1/\1/' \

./*

copy the files to final results location

cp -f ./* ../../../../../../augustus_config/species/cmel/

www.manaraa.com

 367

move back to main project dir

cd –

SNAP    

Training with SNAP is much less resource intensive than training AUGUSTUS. Most, if

not all, of the commands can reasonably be run “locally” on a login node or other machine. The

final output file, genome.hmm, is what will be provided to the next round of MAKER. Inspection

of the log files was performed after each step. The process of training SNAP can be described by

the following commands:

mkdir -p snap/rnd1

ln -s \

../../maker/rnd1/cmel-rnd1_withSeq.gff \

snap/rnd1/genome.gff

cd snap/rnd1

maker2zff genome.gff

fathom \

genome.ann genome.dna \

-gene-stats \

> gene-stats.log

fathom \

genome.ann genome.dna \

-validate \

> validate.log

fathom \

genome.ann genome.dna \

-categorize 1000 \

> categorize.log

fathom \

uni.ann uni.dna \

-export 1000 -plus \

> export.log

forge \

export.ann export.dna \

> forge.log

www.manaraa.com

 368

hmm-assembler.pl \

genome params \

> genome.hmm

MAKER Round #2

The second round of MAKER was run much the same way as the first, with a few

modifications. First, the second round was run in a separate directory: maker/rnd2. The run_evm

flag was set to enable MAKER to run EVidenceModeler v1.1.1 (Haas et al. 2008). The control

files were copied from the first round and the following changes were made to maker_opts.ctl:

est/rna-seq

est=

est_gff=/path/to/project/maker/rnd1/cmel-rnd1_est2genome.gff

protein homology

protein=

protein_gff=/path/to/project/maker/rnd1/cmel-rnd1_protein2genome.gff

repeat masking

model_org=

rmlib=

repeat_protein=

rm_gff=/path/to/project/maker/rnd1/cmel-rnd1_repeats.gff

gene prediction

snaphmm=/path/to/project/snap/rnd1/genome.hmm

gmhmm=/path/to/project/gmes/output/gmhmm.mod

augustus_species=cmel

run_evm=1

est2genome=0

protein2genome=0

Additionally, the same accessory scripts, renaming, etc. was performed after this second round of

MAKER as with the first round. The only differences being that rnd1 was replaced with rnd2 in

all the commands and names and the awk commands were skipped.

ab initio Gene Prediction

www.manaraa.com

 369

Since GeneMark-ES does not take gene models as input, only SNAP and AUGUSTUS

could be re-run after MAKER’s second round. Before training them, the models from MAKER

were filtered using gFACs v1.1.1 (Caballero and Wegrzyn 2019).

gFACs Filtering

In an attempt to improve the quality of gene models being used for this final round of

training with AUGUSTUS and SNAP, gFACs was employed to filter out models with single-

exon genes, introns shorter than 20bp, etc. The gFACs command and relevant supporting

commands (e.g., creating working directories) are shown here:

mkdir -p gfacs/rnd2

ln -s \

../../maker/rnd2/cmel-rnd2_noSeq.gff \

gfacs/rnd2/orig_noSeq.gff

ln -s \

../../assembly/scaffolds.fa \

gfacs/rnd2/assembly.fa

awk \

'BEGIN{x=0;}/^##FASTA/{x=1;}{if(x){print $0;}}' \

maker/rnd2/cmel-rnd2_withSeq.gff \

> gfacs/rnd2/orig_onlySeq.gff

cd gfacs/rnd2

gFACs.pl \

-f "maker_2.31.9_gff" \

-p ./output/cmel-rnd2_noSeq \

--statistics-at-every-step \

--statistics \

--rem-monoexonics \

--min-exon-size 20 \

--min-intron-size 20 \

--min-CDS-size 74 \

--fasta assembly.fa \

--splice-table \

--nt-content \

--canonical-only \

--rem-genes-without-stop-codon \

--allowed-inframe-stop-codons 0 \

www.manaraa.com

 370

--create-gff3 \

--get-fasta-with-introns \

--get-fasta-without-introns \

--get-protein-fasta \

--distributions \

exon_lengths \

intron_lengths \

CDS_lengths \

gene_lengths \

exon_position \

exon_position_data \

intron_position \

intron_position_data \

-O ./output \

orig_noSeq.gff

ln -s \

cmel-rnd2_noSeq_out.gff3 \

output/cmel-rnd2_noSeq.gff

cat \

output/cmel-rnd2_noSeq.gff orig_onlySeq.gff \

> output/cmel-rnd2_withSeq.gff

cd ../..

AUGUSTUS

Training AUGUSTUS after the second round of MAKER in preparation for the third

round occurred in the same manner as the first time. The exceptions were that (a) the input GFF3

file came from gFACs instead of directly from MAKER, (b) augustus_species=cmel was used

instead of augustus_species=zebrafish, and (c) the occurrences of rnd1 in the commands

and names were changed to rnd2. The commands are replicated (and appropriately modified)

again here:

python3 generateBedForMrnaExtraction.py \

gfacs/rnd2/output/cmel-rnd2_noSeq.gff \

scaffolds.fa \

candidates-rnd2.bed

www.manaraa.com

 371

bedtools getfasta \

-fi scaffolds.fa \

-bed candidates-rnd2.bed \

-fo candidates-rnd2.fa

AUGUSTUS was trained by running BUSCO with the same command described in the

Assembly Statistics section (i.e., mode=genome and lineage=actinopterygii) except that

augustus_species=cmel instead of zebrafish. To make the AUGUSTUS training parameters

generated after running BUSCO available to the next round of MAKER, some post-processing is

required:

move to results location

cd "busco-augustus/cmel-rnd2/

run_actinopterygii_odb10/augustus_output/

retraining_parameters/BUSCO_cmel-rnd2"

rename some files and their references to each other

rename \ # Perl rename, not Linux util

's/BUSCO_(cmel-rnd2_)/$1/' \

./*

sed \ # gnu sed

-i -r \

's/BUSCO_(cmel-rnd2_)/\1/' \

./cmel-rnd1_parameters.cfg*

do it again, removing the rnd info

rename \ # Perl rename, not Linux util

's/(cmel)-rnd2)/$1/' \

./*

sed \ # gnu sed

-i -r \

's/(cmel)-rnd2/\1/' \

./*

copy the files to final results location

cp -f ./* ../../../../../../augustus_config/species/cmel/

move back to main project dir

cd –

SNAP    

www.manaraa.com

 372

Training SNAP after the second round of MAKER in preparation for the third round

occurred in the same manner as the first time. The exceptions were that (a) the input GFF3 file

came from gFACs instead of directly from MAKER, (b) the maker2zff command had to be

modified, and (c) the occurrences of rnd1 in the commands and names were changed to rnd2.

The maker2zff script provided by MAKER that was modified is referred to as maker2zff_v2.

The only change required was to use exon instead of CDS on line 142. The commands are

replicated (and appropriately modified) again here:

mkdir -p snap/rnd2

ln -s \

../../gfacs/rnd2/output/cmel-rnd2_withSeq.gff \

snap/rnd2/genome.gff

cd snap/rnd2

maker2zff_v2 -n genome.gff

fathom \

genome.ann genome.dna \

-gene-stats \

> gene-stats.log

fathom \

genome.ann genome.dna \

-validate \

> validate.log

fathom \

genome.ann genome.dna \

-categorize 1000 \

> categorize.log

fathom \

uni.ann uni.dna \

-export 1000 -plus \

> export.log

forge \

export.ann export.dna \

> forge.log

www.manaraa.com

 373

hmm-assembler.pl \

genome params \

> genome.hmm

MAKER Round #3

The third round of MAKER was run much the same way as the second, with a few

modifications. First, the third round was run in a separate directory: maker/rnd3. The trna flag

was used to ensure MAKER ran tRNAscan-SE v1.3.1 (Chan and Lowe 2019). The control files

were copied from the second round and the following changes were made to maker_opts.ctl:

gene prediction

snaphmm=/path/to/project/snap/rnd2/genome.hmm

trna=1

Additionally, the same accessory scripts, renaming, etc. was performed after this third round of

MAKER as with the second round. The only difference being rnd2 replaced with rnd3 in all the

commands and names (the awk commands were again skipped).

MAKER Post-processing and Functional Annotation

The structural annotations created by MAKER required some modest post-processing

before adding functional annotations. MAKER accessory scripts were used to update sequence

names from the long MAKER names to friendlier ones. Other MAKER scripts were used to

update the fasta and/or gff3 files with functional annotations found with the BLAST+ Suite

v2.9.0 (Camacho et al. 2009; Altschul et al. 1990) and InterProScan v5.45-80.0 (Jones et al.

2014; Mitchell et al. 2019). BLAST was run using the annotated protein sequences as the query and

UniProt/Swissprot as the subject database. The following options were used: -task blastp -

max_target_seqs 1 -max_hsps 1 -evalue 1e-6 -outfmt 6. InterProScan was run using

annotated proteins as input (same as BLAST) with the following options: -appl pfam -dp -f TSV

-goterms -iprlookup -pa -t p.

www.manaraa.com

 374

create and move to a working dir

mkdir -p maker/post

cd maker/post

copy the requisite output files

cp ../rnd3/*.gff ../rnd3/*.fa .

cp ../rnd1/cmel-rnd1_{repeats,{est,protein}2genome}.gff .

remove the rnd info

rename \ # Perl version, not Linux util

's/-rnd[1-3]//' \

*.fa *.gff

map new ids to MAKER names

NUM_SEQS=`grep -Ev '^#' cmel_noSeq.gff \

| cut -d "\t" -f 9 | tr ';' '\n' \

| cut -d '=' -f 2 | sort -u | wc -l`

maker_map_ids \

--initial=1 \

--prefix=Caranx-melampygus\

--suffix='-?%' \

--iterate=1 \

--justify=${#NUM_SEQS} \

cmel_withSeq.gff \

> identifiers_map.tsv

rename based on new ids

for FASTA in *.fa

do

cp -f "${FASTA}" "${FASTA%.fa}_renamed.fa"

map_fasta_ids identifiers_map.tsv "${FASTA%.fa}_renamed.fa"

done

for GFF in *.gff

do

cp -f "${GFF}" "${GFF%.gff}_renamed.gff"

map_gff_ids identifiers_map.tsv "${GFF%.gff}_renamed.gff"

done

prep for functional annotation

cd /path/to/swissprot

makeblastdb \

-dbtype prot \

-in uniprot_sprot.fa \

-input_type fasta \

-title uniprot_sprot \

-hash_index \

-out uniprot_sprot \

-logfile uniprot_sprot_makeblastdb.log

www.manaraa.com

 375

cd –

do the alignment for func. annot.

blastp \

-task blastp \

-query proteins_renamed.fa \

-db /path/to/swissprot/uniprot_sprot \

-num_threads ${THREADS} \

-max_target_seqs 1 \

-max_hsps 1 \

-evalue 1e-6 \

-outfmt 6 \

-out proteins-x-uniprotSprot_fmt6.tsv

update the fasta and gff files with func. annots.

for FASTA in *_renamed.fa

do

maker_functional_fasta \

/path/to/swissprot/unitprot_sprot.fa \

proteins-x-uniprotSprot_fmt6.tsv \

${FASTA} \

> ${FASTA%.fa}_putative-function.fa

done

for GFF in *_renamed.gff

do

maker_functional_gff \

/path/to/swissprot/unitprot_sprot.fa \

proteins-x-uniprotSprot_fmt6.tsv \

${GFF} \

> ${GFF%.gff}_putative-function.gff

done

run interproscan for more func. annots.

interproscan.sh \

-m "standalone" \

-cpu ${THREADS} \

-T "${TMP}" \

-appl "pfam" \

-dp \

-f "TSV" \

-goterms \

-iprlookup \

-pa \

-t "p" \

-i proteins_renamed.fa\

-o proteins-interproscan.tsv

update the gff files with interproscan results

for GFF in {with,no}Seq_renamed_putative-function.gff

do

ipr_update_gff \

www.manaraa.com

 376

${GFF} \

proteins-interproscan.tsv \

> ${GFF%.gff}_domain-added.gff

done

for GFF in {with,no}Seq_renamed.gff

do

iprscan2gff3 \

proteins-interproscan.tsv \

${GFF} \

> ${GFF%.gff} _visible-iprscan-domains.gff
done

cd ../..

Demographic History

The scripts to perform this analysis are available on GitHub (https://github.com/

pickettbd/msmc-slurmPipeline) with supporting documentation.

www.manaraa.com

 377

SUPPLEMENTAL REFERENCES

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, 1990 Basic Local
Alignment Search Tool. J. Mol. Biol. 215:403-410.

Caballero, M., and J. Wegrzyn, 2019 gFACs: Gene Filtering, Analysis, and Conversion to Unify
Genome Annotations Across Alignment and Gene Prediction Frameworks. Genomics
Proteomics Bioinformatics 17 (3):305-310.

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., 2009 BLAST+:
architecture and applications. BMC Bioinform. 10:421.

Chan, P. P., and T. M. Lowe, 2019 tRNAscan-SE: Searching for tRNA Genes in Genomic
Sequences. Methods Mol. Biol. 1962:1-14.

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson et al., 2011 Full-length
transcriptome assembly from RNA-Seq data without a reference genome. Nat.
Biotechnol. 29 (7):644-652.

Haas, B. J., S. L. Salzberg, W. Zhu, M. Pertea, J. E. Allen et al., 2008 Automated eukaryotic
gene structure annotation using EVidenceModeler and the Program to Assemble Spliced
Alignments. Genome Biol. 9 (1):R7.

Holt, C., and M. Yandell, 2011 MAKER2: an annotation pipeline and genome-database
management tool for second-generation genome projects. BMC Bioinform. 12:491.

Jones, P., D. Binns, H.-Y. Chang, M. Fraser, W. Li et al., 2014 InterProScan 5: genome-scale
protein function classification. Bioinformatics 30 (9):1236-1240.

Kim, D., B. Langmead, and S. L. Salzberg, 2015 HISAT: a fast spliced aligner with low memory
requirements. Nat. Methods 12 (4):357-360.

Koren, S., B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman et al., 2017 Canu: scalable and
accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome
Res. 27 (5):722-736.

Kriventseva, E. V., D. Kuznetsov, F. Tegenfeldt, M. Manni, R. Dias et al., 2019 OrthoDB v10:
sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for
evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47 (D1):D807-
D811.

Langmead, B., and S. L. Salzberg, 2012 Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9 (4):357-359.

Li, H., 2020 auN: a new metric to measure assembly contiguity in Heng Li’s Blog.

www.manaraa.com

 378

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., 2009 The Sequence
Alignment/Map format and SAMtools. Bioinformatics 25 (16):2078-2079.

Marcais, G., and C. Kingsford, 2011 A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics 27 (6):764-770.

Mitchell, A. L., T. K. Attwood, P. C. Babbitt, M. Blum, P. Bork et al., 2019 InterPro in 2019:
improving coverage, classification and access to protein sequence annotations. Nucleic
Acids Res. 47 (D1):D351-D360.

Patro, R., G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, 2017 Salmon provides fast
and bias-aware quantification of transcript expression. Nat. Methods 14 (4):417-419.

Quinlan, A. R., and I. M. Hall, 2010 BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26 (6):841-842.

Simão, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, 2015
BUSCO: assessing genome assembly and annotation completeness with single-copy
orthologs. Bioinformatics 31 (19):3210-3212.

Song, L., D. S. Shankar, and L. Florea, 2016 Rascaf: Improving Genome Assembly with RNA
Sequencing Data. Plant Genome 9 (3):1-12.

www.manaraa.com

 379

APPENDIX 5

Chapter 4 – Supplementary File 1

SUPPLEMENTARY BIOINFORMATICS METHODS

An overview of the methods used in this study was provided in the main manuscript.

Where appropriate, additional details, such as the code for custom scripts and the commands

used to run software, are provided here.

Read Error Correction

The self-corrected reads were generated using Canu v1.8 1 with the following command:

canu -correct \

 -s ${SETTINGS_FILE} \

-d ${OUTPUT_DIR_NAME} \

-p ${OUTPUT_PREFIX} \

-pacbio-raw \

${INPUT_PACBIO_READS[@]}

The relevant lines of the setting file are included here:

genomeSize=625920000

ovsMethod=sequential

gridEngine=slurm

Genome Assembly and Scaffolding

The individual steps of genome assembly and scaffolding will each be described

separately. Calculation of assembly summary statistics will also be described.

Genome Assembly

The assembly was created with Canu v1.8 1 using the already corrected reads from the

correction process using the following command:

www.manaraa.com

 380

canu -trim-assemble \

 -s ${SETTINGS_FILE} \

-d ${OUTPUT_DIR_NAME} \

-p ${OUTPUT_PREFIX} \

-pacbio-corrected \

${INPUT_SELF_CORRECTED_PACBIO_READS_FILE}

Scaffolding and Mis-assembly Detection with Hi-C Data

Part of the scaffolding process with Hi-C data employed by SALSA is a mis-assembly

detection step. The set of contigs created during this process will be pointed out as the

scaffolding process is described. The Hi-C data (in this case, Dovetail Genomics Omni-C library

using general endonucleases instead of site-specific restriction enzymes) alignments were

performed following the Arima Genomics (San Diego, California, USA;

https://arimagenomics.com) Mapping Pipeline commit #2e74ea4 (https://github.com/

ArimaGenomics/mapping_pipeline), which relied on BWA‑MEM2 v2.1 2,3, Picard v2.19.2 4, and

SAMtools v1.9 5. As the pipeline is reasonably well-documented, it will be only summarized

here:

1. The assembly (Canu contigs) is indexed using SAMtools faidx.

2. The assembly is indexed with bwa index and the Hi-C reads are mapped to the

assembly with bwa mem (I used BWA-MEM2 instead).

3. The alignments are converted from SAM to BAM format with SAMtools view.

4. The 5’ ends are filtered using SAMtools view and the Arima Genomics Perl

(https://www.perl.org) script filter_five_end.pl.

5. Paired-end reads are combined into a single file with the Arima Genomics Perl script

two_read_bam_combiner.pl and sorted with SAMtools sort. These reads will be

treated as single-end hereafter.

6. Read groups are added to the BAM file using Picard AddOrReplaceReadGroups.

www.manaraa.com

 381

7. Merge technical replicates. This step was skipped because no such replicates existed.

8. Duplicates in the BAM file were marked using Picard MarkDuplicates.

9. Merge biological replicates. This step was skipped because no such replicates existed.

10. The final BAM file was indexed with SAMtools index.

11. Stats were reported with the Arima Genomics Perl script get_stats.pl.

Scaffolding was performed on the Canu contigs using the final BAM file from the Arima

Genomics Mapping Pipeline with SALSA commit #974589f 6,7. First, some pre-processing was

required with BEDTools v2.28.0 8 to convert the final BAM file from the mapping pipeline to

BED format; this was then sorted. The BEDTools, sorting, and SALSA commands are listed

here (note that the ${RESTRICTION_ENZYME_SEQ} was DNASE):

bedtools bamtobed \

 -i ${FINAL_ARIMA_BAM_FILE} \

> ${HIC_BED_FILE}

sort -k 4 \

${HIC_BED_FILE} \

> ${SORTED_HIC_BED_FILE}

run_pipeline.py \

-a ${CANU_CONTIGS_FILE} \

-l ${CANU_CONTIGS_FAIDX_FILE} \

-b ${SORTED_HIC_BED_FILE} \

-e ${RESTRICTION_ENZYME_SEQ} \

-s ${GENOME_SIZE} \

-m yes \

-o ${OUTPUT_SALSA_DIR}

Note that all newly-created gaps from SALSA will all be assigned a length of 500

nucleotides (i.e., 500 Ns in a row). Assuming these are gaps of unknown size, these will ideally

be changed to 100 nucleotides for any submissions to GenBank. If you have multiple sources of

evidence for gaps, you will want to keep track of which gaps were supported by each type of

evidence. The final command in that set (i.e., run_pipeline.py) iteratively scaffolds with the

www.manaraa.com

 382

Hi-C evidence after fixing mis-assemblies. The fixed contigs will be found in a file called

assembly.cleaned.fasta and the final iteration of scaffolds will be located in

scaffolds_FINAL.fasta. The tiling of contigs (from assembly.cleaned.fasta to create

scaffolds_FINAL.fasta) will be in scaffolds_FINAL.agp.

Scaffolding with RNA-seq Data

The RNA-seq data were aligned using HiSat v0.1.6-beta 9, and the alignments were

converted from SAM to BAM format and sorted using SAMtools v1.11 5. First, the assembly

(scaffolds from SALSA) was indexed with HiSat. For each tissue (i.e., brain, eye, fin, gill, heart,

kidney, liver, and muscle), HiSat aligned reads to the assembly, SAMtools sorted and

compressed the output alignments, and Rascaf v1.0.2 commit #690f618 10 computed how

scaffolding could be done. The actual scaffolding was done with Rascaf in a single step after all

steps had been completed for each tissue. The process is described in the following script:

hisat-build \

${HISAT_IDX_PREFIX} \

${HIC_SCAFFOLDS}

for TISSUE in {brain,eye,fin,gill,heart,kidney,liver,muscle}

do

RNASEQ_READS_LEFT=${TISSUE}_L.fq.gz

RNASEQ_READS_RIGHT=${TISSUE}_R.fq.gz

ALIGNMENT_SAM=${TISSUE}_aln.sam

hisat \

-p ${THREADS} \

--phred33 -q -t \

-x ${HISAT_IDX_PREFIX} \

-1 ${RNASEQ_READS_LEFT} \

-2 ${RNASEQ_READS_RIGHT} \

-S ${ALIGNMENT_SAM}

www.manaraa.com

 383

samtools view \

-buh ${ALIGNMENT_SAM} \

| samtools sort \

-@ ${THREADS} \

-m ${MEMORY}M \

-O BAM \

-o ${ALIGNMENT_BAM}

rascaf \

-breakN 600 \

-b ${ALIGNMENT_BAM} \

-f ${HIC_SCAFFOLDS} \

-o ${TISSUE}.out

done

rascaf-join \

-r brain.out \

-r eye.out \

-r fin.out \

-r gill.out \

-r heart.out \

-r kidney.out \

-r liver.out \

-r muscle.out \

-o ${OUTPUT_FILE_PREFIX}

Note that all newly-created gaps from Rascaf will all be assigned a length of 17

nucleotides (i.e., 17 Ns in a row). Assuming these are gaps of unknown size, these will ideally be

changed to 100 nucleotides for any submissions to GenBank. If you have multiple sources of

evidence for gaps, you will want to keep track of which gaps were supported by each type of

evidence. Also, note that the -breakN option of Rascaf was set to 600 because the gaps from

SALSA were 500 bases long. The choice of 600 was arbitrary, it just needed to be longer than

500 (i.e., 501 would have been sufficient). The goal here was to prevent Rascaf from undoing the

work SALSA had already done.

Unfortunately, Rascaf does not produce an AGP file like SALSA does. For simplicity in

submission to GenBank, such a file is necessary because you would submit the contig-level

assembly (contigs made with Canu and fixed with SALSA in this case) and provide an AGP file

with scaffold joins and relevant evidence. The information needed to create an AGP file from the

www.manaraa.com

 384

Rascaf scaffolds is available in the ancillary output file ending in “.info”. A custom Python script

was written to take the contigs file, SALSA AGP file, SALSA scaffolds file, Rascaf scaffolds

file, and Rascaf .info file to create two sets of two output files (4 total files). Each set is a fasta

and AGP pair where the fasta file is the scaffold level sequence and the AGP file is the

description of how to obtain that file from the contig-level file (provided as input). The first set

of these files leaves the gaps as they are provided (500 Ns from SALSA and 17 Ns from Rascaf),

the second converts them all to 100 Ns. This script is too long to be readable in a document, but

the code is available in the file combineHicRna.py on GitHub at https://github.com/pickettbd/

caranx-ignobilis_assembly-paper_misc-scripts. During the NCBI submission process,

contaminants were identified in the submitted fasta file. These sequences were removed, and

appropriate adjustments to the AGP file were also made before resubmission. To create a new

scaffold-level fasta file, another custom script was written. It will take an AGP file and input

contigs and output scaffolds in fasta format. It is also available in the same GitHub repository in

the file agp2fa.py.

Assembly Statistics

Assembly continuity statistics, e.g., N50 and auN 11, were calculated with caln50 commit

#3e1b2be (https://github.com/lh3/calN50) and a custom Python (https://www.python.org) script.

caln50 is run using the following simple command:

caln50 \

-s 0.01 \

-L ${GENOME_SIZE} \

${CONTIGS_OR_SCAFFOLDS_FILE} \

> ${STATISTICS_FILE}

The custom Python script is not efficient, but it does calculate Nx, Lx, NGx, and LGx, as well as

a few other interesting points about sequences in a fasta file. This script is too long to

www.manaraa.com

 385

realistically represent when embedded in the text; it is available on GitHub at https://github.com/

pickettbd/basicAsmStatsCalcInPy.

Assembly completeness was assessed using single-copy orthologs with BUSCO v4.0.6 12

and OrthoDB v10 13. The BUSCO config file was the not modified from the default aside from

the locations of OrthoDB v10 and the binary executables for BUSCO. It was run based on the

following command structure:

busco \

--offline \

--config ${BUSCO_CONFIG_FILE} \

--cpu ${THREADS} \

--in ${CONTIGS_OR_SCAFFOLDS_FASTA} \

--out_path ${OUTPUT_DIR} \

--out ${OUTPUT_FILE_PREFIX} \

--mode genome \

--lineage actinopterygii \

--augustus_species zebrafish

Genome Comparisons with Single-copy Orthologs

Single-copy orthologs were identified from the Actinopterygii set of OrthoDB v9 (same

process as for assessing the assembly, but with OrthoDB v9 instead of v10) and BUSCO v3.0.6.

These versions of BUSCO and OrthoDB were used, despite being older, because the plotting

technique provided by ChrOrthLink depends on the output file structure from BUSCO v3, and

BUSCO v4 has changed the format. The commands between BUSCO versions have changed

slightly, but they are the same in essence. The command for each genome was based on the

following structure:

www.manaraa.com

 386

run_busco.py \

--cpu ${THREADS} \

--in ${ASSEMBLY_FASTA} \

--out_path ${OUTPUT_DIR} \

--out ${OUTPUT_FILE_PREFIX} \

--mode genome \

--lineage_path odb9/actinopterygii \

--species zebrafish

The ChrOrthLink scripts have not yet been prepared for production, so manual editing of

the files was necessary to repurpose the code for this analysis. The four scripts (three Python, one

R14) accept no command-line arguments, so the only way to make it work without adding that

functionality is to edit file names and things directly. The simplest way to recreate my analysis or

repurpose the ChrOrthLink code for your own analysis in a similar manner would be to clone the

repository, edit according to the process described below (substituting your

species/filenames/etc. over those described here), and copy your input files into the directory

tree. We omitted all sequences that were shorter than 1mb for the plot.

1. Clone the repository. Let’s assume the repo is cloned into a directory called

project_dir. Enter the directory and only subdirectory (cd project_dir/VGP_fig5a).

2. Cleanup the stuff you don’t need.

rm -rf \

 work/output/* \

 work/BUSCO_genoPlotR_input \

 work/*.csv \

 work/input/BUSCO/*.txt \

 work/input/chr.assign/*.csv \

 work/input/chrsize/*.txt

3. Make a note to yourself of some handy abbreviations to use for the genome names. For

ours, we used the first letter of the genus and the first 3 letters of the species (e.g., Enau,

Cign, Tova, etc.). The rest of these comments will refer to the species name and be

meaning this shortened code name as ${SPECIES} (in shell scripts).

www.manaraa.com

 387

4. Copy the BUSCO output into work/input/BUSCO. Do not move the original output files

because these copies will get edited by the scripts; if you made a mistake, it would be

annoying to undo the changes when you could have simply re-copied over them. There

should be one file per genome included in the analysis (for us, that was eight). The output

files from BUSCO are located in the respective BUSCO output directories. The filename

is full_table_${SPECIES}.tsv. When copied into work/input/BUSCO, it will need to

match the following pattern BUSCO_${SPECIES}.txt.

5. Create the chrsize files. These are formatted as a tab-separated file with the first column

being the sequence identifier (from the fasta file, without the >) and the second column

being the length of the sequence. The simplest way to obtain this, if you don’t already

have it, is to create a fasta index using SAMtools faidx: samtools faidx

${SPECIES}.fa. This will create the index file at ${SPECIES}.fa.fai. The first two

columns of this file are what you need. They can be extracted with cut:

cut -d \t -f 1-2 \

 path/to/${SPECIES}.fa.fai \

 > work/input/chrsize/chrsize_${SPECIES}.txt

6. Create the chr.assign files. These are formatted as comma-separated files with the first

column being the sequence identifier (from the fasta file, without the >), the second

column being the assigned chromosome number, and the third column being “y” or “n”.

If you have curated genomes with assigned chromosome numbers, they can be used.

Otherwise, you can make something up. For our plot, we simply assigned chromosome

numbers 1-n, where n was the number of sequences in the file. We ordered it based on

length of the sequence. We also assigned “y” for the third column for each entry. This

can be done with a simple sort and awk command:

www.manaraa.com

 388

sort -t \t -n -r -k 2 \

 work/input/chrsize/chrsize_${SPECIES}.txt \

 | awk 'BEGIN{FS="\t"; OFS=",";}{print $1, NR, "y";}'

 > work/input/chr.assign/${SPECIES}.csv

7. Edit script #1 in the bin directory (if needed). I changed the location of the work

directory, so I had to change the paths, but otherwise this shouldn’t need any fixing. This

script will edit the files in work/input/BUSCO and work/input/chrsize based on the

files in work/input/chr.assign. Run the script. If a mistake is made when run, you’ll

have to re-do steps 4-6 here.

8. Edit script #2 in the bin directory. This script creates *.csv files in work. Change the

value of Ref_BUSCO on line 16; we set it to BUSCO_Enau.txt. Run the script.

9. Edit script #3 in the bin directory. This script creates the input for the plot. Change the

value of RefID_list on line 19. We set it to ["Enau"]. Change the value of sID_LIST

on line 21 to all the species codes. We set it to ["Enau", "Cign", "Cmel", "Tova",

"Ttra", "Sdum", "Squi ", "Sriv"]. Change the value of target_chr_name to on

line 23 to "All". I suggest changing the system calls for mkdir around line 570 to

include the -p option; this will prevent errors from being unable to create directories that

already exist if you re-run these scripts. Run the script.

10. Edit script #4 in the bin directory. Change the value of RefID on line 32. We set it to

"Enau". Change the list starting on line 72 to the same names in the same order for

sID_LIST as described in step #9. Do the same for the items starting on line 94. Add or

remove items for the list starting on line 112 until there are numbers 1-(n-1), with n being

the number of species used. In our case, we had 1-7. Run the script. The output should be

in work/output. The species names were manually edited in Adobe Illustrator for the

final figure.

www.manaraa.com

 389

SUPPLEMENTAL REFERENCES

1 Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer
weighting and repeat separation. Genome Res. 27, 722-736, doi:10.1101/gr.215087.116
(2017).

2 Vasimuddin, M., Misra, S., Li, H. & Aluru, S. in 2019 IEEE IPDPS. 314-324 (Institute of
Electrical and Electronics Engineers (IEEE), 2019).

3 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
Preprint at https://arxiv.org/abs/1303.3997 (2013).

4 Broad Institute. Picard Toolkit. GitHub http://broadinstitute.github.io/picard (2019).

5 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,
2078-2079, doi:10.1093/bioinformatics/btp352 (2009).

6 Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C.-S. Scaffolding of long read
assemblies using long range contact information. BMC Genomics 18, 1-11,
doi:10.1186/s12864-017-3879-z (2017).

7 Ghurye, J. et al. Integrating Hi-C links with assembly graphs for chromosome-scale
assembly. PLoS Comput. Biol. 15, e1007273, doi:0.1371/journal.pcbi.1007273 (2019).

8 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26, 841-842, doi:10.1093/bioinformatics/btq033
(2010).

9 Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory
requirements. Nat. Methods 12, 357-360, doi:10.1038/nmeth.3317 (2015).

10 Song, L., Shankar, D. S. & Florea, L. Rascaf: Improving Genome Assembly with RNA
Sequencing Data. Plant Genome 9, 1-12, doi:10.3835/plantgenome2016.03.0027 (2016).

11 Li, H. auN: a new metric to measure assembly contiguity. Heng Li’s Blog
http://lh3.github.io/2020/04/08/a-new-metric-on-assembly-contiguity (2020).

12 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M.
BUSCO: assessing genome assembly and annotation completeness with single-copy
orthologs. Bioinformatics 31, 3210-3212, doi:10.1093/bioinformatics/btv351 (2015).

13 Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal,
protist, bacterial and viral genomes for evolutionary and functional annotations of
orthologs. Nucleic Acids Res. 47, D807-D811, doi:10.1093/nar/gky1053 (2019).

14 R Core Team. R: A language and environment for statistical computing. R Foundation
for Statistical Computing https://www.r-project.org (2021).

www.manaraa.com

 390

APPENDIX 6

Chapter 5 – Supplement

SUPPLEMENTARY TEXTS

Supplementary Text 1. Suffix and Longest Common Prefix Arrays

A suffix array is an array of character positions representing a list of all possible suffixes

of a string, ordered lexicographically. Consider the sequence “CAGAGA$”. A proper suffix

array implementation would not enumerate a list of suffixes, but viewing the list helps

conceptualize suffix array construction (see Supplementary Fig. 1A and B). The suffix and

longest common prefix arrays (with zero-based indexing) for this sequence are shown in

Supplementary Fig. 1C. The 6 in position 0 of the suffix array (Supplementary Fig. 1B and C)

informs us that the suffix beginning at position 6 (i.e., “$”) is lexicographically first. The 5 in

position 1 of the suffix array informs us that the suffix beginning at position 5 (i.e., “A$”) is

lexicographically second. Likewise, the 2 in position 6 of the suffix array informs us that the

suffix beginning at position 2 (i.e., “GAGA$”) is lexicographically last.

Longest common prefix arrays are arrays of the lengths of the longest common prefix of

each adjacent suffix in the suffix array. To illustrate, consider position 3 in the suffix and longest

common prefix arrays in Supplementary Fig. 1C. The longest common prefix at this position is 3

(highlighted in red text in Supplementary Fig. 1C), meaning there are three common nucleotides

at the beginning of the suffixes starting at positions 1 and 3 (i.e., “AGA”). The longest common

prefix array stores the length of the longest common prefix, and the positions of the two suffixes

in the original sequence are obtained by looking at the same position in the suffix array (in this

www.manaraa.com

 391

example position 3), and the prior position in the suffix array (in this example position 2). This

longest common prefix is represented in red nucleotides in Supplementary Fig. 1B. Although the

sequence is the same, they are adjacent in the original sequence. These relationships are the basis

for our algorithm to find SSRs in a sequence. The longest common prefix array is constructed

while creating the suffix array.

Supplementary Text 2. Calculating SSR Length and Position from Suffix and
Longest Common Prefix Arrays

Let k equal the length of an SSR repeating unit or period size, r equal the number of

times it repeats after the original occurrence, and p equal the position of the first nucleotide of

the first period of the SSR. For example, consider the repeating unit “ACG” in the sequence

“ACGACGACG”. The length of the repeating unit is 3 (k), there are three instances of the unit (r

+ 1), and the SSR begins at position 0 in the sequence (p). So, in this example, k = 3, r = 2 (r + 1

is the total number of repeats in the SSR), and p = 0. SSRs are identified by calculating k, p, and

r from the suffix and longest common prefix arrays. Let i equal the index of any entry in the

suffix array (except the first position), where SA and LCPA are the suffix and longest common

prefix arrays, respectively:

 𝑘 = |𝑆𝐴𝑖 − 𝑆𝐴𝑖−1| (1)

 𝑟 = ⌊
𝐿𝐶𝑃𝐴𝑖

𝑘𝑖
⌋ (2)

 𝑝 = 𝑀𝐼𝑁(𝑆𝐴𝑖−1, 𝑆𝐴𝑖) (3)

If r > 0, an SSR of length k * (r + 1) exists at position p in the original sequence,

otherwise if r = 0 there is no SSR at position p. The base unit (e.g., AG in the SSR AGAGAG) of

www.manaraa.com

 392

the SSR starts at position p and ends at position p + (k − 1). Thus, by comparing each adjacent

element in the suffix array we can find SSRs in a sequence.

Extending the previous example, Fig. 1C shows the values of k, r, and p calculated from

the suffix and longest common prefix arrays for “CAGAGA$”. Two SSRs, each of length 4,

exist at positions 1 and 2 in the original sequence (i.e., “AGAG” and “GAGA”) and their

locations are shown in Fig. 1D.

SUPPLEMENTARY FIGURES
============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

 393

Supplementary Figure 1. Suffix and Longest Common Prefix Arrays Example. In this figure we demonstrate
how to construct a suffix array and its use to identify SSRs. (A) First, all suffixes of “CAGAGA$”, are shown here
and marked by their beginning position in the original sequence. (B) Next, the set of possible suffixes (part A) are
ordered lexicographically, where ‘$’ is the first character in the alphabet, and maintain their start positions in the
original sequence. The start positions are the numbers to the left of each suffix. The new ordering of these start
positions is the suffix array. (C) Here we show the suffix array, longest common prefix array, and three parameters:
k, r, and p (explained in the text). The suffix array stores the ordered start positions determined by ordering possible
suffixes (shown in part B). (D) This particular sequence has two SSRs: “AGAG” and “GAGA”. In part D we show
each of the two SSRs in the original sequence. SSR1 is highlighted blue, and SSR2 is highlighted green. The
repeating units of the two SSRs are AG and GA, respectively, and a vertical bar separates each repeating unit in the
sequence.

www.manaraa.com

 394

Supplementary Figure 2. Arabidopsis thaliana Sequence Length Density Plot. Density plot showing the
distribution of sequence lengths for the Arabidopsis thaliana chromosome 4. A summary is included in the upper,
right-hand corner.

www.manaraa.com

 395

Supplementary Figure 3. Caenorhabditis elegans Sequence Lengths Density Plot. Density plot showing the
distribution of sequence lengths for the Caenorhabditis elegans genome. A summary is included in the upper, right-
hand corner.

www.manaraa.com

 396

Supplementary Figure 4. Drosophila melanogaster Sequence Lengths Density Plot. Density plot showing the
distribution of sequence lengths for the Drosophila melanogaster genome. A summary is included in the upper,
right-hand corner.

www.manaraa.com

 397

Supplementary Figure 5. Escherichia coli Sequence Lengths Density Plot. Density plot showing the distribution
of sequence lengths for the Escherichia coli genome. A summary is included in the upper, right-hand corner.

www.manaraa.com

 398

Supplementary Figure 6. Zaire ebolavirus Sequence Lengths Density Plot. Density plot showing the distribution
of sequence lengths for the Zaire ebolavirus genome. A summary is included in the upper, right-hand corner.

www.manaraa.com

 399

SUPPLEMENTARY TABLES

Supplementary Table 1. Algorithms Included in Comparisons. We compared our algorithm to existing
algorithms that (a) were capable of processing the Drosophila melanogaster genome dataset (see the main text), (b)
had a non-interactive, Linux, command-line interface, (c) were freely available for immediate download, and (d) had
10 or more citations per year (based on publication date and Google Scholar citation count) or were published in the
last three years. A few other algorithms met our requirements, but were rendered unusable due to antiquated shared
libraries, compile- or run-time errors, or other issues.

Algorithm
GMATo (Wang, et al., 2013)
MREPS (Kolpakov, et al., 2003)
PRoGeRF (Lopes, et al., 2015)
QDD (Meglécz, et al., 2014)
SSR-Pipeline (Miller, et al., 2013)
SSRIT (Temnykh, et al., 2001)
TRF (Benson, 1999)

www.manaraa.com

 400

Supplementary Table 2. Performance Comparisons.
a MREPS timing includes the pre- and post-processing time for each genome necessary to adjust positions to account
for removing "incorrect symbols" and Ns. The additional times are an average of multiple approaches.

b We only considered SSRs with period sizes 1-7 (inclusive) and lengths of at least 16 nucleotides (nt). The
difference between the number of SSRs in range and reported is due exclusively to SSR length (less than 16 nt) and
period size (greater than 7).

c Whenever possible, we salvaged correct SSRs that were inside incorrect SSRs reported by other software
packages. For example, in Drosophila melanogaster, we recovered three for PRoGeRF and 8,408 for TRF. To
illustrate, in sequence JXOZ01000043.1, TRF reports a CT repeated 36 times at position 2,171. While TRF does
correctly identify a low-complexity region with many CT repeats, there are not 36 perfect repeats in a row. In this
case, we salvaged two perfect CT regions, each repeating 8 times.

d Detailed pairwise comparisons can be found in Supplementary Tables 4-31.

 Comparison with SA-SSR

 CPU Time
(mm:ss)

Real Time
(mm:ss)

SSRs
Reported

SSRs In
Range

Number
Correct

Percent
Correct

SSRs
Unique to
Software

SSRs
Unique to

SA-SSR
SSRs

Shared

Ar
ab

id
op

si
s t

ha
lia

na
 (c

hr
 4

) GMATo 312:29 312:29 4,004,812 1,854 1,854 100 5 713 1,550

MREPS 386:15 386:15 4,201 2,270 2,270 100 11 0 2,259

PRoGeRF 9:23 9:23 4,116,484 2,247 2,247 100 11 26 2,233

QDD 2:02 2:02 3,965 1,100 1,100 100 2 1,165 1,098

SA-SSR 28,066:12 2,338:47 2,265 2,265 2,265 100 NA NA NA

SSR-Pipeline 1,395:04 1,395:04 4,754,929 2,242 2,242 100 11 66 2,193

SSRIT 0:10 0:10 900 900 900 100 6 1,365 894

TRF 0:47 0:47 135,135 9,275 2,167 23.36 10 152 2,107

C
ae

no
rh

ab
di

tis
 e

le
ga

ns

GMATo 9:39 9:39 22,889,822 6,068 6,068 100 27 2,685 5,236

MREPS 4:34 4:34 18,958 7,962 7,962 100 53 0 7,909

PRoGeRF 744:21 744:21 531,822 105 105 100 0 7,818 105

QDD 10:32 10:32 11,720 3,379 3,379 100 8 4,552 3,369

SA-SSR 645:54 60:31 7,923 7,923 7,923 100 NA NA NA

SSR-Pipeline 13:14 13:14 26,475,821 7,827 7,827 100 32 204 7,715

SSRIT 0:57 0:57 2,374 2,374 2,374 100 12 5,555 2,362

TRF 7:20 7:20 1,029,051 39,378 6,663 16.92 23 1,578 6,336

www.manaraa.com

 401

 Comparison with SA-SSR

 CPU Time
(mm:ss)

Real Time
(mm:ss)

SSRs
Reported

SSRs In
Range

Number
Correct

Percent
Correct

SSRs
Unique to
Software

SSRs
Unique to

SA-SSR
SSRs

Shared

D
ro

so
ph

ila
 m

el
an

og
as

te
r

GMATo 6:31 6:31 30,386,038 23,218 23,171 99.80 78 7,970 19,900

MREPS 1:47 1:47 52,346 28,008 28,008 100 163 0 27,845

PRoGeRF 2,436:55 2,436:55 470,382 571 562 98.42 2 27,318 560

QDD 11:11 11:11 37,525 12,931 12,931 100 39 14,978 12,883

SA-SSR 52:58 4:52 27,880 27,880 27,880 100 NA NA NA

SSR-Pipeline 1:47 1:47 29,015,430 27,513 27,513 100 96 726 27,138

SSRIT 1:02 1:02 9,943 9,943 9,943 100 37 17,956 9,906

TRF 4:01 4:01 856,363 105,179 25,940 24.66 85 2,770 25,084

Es
ch

er
ic

hi
a

co
li

GMATo 0:39 0:39 1,127,792 14 14 100 0 9 11

MREPS 0:26 0:26 46 20 20 100 0 0 20

PRoGeRF 3:36 3:36 334,091 4 4 100 0 16 4

QDD 0:32 0:32 38 8 8 100 0 12 8

SA-SSR 55:07 12:21 20 20 20 100 NA NA NA

SSR-Pipeline 1:15 1:15 1,309,541 20 20 100 0 0 20

SSRIT 0:03 0:03 0 0 0 NA 0 20 0

TRF 0:06 0:06 15,107 224 20 8.93 0 0 20

Za
ir

e
eb

ol
av

ir
us

GMATo 0:00 0:00 4,180 0 0 NA 0 0 0

MREPS 0:00 0:00 0 0 0 NA 0 0 0

PRoGeRF 0:03 0:03 4,350 0 0 NA 0 0 0

QDD 0:00 0:00 0 0 0 NA 0 0 0

SA-SSR 0:01 0:01 0 0 0 NA NA NA NA

SSR-Pipeline 0:01 0:01 4,862 0 0 NA 0 0 0

SSRIT 0:00 0:00 0 0 0 NA 0 0 0

TRF 0:00 0:00 59 0 0 NA 0 0 0

C
om

bi
ne

d

GMATo 329:18 329:18 58,412,644 31,154 31,107 99.85 110 11,377 26,697

MREPS 393:02 393:02 75,551 38,260 38,260 100 227 0 38,033

PRoGeRF 3,194:18 3,194:18 5,457,129 2,927 2,918 99.69 13 35,178 2,902

QDD 24:17 24:17 53,248 17,418 17,418 100 49 20,707 17,358

SA-SSR 28,820:12 2,416:32 38,088 38,088 38,088 100 NA NA NA

SSR-Pipeline 1,411:21 1,411:21 61,560,583 37,602 37,602 100 139 996 37,066

SSRIT 2:12 2:12 13,217 13,217 13,217 100 55 24,896 13,162

TRF 12:14 12:14 2,035,715 154,056 34,790 22.58 118 4,500 33,547

www.manaraa.com

 402

Supplementary Table 3. Features of Software for Finding SSRs.

Op. Sys. Format Complexity

MS
Win

Mac
OS X Linux CLI GUI Input Output Language Algorithm Type Time Space Period Repeats

Multi-
threaded Ignore Characters

Search for
Specific SSRs

SA-SSR X X FASTA TSV C++ Combinatorial Exact O(n) O(n) 1+ 2+ X Yes (Configurable) X

GMATo X X X X X FASTA TSV Perl & Java Regular
Expressions Exact ? ? 1-10 2+ Yes (default)

MREPS X X FASTA Text C Combinatorial Inexact O(nk ·
log(n/k) + S) ? 1+ 2+ Yes (only some Ns)

PRoGeRF X X Web FASTA TSV Perl ? Inexact ? ? 1-12 2+ Yes (default)

QDD X X X FASTA SCSV Perl ? Exact ? ? ? 2+ Yes (default)

SSR-
Pipeline X X X X FASTA FASTA Python ? Exact ? ? 2-25 2+ Yes (default)

SSRIT X X FASTA TSV Perl Regular
Expressions Exact ? ? ? 2+ Yes (default)

TRF X X X X X FASTA Text ? Heuristic Inexact O(n2 ·
polylog(n)) ? 1+ 2+ Yes (default)

www.manaraa.com

 403

Supplementary Table 4. SA-SSR compared with GMATo for Arabidopsis thaliana. The number of SSRs in the
Arabidopsis thaliana chromosome 4 found unique to GMATo, unique to SA-SSR, and shared between the two using
the following parameter set: -l 1 -L 18600000 -m 1 -M 7 -n 16 -r 1 –i D,M,N. Any SSRs with period size greater
than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison.

 1 2 3 4 5 6 7 Total

GMATo 0 0 0 0 0 0 0 0

SA-SSR 660 721 343 126 60 245 110 2265

Shared 0 0 0 0 0 0 0 0

Supplementary Table 5. SA-SSR compared with MREPS for Arabidopsis thaliana. The number of SSRs in the
Arabidopsis thaliana chromosome 4 found unique to MREPS, unique to SA-SSR, and shared between the two using
three different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L 18600000 -m 1 -M
7 -n 16 -r 1 –i D,M,N. The overlap set was identical to normal with the following addition: -o. The exhaustive set
was identical to overlap with the following addition: -e. Any SSRs with period size greater than 7, with total length
less than 16nt, or that were incorrect were excluded from this comparison.

Why did SA-SSR not find the 11 SSRs that MREPS found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. 9 of the 11 were also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result. The remaining 2 SSRs were also found
by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving the specific
sequence and suffix sort order. The number of unique SSRs found by SA-SSR as reported using the exhaustive
parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 MREPS 0 5 1 2 1 2 0 11

SA-SSR 660 5 1 1 0 1 0 668

Shared 0 716 342 125 60 244 110 1597

O
ve

rla
p MREPS 0 0 0 0 1 1 0 2

SA-SSR 2742 6064 2171 322 134 553 535 12521

Shared 0 721 343 127 60 245 110 1606

Ex
ha

us
tiv

e MREPS 0 0 0 0 0 0 0 0

SA-SSR 2752 8824 3761 9867 1029 10115 1194 37542

Shared 0 721 343 127 61 246 110 1608

www.manaraa.com

 404

Supplementary Table 6. SA-SSR compared with ProGeRF for Arabidopsis thaliana. The number of SSRs in the
Arabidopsis thaliana chromosome 4 found unique to ProGeRF, unique to SA-SSR, and shared between the two
using three different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L 18600000 -m
1 -M 7 -n 16 -r 1 –i D,M,N. The overlap set was identical to normal with the following addition: -o. The exhaustive
set was identical to overlap with the following addition: -e. Any SSRs with period size greater than 7, with total
length less than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 32 SSRs that ProGeRF found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. 16 of the 32 were also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result. 14 of the remaining 16 SSRs were also
found by SA-SSR, but SA-SSR correctly reported shorter period lengths than ProGeRF did. Obviously, reporting a
longer period length than is strictly necessary to describe the SSR is misleading and certainly incorrect.
AAAAAAAAA has a period size of one repeated nine times, not three repeated three times. Likewise, ATATATAT
has a period size of two repeated four times, not four repeated two times. The last 2 SSRs were also found by SA-
SSR, but only when using the exhaustive approach because of a special, rare case involving the specific sequence
and suffix sort order. The number of unique SSRs found by SA-SSR as reported using the exhaustive parameter set
is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 ProGeRF 0 5 6 3 2 16 0 32

SA-SSR 660 7 21 5 1 4 0 698

Shared 0 714 322 121 59 241 110 1567

O
ve

rla
p ProGeRF 0 0 0 0 1 15 0 16

SA-SSR 2742 6066 2186 325 134 556 535 12544

Shared 0 719 328 124 60 242 110 1583

Ex
ha

us
tiv

e ProGeRF 0 0 0 0 0 0 0 0

SA-SSR 2752 8826 3776 9870 1029 10104 1194 37551

Shared 0 719 328 124 61 257 110 1599

www.manaraa.com

 405

Supplementary Table 7. SA-SSR compared with QDD for Arabidopsis thaliana. The number of SSRs in the
Arabidopsis thaliana chromosome 4 found unique to QDD, unique to SA-SSR, and shared between the two using
two different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L 18600000 -m 1 -M 7
-n 16 -r 1 –i D,M,N. The overlap set was identical to normal with the following addition: -o. Any SSRs with period
size greater than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 2 SSRs that QDD found uniquely? By default, SA-SSR reports only one SSR when
multiple may be found in an overlapping location. Both were also found by SA-SSR when this default behavior is
changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by SA-SSR as
reported using the overlap parameter set is inflated as a result.

 1 2 3 4 5 6 7 Total

N
or

m
al

 QDD 0 2 0 0 0 0 0 2

SA-SSR 660 2 1 99 55 240 110 1167

Shared 0 719 342 27 5 5 0 1098

O
ve

rla
p QDD 0 0 0 0 0 0 0 0

SA-SSR 2742 6064 2172 422 189 793 645 13027

Shared 0 721 342 27 5 5 0 1100

www.manaraa.com

 406

Supplementary Table 8. SA-SSR compared with SSR-Pipeline for Arabidopsis thaliana. The number of SSRs in
the Arabidopsis thaliana chromosome 4 found unique to SSR-Pipeline, unique to SA-SSR, and shared between the
two using three different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L
18600000 -m 1 -M 7 -n 16 -r 1 –i D,M,N. The overlap set was identical to normal with the following addition: -o.
The exhaustive set was identical to overlap with the following addition: -e. Any SSRs with period size greater than
7, with total length less than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 84 SSRs that SSR-Pipeline found uniquely? By default, SA-SSR reports only one
SSR when multiple may be found in an overlapping location. 81 of the 84 were also found by SA-SSR when this
default behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs
found by SA-SSR as reported using the overlap parameter set is inflated as a result. One of the remaining 3 SSRs
was just a different SSR base, but covering essentially the same SSR (AATAAA vs AAAATA). The remaining 2
SSRs were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case
involving the specific sequence and suffix sort order. The number of unique SSRs found by SA-SSR as reported
using the exhaustive parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 SSR-Pipeline 0 47 16 7 1 7 6 84

SA-SSR 660 59 26 9 0 8 7 769

Shared 0 662 317 117 60 237 103 1496

O
ve

rla
p SSR-Pipeline 0 0 0 0 1 2 0 3

SA-SSR 2742 6076 2181 325 134 556 536 12550

Shared 0 709 333 124 60 242 109 1577

Ex
ha

us
tiv

e SSR-Pipeline 0 0 0 0 0 0 0 0

SA-SSR 2752 8836 3771 9870 1029 10117 1195 37570

Shared 0 709 333 124 61 244 109 1580

www.manaraa.com

 407

Supplementary Table 9. SA-SSR compared with SSRIT for Arabidopsis thaliana. The number of SSRs in the
Arabidopsis thaliana chromosome 4 found unique to SSRIT, unique to SA-SSR, and shared between the two using
two different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L 18600000 -m 1 -M 7
-n 16 -r 1 –i D,M,N. The overlap set was identical to normal with the following addition: -o. Any SSRs with period
size greater than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 7 SSRs that SSRIT found uniquely? By default, SA-SSR reports only one SSR when
multiple may be found in an overlapping location. All 7 were also found by SA-SSR when this default behavior is
changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by SA-SSR as
reported using the overlap parameter set is inflated as a result.

 1 2 3 4 5 6 7 Total

N
or

m
al

 SSRIT 0 5 1 1 0 0 0 7

SA-SSR 660 198 1 98 60 245 110 1372

Shared 0 523 342 28 0 0 0 893

O
ve

rla
p SSRIT 0 0 0 0 0 0 0 0

SA-SSR 2742 6257 2171 420 194 798 645 13227

Shared 0 528 343 29 0 0 0 900

www.manaraa.com

 408

Supplementary Table 10. SA-SSR compared with TRF for Arabidopsis thaliana. The number of SSRs in the
Arabidopsis thaliana chromosome 4 found unique to TRF, unique to SA-SSR, and shared between the two using
three different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L 18600000 -m 1 -M
7 -n 16 -r 1 –i D,M,N. The overlap set was identical to normal with the following addition: -o. The exhaustive set
was identical to overlap with the following addition: -e. Any SSRs with period size greater than 7, with total length
less than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 124 SSRs that TRF found uniquely? By default, SA-SSR reports only one SSR when
multiple may be found in an overlapping location. 111 of the 124 were also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result. The remaining 13 SSRs were also found
by SA-SSR and they fall into three different categories. The categories are overstated period size, finding different
numbers of repeats, and special cases requiring the exhaustive approach by SA-SSR. 6 of the 13 are cases where
TRF overstated the period size (e.g., calling ATATATAT a 4-mer instead of a 2-mer). Obviously, reporting a
longer period length than is strictly necessary to describe the SSR is misleading and certainly incorrect.
AAAAAAAAA has a period size of one repeated nine times, not three repeated three times. Likewise, ATATATAT
has a period size of two repeated four times, not four repeated two times. Of the remaining 7, the 6 that were not
found even under the exhaustive approach were actually found by SA-SSR, but SA-SSR correctly reported a larger
number of repeats. So, while it appeared that SA-SSR didn't find them, it actually did. For these 6, both are correct,
but SA-SSR is more complete. Finally, the last of the 7 was found during the exhaustive approach and is a special,
rare case involving the specific sequence and suffix sort. Of course, the number of unique SSRs found by SA-SSR
as reported using the exhaustive parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 TRF 0 48 26 9 2 14 25 124

SA-SSR 660 67 41 13 3 42 36 862

Shared 0 654 302 113 57 203 74 1403

O
ve

rla
p TRF 0 1 3 5 0 3 1 13

SA-SSR 2742 6084 2189 332 135 584 547 12613

Shared 0 701 325 117 59 214 98 1514

Ex
ha

us
tiv

e TRF 0 1 3 0 0 1 1 6

SA-SSR 2752 8844 3779 9872 1031 10145 1206 37629

Shared 0 701 325 122 59 216 98 1521

www.manaraa.com

 409

Supplementary Table 11. SA-SSR compared with GMATo for Caenorhabditis elegans. The number of SSRs in
the Caenorhabditis elegans genome found unique to GMATo, unique to SA-SSR, and shared between the two using
three different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L 700000 -m 1 -M 7 -
n 16 -r 1 –i N. The overlap set was identical to normal with the following addition: -o. The exhaustive set was
identical to overlap with the following addition: -e. Any SSRs with period size greater than 7, with total length less
than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 2291 SSRs that GMATo found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. 2270 of the 2291 were also found by SA-SSR when this
default behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs
found by SA-SSR as reported using the overlap parameter set is inflated as a result. One of the remaining 21 SSRs
were also found by SA-SSR, but SA-SSR correctly reported a greater number of repeats than GMATo did. Finally,
the last 20 were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case
involving the specific sequence and suffix sort order. The number of unique SSRs found by SA-SSR as reported
using the exhaustive parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 GMATo 0 687 220 248 55 807 274 2291

SA-SSR 522 866 428 601 130 1551 565 4663

Shared 0 1032 415 393 50 1097 273 3260

O
ve

rla
p GMATo 0 3 0 5 0 12 1 21

SA-SSR 1862 13378 2802 4084 661 16224 5361 44372

Shared 0 1716 635 636 105 1892 546 5530

Ex
ha

us
tiv

e GMATo 0 0 0 0 0 0 0 0

SA-SSR 1862 15261 3803 21089 1258 32453 5858 81584

Shared 0 1719 635 641 105 1904 547 5551

www.manaraa.com

 410

Supplementary Table 12. SA-SSR compared with MREPS for Caenorhabditis elegans. The number of SSRs in
the Caenorhabditis elegans genome found unique to MREPS, unique to SA-SSR, and shared between the two using
the three different parameter sets. The normal parameter set was as follows: -l 1 -L 700000 -m 1 -M 7 -n 16 -r 1 –i
N. The overlap set was identical to normal with the following addition: -o. The exhaustive set was identical to
overlap with the following addition: -e. Any SSRs with period size greater than 7, with total length less than 16nt,
or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 84 SSRs that MREPS found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. 54 of the 84 were also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result. Four of the remaining 30 SSRs were also
found by SA-SSR, but SA-SSR reported a different repeating unit than MREPS did (e.g., GT vs TG). Finally, the
last 26 were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case
involving the specific sequence and suffix sort order. The number of unique SSRs found by SA-SSR as reported
using the exhaustive parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 MREPS 0 11 3 16 0 39 15 84

SA-SSR 522 6 0 8 0 22 9 567

Shared 0 1892 843 986 180 2626 829 7356

O
ve

rla
p MREPS 0 5 1 8 0 14 2 30

SA-SSR 1862 13196 2592 3726 586 15465 5065 42492

Shared 0 1898 845 994 180 2651 842 7410

Ex
ha

us
tiv

e MREPS 0 0 0 0 0 0 0 0

SA-SSR 1862 15077 3592 20728 1183 31692 5561 79695

Shared 0 1903 846 1002 180 2665 844 7440

www.manaraa.com

 411

Supplementary Table 13. SA-SSR compared with ProGeRF for Caenorhabditis elegans. The number of SSRs
in the Caenorhabditis elegans genome found unique to ProGeRF, unique to SA-SSR, and shared between the two
using two different sets of parameters for SA-SSR. The normal parameter set was as follows: -l -L 700000 -m 1 -M
7 -n 16 -r 1 –i N. The overlap set was identical to normal with the following addition: -o. Any SSRs with period
size greater than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 2 SSRs that ProGeRF found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. 1 of the 2 was also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result. The remaining SSR was also found by
SA-SSR, but SA-SSR correctly reported shorter period lengths than ProGeRF did. Obviously, reporting a longer
period length than is strictly necessary to describe the SSR is misleading and certainly incorrect. AAAAAAAAA
has a period size of one repeated nine times, not three repeated three times. Likewise, ATATATAT has a period size
of two repeated four times, not four repeated two times.

 1 2 3 4 5 6 7 Total

N
or

m
al

 ProGeRF 0 0 0 0 0 1 1 2

SA-SSR 522 1871 833 971 179 2620 830 7826

Shared 0 27 10 23 1 28 8 97

O
ve

rla
p ProGeRF 0 0 0 0 0 1 0 1

SA-SSR 1862 15067 3427 4697 765 18088 5898 49804

Shared 0 27 10 23 1 28 9 98

www.manaraa.com

 412

Supplementary Table 14. SA-SSR compared with QDD for Caenorhabditis elegans. The number of SSRs in the
Caenorhabditis elegans genome found unique to QDD, unique to SA-SSR, and shared between the two using three
different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L 700000 -m 1 -M 7 -n 16 -
r 1 –i N. The overlap set was identical to normal with the following addition: -o. The exhaustive set was identical
to overlap with the following addition: -e. Any SSRs with period size greater than 7, with total length less than
16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 16 SSRs that QDD found uniquely? By default, SA-SSR reports only one SSR when
multiple may be found in an overlapping location. 9 of the 16 were also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result. One of the remaining 7 was a case where
the two programs correctly reported different repeating units (e.g., GT vs TG). The remaining 6 SSRs were also
found by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving the
specific sequence and suffix sort order. The number of unique SSRs found by SA-SSR as reported using the
exhaustive parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 QDD 0 8 1 4 0 3 0 16

SA-SSR 522 4 0 715 141 2340 838 4560

Shared 0 1894 843 279 39 308 0 3363

O
ve

rla
p QDD 0 5 1 0 0 1 0 7

SA-SSR 1862 13197 2594 4437 727 17806 5907 46530

Shared 0 1897 843 283 39 310 0 3372

Ex
ha

us
tiv

e QDD 0 0 0 0 0 0 0 0

SA-SSR 1862 15078 3594 21447 1324 34046 6405 83756

Shared 0 1902 844 283 39 311 0 3379

www.manaraa.com

 413

Supplementary Table 15. SA-SSR compared with SSR-Pipeline for Caenorhabditis elegans. The number of
SSRs in the Caenorhabditis elegans genome found unique to SSR-Pipeline, unique to SA-SSR, and shared between
the two using three different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L
700000 -m 1 -M 7 -n 16 -r 1 –i N. The overlap set was identical to normal with the following addition: -o. The
exhaustive set was identical to overlap with the following addition: -e. Any SSRs with period size greater than 7,
with total length less than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 286 SSRs that SSR-Pipeline found uniquely? By default, SA-SSR reports only one
SSR when multiple may be found in an overlapping location. 259 of the 286 were also found by SA-SSR when this
default behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs
found by SA-SSR as reported using the overlap parameter set is inflated as a result. Three of the remaining 27 were
cases where the two programs correctly reported different repeating units (e.g., GT vs TG). The remaining 24 SSRs
were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving
the specific sequence and suffix sort order. The number of unique SSRs found by SA-SSR as reported using the
exhaustive parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 SSR-Pipeline 0 116 31 38 1 87 13 286

SA-SSR 522 141 53 56 3 115 14 904

Shared 0 1757 790 938 177 2533 824 7019

O
ve

rla
p SSR-Pipeline 0 5 1 5 0 14 2 27

SA-SSR 1862 13226 2617 3749 588 15510 5072 42624

Shared 0 1868 820 971 178 2606 835 7278

Ex
ha

us
tiv

e SSR-Pipeline 0 0 0 0 0 0 0 0

SA-SSR 1862 15107 3617 20754 1185 31737 5568 79830

Shared 0 1873 821 976 178 2620 837 7305

www.manaraa.com

 414

Supplementary Table 16. SA-SSR compared with SSRIT for Caenorhabditis elegans. The number of SSRs in
the Caenorhabditis elegans genome found unique to SSRIT, unique to SA-SSR, and shared between the two using
three different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L 700000 -m 1 -M 7 -
n 16 -r 1 –i N. The overlap set was identical to normal with the following addition: -o. The exhaustive set was
identical to overlap with the following addition: -e. Any SSRs with period size greater than 7, with total length less
than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 17 SSRs that SSRIT found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. 14 of the 17 were also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result. The remaining 3 SSRs were also found
by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving the specific
sequence and suffix sort order. The number of unique SSRs found by SA-SSR as reported using the exhaustive
parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 SSRIT 0 8 3 6 0 0 0 17

SA-SSR 522 662 0 716 180 2648 838 5566

Shared 0 1236 843 278 0 0 0 2357

O
ve

rla
p SSRIT 0 2 1 0 0 0 0 3

SA-SSR 1862 13852 2592 4436 766 18116 5907 47531

Shared 0 1242 845 284 0 0 0 2371

Ex
ha

us
tiv

e SSRIT 0 0 0 0 0 0 0 0

SA-SSR 1862 15736 3592 21446 1363 34357 6405 84761

Shared 0 1244 846 284 0 0 0 2374

www.manaraa.com

 415

Supplementary Table 17. SA-SSR compared with TRF for Caenorhabditis elegans. The number of SSRs in the
Caenorhabditis elegans genome found unique to TRF, unique to SA-SSR, and shared between the two using three
different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L 700000 -m 1 -M 7 -n 16 -
r 1 –i N. The overlap set was identical to normal with the following addition: -o. The exhaustive set was identical
to overlap with the following addition: -e. Any SSRs with period size greater than 7, with total length less than
16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 900 SSRs that TRF found uniquely? By default, SA-SSR reports only one SSR when
multiple may be found in an overlapping location. 851 of the 900 were also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result. The remaining 49 SSRs were also found
by SA-SSR, and they fall into three different categories. The categories are overstated period size, finding different
numbers of repeats, and special cases requiring the exhaustive approach by SA-SSR. 10 of the 49 are cases where
TRF overstated the period size (e.g., calling ATATATAT a 4-mer instead of a 2-mer). Obviously, reporting a
longer period length than is strictly necessary to describe the SSR is misleading and certainly incorrect.
AAAAAAAAA has a period size of one repeated nine times, not three repeated three times. Likewise, ATATATAT
has a period size of two repeated four times, not four repeated two times. Of the remaining 38, the 26 that were not
found even under the exhaustive approach were actually found by SA-SSR. For 25 of the 26, SA-SSR correctly
reported a larger number of repeats. So, while it appeared that SA-SSR didn't find them, it actually did. For these
25, both are correct, but SA-SSR is more complete. The last of the 26 was also found by SA-SSR, but SA-SSR
correctly stated a shorter period size (another example where ATATATAT should be a 2-mer, not a 4-mer). This
leaves us with 13 unaccounted for. 7 were more cases where TRF and SA-SSR either reported different SSRs (e.g.,
GT vs TG) or reported different number of repeats. Finally, the last 6 were found during the exhaustive approach
and is a special, rare case involving the specific sequence and suffix sort. Of course, the number of unique SSRs
found by SA-SSR as reported using the exhaustive parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 TRF 0 99 46 77 11 537 130 900

SA-SSR 522 144 66 165 26 1443 283 2649

Shared 0 1754 777 829 154 1205 555 5274

O
ve

rla
p TRF 0 9 8 10 3 17 2 49

SA-SSR 1862 13250 2622 3824 604 16391 5224 43777

Shared 0 1844 815 896 162 1725 683 6125

Ex
ha

us
tiv

e TRF 0 8 7 2 3 5 1 26

SA-SSR 1862 15135 3622 20826 1201 32620 5721 80987

Shared 0 1845 816 904 162 1737 684 6148

www.manaraa.com

 416

Supplementary Table 18. SA-SSR compared with GMATo for Drosophila melanogaster. The number of SSRs
in the Drosophila melanogaster genome found unique to GMATo, unique to SA-SSR, and shared between the two
using two different sets of parameters for SA-SSR. The normal parameter set was as follows: -L 1000000 -m 1 -M
7 -n 16 -r 1 –i N. The overlap set was identical to normal with the following addition: -o. Any SSRs with period
size greater than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 467 SSRs that GMATo found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. 450 of the 467 were also found by SA-SSR when this
default behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs
found by SA-SSR as reported using the overlap parameter set is inflated as a result. The remaining 17 SSRs were
also found by SA-SSR, but SA-SSR correctly reported longer SSRs than GMATo did (e.g., in sequence
JXOZ01000280.1, SA-SSR reported CAGGGAC repeated 7 times beginning at position 73168 while GMATo
reported the same repeating only 4 times).

 1 2 3 4 5 6 7 Total

N
or

m
al

 GMATo 0 0 0 15 20 151 281 467

SA-SSR 4734 8094 3286 3328 1088 5557 1207 27294

Shared 0 0 0 15 25 228 318 586

O
ve

rla
p GMATo 0 0 0 1 1 6 9 17

SA-SSR 31700 47110 16452 14537 4328 25154 6006 145287

Shared 0 0 0 29 44 373 590 1036

www.manaraa.com

 417

Supplementary Table 19. SA-SSR compared with MREPS for Drosophila melanogaster. The number of SSRs
in the Drosophila melanogaster genome found unique to MREPS, unique to SA-SSR, and shared between the two
using three different sets of parameters for SA-SSR. The normal parameter set was as follows: -L 1000000 -m 1 -M
7 -n 16 -r 1 –i N. The overlap set was identical to normal with the following addition: -o. The exhaustive set was
identical to overlap with the following addition: -e. Any SSRs with period size greater than 7, with total length less
than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 232 SSRs that MREPS found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. 188 of the 232 were also found by SA-SSR when this
default behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs
found by SA-SSR as reported using the overlap parameter set is inflated as a result. 43 of the remaining 44 SSRs
were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving
the specific sequence and suffix sort order. The last SSR was a case where SA-SSR and MREPS simply reported a
slightly different SSR (e.g., AT vs TA). The number of unique SSRs found by SA-SSR as reported using the
exhaustive parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 MREPS 6 21 33 56 17 90 9 232

SA-SSR 1 11 19 16 10 42 5 104

Shared 4733 8083 3267 3327 1103 5743 1520 27776

O
ve

rla
p MREPS 2 2 0 36 3 1 0 44

SA-SSR 26963 39008 13152 11219 3255 19695 5067 118359

Shared 4737 8102 3300 3347 1117 5832 1529 27964

Ex
ha

us
tiv

e MREPS 0 0 0 0 0 0 0 0

SA-SSR 26963 70718 36560 90090 21713 91821 21709 359574

Shared 4739 8104 3300 3383 1120 5833 1529 28008

www.manaraa.com

 418

Supplementary Table 20. SA-SSR compared with ProGeRF for Drosophila melanogaster. The number of SSRs
in the Drosophila melanogaster genome found unique to ProGeRF, unique to SA-SSR, and shared between the two
using two different sets of parameters for SA-SSR. The normal parameter set was as follows: -L 1000000 -m 1 -M
7 -n 16 -r 1 –i N. The overlap set was identical to normal with the following addition: -o. Any SSRs with period
size greater than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 10 SSRs that ProGeRF found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. 6 of the 10 were also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result. The remaining 4 SSRs were also found
by SA-SSR, but SA-SSR correctly reported shorter period lengths than ProGeRF did (e.g., in sequence
JXOZ01000073.1, SA-SSR reported A repeated 19 times beginning at position 136707 while ProGeRF reported
AAA repeating 6 times at the same position). Obviously, reporting a longer period length than is strictly necessary
to describe the SSR is misleading and certainly incorrect. AAAAAAAAA has a period size of one repeated nine
times, not three repeated three times. Likewise, ATATATAT has a period size of two repeated four times, not four
repeated two times.

 1 2 3 4 5 6 7 Total

N
or

m
al

 ProGeRF 1 1 4 0 1 3 0 10

SA-SSR 4651 7930 3233 3271 1095 5659 1485 27324

Shared 83 164 53 72 18 126 40 556

O
ve

rla
p ProGeRF 0 1 2 0 0 1 0 4

SA-SSR 31616 46946 16397 14494 4353 25399 6556 145761

Shared 84 164 55 72 19 128 40 562

www.manaraa.com

 419

Supplementary Table 21. SA-SSR compared with QDD for Drosophila melanogaster. The number of SSRs in
the Drosophila melanogaster genome found unique to QDD, unique to SA-SSR, and shared between the two using
three different sets of parameters for SA-SSR. The normal parameter set was as follows: -L 1000000 -m 1 -M 7 -n
16 -r 1 –i N. The overlap set was identical to normal with the following addition: -o. The exhaustive set was
identical to overlap with the following addition: -e. Any SSRs with period size greater than 7, with total length less
than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 63 SSRs that QDD found uniquely? By default, SA-SSR reports only one SSR when
multiple may be found in an overlapping location. 59 of the 63 were also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result. The remaining 4 SSRs were also found
by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving the specific
sequence and suffix sort order. The number of unique SSRs found by SA-SSR as reported using the exhaustive
parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 QDD 0 25 22 8 6 2 0 63

SA-SSR 4734 18 15 2246 880 5594 1525 15012

Shared 0 8076 3271 1097 233 191 0 12868

O
ve

rla
p QDD 0 2 0 2 0 0 0 4

SA-SSR 31700 39011 13159 13463 4133 25334 6596 133396

Shared 0 8099 3293 1103 239 193 0 12927

Ex
ha

us
tiv

e QDD 0 0 0 0 0 0 0 0

SA-SSR 31702 70721 36567 92368 22594 97461 23238 374651

Shared 0 8101 3293 1105 239 193 0 12931

www.manaraa.com

 420

Supplementary Table 22. SA-SSR compared with SSR-Pipeline for Drosophila melanogaster. The number of
SSRs in the Drosophila melanogaster genome found unique to SSR-Pipeline, unique to SA-SSR, and shared
between the two using three different sets of parameters for SA-SSR. The normal parameter set was as follows: -L
1000000 -m 1 -M 7 -n 16 -r 1 –i N. The overlap set was identical to normal with the following addition: -o. The
exhaustive set was identical to overlap with the following addition: -e. Any SSRs with period size greater than 7,
with total length less than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 987 SSRs that SSR-Pipeline found uniquely? By default, SA-SSR reports only one
SSR when multiple may be found in an overlapping location. 944 of the 987 were also found by SA-SSR when this
default behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs
found by SA-SSR as reported using the overlap parameter set is inflated as a result. 42 of the remaining 43 SSRs
were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving
the specific sequence and suffix sort order. The last SSR was a case where SA-SSR and SSR-Pipeline simply
reported a slightly different SSR (e.g., AT vs TA). The number of unique SSRs found by SA-SSR as reported using
the exhaustive parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 SSR-Pipeline 6 386 207 152 45 166 25 987

SA-SSR 1 473 271 190 70 298 51 1354

Shared 4733 7621 3015 3153 1043 5487 1474 26526

O
ve

rla
p SSR-Pipeline 2 2 0 36 2 1 0 43

SA-SSR 26963 39105 13230 11297 3286 19875 5097 118853

Shared 4737 8005 3222 3269 1086 5652 1499 27470

Ex
ha

us
tiv

e SSR-Pipeline 0 0 0 0 0 0 0 0

SA-SSR 26963 70815 36638 90168 21745 92001 21739 360069

Shared 4739 8007 3222 3305 1088 5653 1499 27513

www.manaraa.com

 421

Supplementary Table 23. SA-SSR compared with SSRIT for Drosophila melanogaster. The number of SSRs in
the Drosophila melanogaster genome found unique to SSRIT, unique to SA-SSR, and shared between the two using
three different sets of parameters for SA-SSR. The normal parameter set was as follows: -L 1000000 -m 1 -M 7 -n
16 -r 1 –i N. The overlap set was identical to normal with the following addition: -o. The exhaustive set was
identical to overlap with the following addition: -e. Any SSRs with period size greater than 7, with total length less
than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 56 SSRs that SSRIT found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. 54 of the 56 were also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result. The remaining 2 SSRs were also found
by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving the specific
sequence and suffix sort order. The number of unique SSRs found by SA-SSR as reported using the exhaustive
parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 SSRIT 0 12 32 12 0 0 0 56

SA-SSR 4734 2570 18 2248 1113 5785 1525 17993

Shared 0 5524 3268 1095 0 0 0 9887

O
ve

rla
p SSRIT 0 0 0 2 0 0 0 2

SA-SSR 31700 41574 13152 13461 4372 25527 6596 136382

Shared 0 5536 3300 1105 0 0 0 9941

Ex
ha

us
tiv

e SSRIT 0 0 0 0 0 0 0 0

SA-SSR 31702 73286 36560 92366 22833 97654 23238 377639

Shared 0 5536 3300 1107 0 0 0 9943

www.manaraa.com

 422

Supplementary Table 24. SA-SSR compared with TRF for Drosophila melanogaster. The number of SSRs in
the Drosophila melanogaster genome found unique to TRF, unique to SA-SSR, and shared between the two using
three different sets of parameters for SA-SSR. The normal parameter set was as follows: -L 1000000 -m 1 -M 7 -n
16 -r 1 –i N. The overlap set was identical to normal with the following addition: -o. The exhaustive set was
identical to overlap with the following addition: -e. Any SSRs with period size greater than 7, with total length less
than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 2187 SSRs that TRF found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. 2018 of the 2187 were also found by SA-SSR when this
default behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs
found by SA-SSR as reported using the overlap parameter set is inflated as a result. The remaining 169 SSRs were
also found by SA-SSR and they fall into three different categories. The categories are overstated period size,
finding different numbers of repeats, and special cases requiring the exhaustive approach by SA-SSR. 60 of the 169
are cases where TRF overstated the period size (e.g., in sequence JXOZ01000843.1, TRF reports an AGAG
repeating 4 times at position 109312 while SA-SSR correctly reports an AG repeated 8 times at the same position).
2 of these appear again in the 103 that SA-SSR didn't appear to find using the exhaustive parameter set, but SA-SSR
did find them, it just reported the correct period size. Obviously, reporting a longer period length than is strictly
necessary to describe the SSR is misleading and certainly incorrect. AAAAAAAAA has a period size of one
repeated nine times, not three repeated three times. Likewise, ATATATAT has a period size of two repeated four
times, not four repeated two times.

The remaining 111 cases fall into the other two categories. 104 of the 169 are cases where TRF and SA-SSR
reported different SSRs (e.g., AT vs TA) or TRF reported less repeats of the same SSR (e.g., in sequence
JXOZ01001169.1, TRF reports a TTTCGA repeated 3 times at position 83483 while SA-SSR reports the same
repeated 4 times). 101 of these also appear not to be found using the exhaustive parameter set because SA-SSR
correctly reported SSRs with more repeats. The remaining 5 were also found by SA-SSR, but only when using the
exhaustive approach because of a special, rare case involving the specific sequence and suffix sort order. The
number of unique SSRs found by SA-SSR as reported using the exhaustive parameter set is also inflated.

 1 2 3 4 5 6 7 Total

N
or

m
al

 TRF 5 769 373 323 61 528 128 2187

SA-SSR 22 1042 551 544 210 1224 318 3911

Shared 4712 7052 2735 2799 903 4561 1207 23969

O
ve

rla
p TRF 1 53 14 54 9 36 2 169

SA-SSR 26984 39342 13358 11498 3417 20474 5263 120336

Shared 4716 7768 3094 3068 955 5053 1333 25987

Ex
ha

us
tiv

e TRF 0 52 13 15 8 13 2 103

SA-SSR 26985 71053 36765 90366 21877 92578 21905 361529

Shared 4717 7769 3095 3107 956 5076 1333 26053

www.manaraa.com

 423

Supplementary Table 25. SA-SSR compared with GMATo for Escherichia coli. The number of SSRs in the
Escherichia coli genome found unique to GMATo, unique to SA-SSR, and shared between the two using two
different sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L 600000 -m 1 -M 7 -n 16 -
r 1. The overlap set was identical to normal with the following addition: -o. Any SSRs with period size greater than
7, with total length less than 16nt, or that were incorrect were excluded from this comparison.
Why did SA-SSR not find the 8 SSRs that GMATo found uniquely? By default, SA-SSR reports only one SSR
when multiple may be found in an overlapping location. All 8 were also found by SA-SSR when this default
behavior is changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by
SA-SSR as reported using the overlap parameter set is inflated as a result.

 1 2 3 4 5 6 7 Total

N
or

m
al

 GMATo 0 0 0 0 0 7 1 8

SA-SSR 1 0 0 0 0 13 1 15

Shared 0 0 0 1 0 4 0 5

O
ve

rla
p GMATo 0 0 0 0 0 0 0 0

SA-SSR 5 0 0 2 0 287 36 330

Shared 0 0 0 1 0 11 1 13

Supplementary Table 26. SA-SSR compared with MREPS for Escherichia coli. The number of SSRs in the
Escherichia coli genome found unique to MREPS, unique to SA-SSR, and shared between the two using the
following parameter set: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1. Any SSRs with period size greater than 7, with total
length less than 16nt, or that were incorrect were excluded from this comparison.

 1 2 3 4 5 6 7 Total

MREPS 0 0 0 0 0 0 0 0

SA-SSR 1 0 0 0 0 0 0 1

Shared 0 0 0 1 0 17 1 19

www.manaraa.com

 424

Supplementary Table 27. SA-SSR compared with ProGeRF for Escherichia coli. The number of SSRs in the
Escherichia coli genome found unique to ProGeRF, unique to SA-SSR, and shared between the two using the
following parameter set: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1. Any SSRs with period size greater than 7, with total
length less than 16nt, or that were incorrect were excluded from this comparison.

 1 2 3 4 5 6 7 Total

ProGeRF 0 0 0 0 0 0 0 0

SA-SSR 1 0 0 1 0 13 1 16

Shared 0 0 0 0 0 4 0 4

Supplementary Table 28. SA-SSR compared with QDD for Escherichia coli. The number of SSRs in the
Escherichia coli genome found unique to QDD, unique to SA-SSR, and shared between the two using two different
sets of parameters for SA-SSR. The normal parameter set was as follows: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1. The
overlap set was identical to normal with the following addition: -o. Any SSRs with period size greater than 7, with
total length less than 16nt, or that were incorrect were excluded from this comparison.

Why did SA-SSR not find the 8 SSRs that QDD found uniquely? By default, SA-SSR reports only one SSR when
multiple may be found in an overlapping location. All 8 were also found by SA-SSR when this default behavior is
changed to report every SSR, even though they overlap. Naturally, the number of unique SSRs found by SA-SSR as
reported using the overlap parameter set is inflated as a result.

 1 2 3 4 5 6 7 Total

N
or

m
al

 QDD 0 0 0 0 0 8 0 8

SA-SSR 1 0 0 1 0 17 1 20

Shared 0 0 0 0 0 0 0 0

O
ve

rla
p QDD 0 0 0 0 0 0 0 0

SA-SSR 5 0 0 3 0 290 37 335

 Shared 0

0

0

0

0

8

0

8

www.manaraa.com

 425

Supplementary Table 29. SA-SSR compared with SSR-Pipeline for Escherichia coli. The number of SSRs in
the Escherichia coli genome found unique to SSR-Pipeline, unique to SA-SSR, and shared between the two using
the following parameter set: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1. Any SSRs with period size greater than 7, with
total length less than 16nt, or that were incorrect were excluded from this comparison.

 1 2 3 4 5 6 7 Total

SSR-Pipeline 0 0 0 0 0 0 0 0

SA-SSR 1 0 0 1 0 17 1 20

Shared 0 0 0 0 0 0 0 0

Supplementary Table 30. SA-SSR compared with SSRIT for Escherichia coli. The number of SSRs in the
Escherichia coli genome found unique to SSRIT, unique to SA-SSR, and shared between the two using the
following parameter set: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1. Any SSRs with period size greater than 7, with total
length less than 16nt, or that were incorrect were excluded from this comparison.

 1 2 3 4 5 6 7 Total

SSRIT 0 0 0 0 0 0 0 0

SA-SSR 1 0 0 1 0 17 1 20

Shared 0 0 0 0 0 0 0 0

Supplementary Table 31. SA-SSR compared with TRF for Escherichia coli. The number of SSRs in the
Escherichia coli genome found unique to TRF, unique to SA-SSR, and shared between the two using the following
parameter set: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1. Any SSRs with period size greater than 7, with total length less
than 16nt, or that were incorrect were excluded from this comparison.

 1 2 3 4 5 6 7 Total

TRF 0 0 0 0 0 0 0 0

SA-SSR 1 0 0 0 0 0 0 1

Shared 0 0 0 1 0 17 1 19

www.manaraa.com

 426

SUPPLEMENTAL REFERENCES

Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences, Nucleic acids
research, 27, 573.

Kolpakov, R., Bana, G. and Kucherov, G. (2003) mreps: efficient and flexible detection of
tandem repeats in DNA, Nucleic acids research, 31, 3672-3678.

Lopes, R.d.S., et al. (2015) ProGeRF: Proteome and Genome Repeat Finder Utilizing a Fast
Parallel Hash Function, BioMed research international, 2015.

Meglécz, E., et al. (2014) QDD version 3.1: a user‑ friendly computer program for microsatellite
selection and primer design revisited: experimental validation of variables determining
genotyping success rate, Molecular ecology resources, 14, 1302-1313.

Miller, M.P., et al. (2013) SSR_pipeline: A bioinformatic infrastructure for identifying
microsatellites from paired-end Illumina high-throughput DNA sequencing data, Journal
of Heredity, est056.

Temnykh, S., et al. (2001) Computational and experimental analysis of microsatellites in rice
(Oryza sativa L.): frequency, length variation, transposon associations, and genetic
marker potential, Genome research, 11, 1441-1452.

Wang, X., Lu, P. and Luo, Z. (2013) GMATo: A novel tool for the identification and analysis of
microsatellites in large genomes, Bioinformation, 9, 541-544.

www.manaraa.com

 427

APPENDIX 7

Chapter 7 – File S1

SUPPLEMENTARY BIOINFORMATICS METHODS

This document contains an explanation of the bioinformatics methods required for

incompatibility group/replicon typing and plasmid characterization. It is expanded from our

paper in Genome. This document will begin with an overview of the process and will be

followed by a detailed description of the methods.

Overview

The process begins with one fasta file and multiple GenBank files. The fasta file is the

local download of the PlasmidFinder database referenced in our paper. The GenBank files come

from the Entrez search strategy also described in the paper. The ultimate output is a CSV file and

text-based report file for each input GenBank file. The CSV file contains basic information (e.g.,

plasmid length), the incompatibility group(s) the plasmid best aligns to, accession numbers of

identical plasmids, some gene/function annotation based on key term searches of the GenBank

file's CDS regions, and some other metadata extracted from the GenBank files. The text-based

report is a file containing various information and statistics about each group of plasmids from

the various input GenBank files. We also generated a tree to help visualize the identical

plasmids.

Our process occurs stepwise, with most steps requiring the output from the previous

steps. As our project developed, additional steps were inserted or modified. While most steps do

www.manaraa.com

 428

depend on the output of the previous step(s), the order is in many instances arbitrary. The code is

published online in this GitHub repository (https://github.com/ridgelab/plasmidCharacterization).

Each output CSV file requires the following input processed from the “raw” input data (in no

particular order): (a) a list of identical plasmids for each accession, (b) extracted metadata from

the GenBank files, (c) gene/function annotations extracted from the GenBank files, and (d) a list

of incompatibility groups. Each output statistics report file is created based on each CSV file just

described.

Identical Plasmids

First, a blast database was created with makeblastdb. Each plasmid sequence (which

would have to be extracted from the GenBank files) is aligned with blastn to each other plasmid

sequence in a pairwise fashion. Hits were kept only if the percent identity was >=98%. Plasmids

were considered identical if the hits covered >=98% of both the query and the subject sequence.

We created a tree using a simple distance metric to help visualize the identical plasmids. The

distance metric is the sum of the query and subject covered bases divided by the sum of the

length of the query and subject sequences (see step 25 for details). The Newick formatted tree

was made from the distance matrix using the makeNewick.py script from CAM (Miller et al.

2019) and is available on GitHub at https://github.com/ridgelab/cam. makeblastdb and blastn are

part of the BLAST+ Suite (Altschul et al. 1990; Camacho et al. 2009).

GenBank Metadata

The sequencing technology used to sequence each plasmid was identified with GNU

AWK. The remaining metadata was also obtained from the GenBank files using GNU AWK.

www.manaraa.com

 429

The remaining data points are as follows: country of origin for the plasmid, isolation source for

the plasmid, plasmid collection data, and source organism.

GenBank Annotations

This is by far the most complicated part of the process. First, search regions were

extracted from the GenBank files. The search regions were the function, gene, note, and product

sections of the CDS features. We then identified matches in these regions to key terms (these key

terms were obtained as described in our paper). The search occurred under the following

strategy:

The search terms are each part of one or more categories. Each can belong to

multiple categories, but only if the categories are subsets of each other. Five principal

categories exist, two of which have subcategories. The category structure is as follows:

• Antimicrobial Resistance

o Beta-lactamase

 Beta-lactamase Special

• Toxin/Antitoxin System

• DNA Maintenance/Modification

o DNA Maintenance/Modification Special

• Mobile Genetic Elements

• Hypothetical Genes

The strategy could be described as top-to-bottom, in-to-out; i.e., Antimicrobial

Resistance is more important that Toxin/Antitoxin System and Beta-lactamase Special is

more important than Beta-lactamase and Antimicrobial Resistance. The reason these are

www.manaraa.com

 430

shown nested instead of simply above their parents is because a match for a Beta-

lactamase Special search term will increment the count for not only itself, but also its

parents. If no matches are found, the CDS region being searched is classified as "Other".

Some CDS regions will never be searched for these terms if they first match a term in a

special "Ignored" category. Provided a CDS region is not to be ignored, it will be

searched with Beta-lactamase Special terms, then Beta-lactamase terms, then

Antimicrobial Resistance Terms, then Toxin/Antitoxin System terms, and so-forth, until a

match is found (thus halting the search on this CDS region) or no more search terms

remain, in which case it is assigned to the "Other" category. All CDS regions are

converted to lowercase before being searched as described. These terms are listed, with

their associated Python regular expressions, in the doc directory of the online repository.

Incompatibility Groups

The incompatibility fasta sequences were downloaded from the PlasmidFinder database

as previously described. This was turned into a database using makeblastdb. Each plasmid

sequence was then aligned to the database using blastn and hits were retained only if the percent

identity was >=80%. Hits were further dropped if the subject (the sequences in the database)

coverage was <60%. The “best” hits were then used to determine which incompatibility group(s)

applied to each plasmid. “Best” is defined as the result(s) with the highest percent identity and

those that have percent identities within only 1 percent of the highest one. makeblastdb and

blastn are part of the BLAST+ Suite (Altschul et al. 1990; Camacho et al. 2009).

Detailed Methods

www.manaraa.com

 431

This section is a more detailed explanation of the bioinformatics methods required for

incompatibility group/replicon typing and plasmid characterization. Please note that most of

these steps will be simple data formatting. Also note that it would have been easier in some cases

to combine multiple steps into one. The choice to separate each piece of the process was for

clarity and to enable another to modify this process for their own purposes. Additionally, some

steps might have made better sense in different orders. This process evolved as the project

changed; we recognize alternate orders are plausible. For our work, all steps could be run

interactively, i.e., not requiring a high-performance computing (HPC) architecture. Our work

was completed on a machine running Red Hat Enterprise Linux.

Summary

This process begins with one fasta file and multiple GenBank files. The formats for these

files are described in steps 1 and 3, respectively. The fasta file contains the incompatibility group

sequences. In our work, this was a download of the PlasmidFinder v1.3 Enterobacteriaceae

database (Carattoli et al. 2014). The GenBank files contain one or more GenBank records in

them, where each record could itself be considered a GenBank file for a single accession

number. Thus, these GenBank files are concatenations of multiple GenBank records. Effectively,

this is how we grouped accessions of interest. The same accession may appear in multiple

groupings. Note, if you attempt to re-use our process with your own data and have GenBank files

as a single file per accession, combining them into groups will feel unnecessary. We began this

way because that is what we had to start with.

The results of the entire process are CSV files with information about each plasmid in a

group and a text file with summary statistics about each group. The file contains basic

information (e.g., plasmid length), the incompatibility group(s) the plasmid best aligns to, and

www.manaraa.com

 432

some gene/function annotation based on key term searches of the GenBank file's CDS regions.

To accomplish this, each (input) group GenBank file is split into a single GenBank file per

accession and the sequences are extracted as fasta files. The sequence lengths are recorded, and

these sequences are individually aligned (using the NCBI BLAST+ Suite (Altschul et al. 1990;

Camacho et al. 2009)) to the incompatibility group sequences. After filtering out the "best"

alignments, the incompatibility group is determined and saved for later assimilation into the final

outputs. The CDS regions are extracted from the GenBank files and searched for key terms using

regular expressions. Each key term belongs to one or more categories. Matches in each category

are counted and summarized in the final output. For more details on this searching strategy,

please see step #14. The key terms are listed with their Python regular expression in the

supplement of our paper. Additional information, e.g., sequencing platforms, country, etc., is

also available in the final outputs.

This summary concludes with an outline of the steps. Each step will then be addressed in

detail. The code in the detailed steps has, in many cases, been simplified. In other cases, the code

is several pages long and would be difficult to copy and paste effectively. Especially with the

Python code, readability suffers as lines wrap because a standard page is not wide enough to

contain some code statements on a single line. Accordingly, we encourage you to visit the online

repository for the code: https://github.com/ridgelab/plasmidCharacterization.

Outline of Steps

Step 1. Format Incompatibility Groups Fasta File
Step 2. Create Incompatibility Groups BLAST Database
Step 3. Split Multi-Accession GenBank Files
Step 4. Extract ORIGIN Sequence from GB to Fasta
Step 5. Extract Group Lists
Step 6. BLAST Incompatibility Groups

www.manaraa.com

 433

Step 7. Subset BLAST Results by Coverage Cutoff of 60%
Step 8. Add Incompatibility Group Family as Column to BLAST Results
Step 9. Filter Best Matches in BLAST Results
Step 10. Extract Incompatibility Families
Step 11. Extract Sequencing Technologies
Step 12. Extract Source Information
Step 13. Extract Plasmid Search Regions
Step 14. Identify Plasmid Matches
Step 15. Summarize Plasmid Matches
Step 16. Drop Plasmids
Step 17. Create Plasmid BLAST Database
Step 18. BLAST Plasmid
Step 19. Extract Identical Plasmids with BLAST Result Coverage Cutoff of 98%
Step 20. Fix Identical Plasmid Non-concordance
Step 21. Generate Plasmid CSVs
Step 22. Create Group CSVs from Plasmid CSVs
Step 23. Create Group Matches from Plasmid Matches
Step 24. Calculate Group Statistics from Group CSV
Step 25. Create Distance Matrix
Step 26. Create Distance Tree
Step 27. Add Leaf Labels to Tree
Step 28. Add Color to Leaf Labels

www.manaraa.com

 434

Step 1. Format Incompatibility Groups Fasta File

Input: Fasta file with incompatibility group sequences. Each sequence may be on one or
more lines. The headers might start with “Inc”.

Output: Same fasta file as the input, but sequences occur on only one line. Headers without
“Inc” now have “Inc” prepended.

Code:

Bash Command

awk -f formatIncGroupFasta.awk \

 original_incomp-grp.fasta \

 > incomp-grp.fasta

 AWK Script (formatIncGroupFasta.awk)

#! /bin/awk -f

{

 if ($0 ~ /^>.+$/) {

 if (NR != 1) {

 printf "\n";

 }

 if ($0 ~ /^>Inc.+$/) {

 print $0;

 }

 else {

 printf "%s%s\n", ">Inc", substr($0, 2);

 }

 }

 else {

 printf "%s", $0;

 }

}

END {

 printf "\n";

}

www.manaraa.com

 435

Step 2. Create Incompatibility Groups BLAST database

Input: Fasta file with incompatibility group sequences. Each sequence is on only one line.
The headers start with “>Inc”.

Output: BLAST database of the incompatibility group sequences.

Code:

Bash Command

makeblastdb \

 -dbtype nucl \

 -in incompatibility.fasta \

 -input_type fasta \

 -title incompatibility \

 -parse_seqids \

 -hash_index \

 -out incompatibility \

 -max_file_sz 2GB \

 -logfile makeBlastDB.log

BLAST Software

NCBI (United States National Center for Biotechnology Information) BLAST+ Suite
version 2.4.0 (Altschul et al. 1990; Camacho et al. 2009).

www.manaraa.com

 436

Step 3. Split Multi-Accession GenBank Files

Input: 1+ GenBank files, each with 1+ records. Each record is itself a GenBank file for a
single Accession. Thus, the multi-accession GenBank files are simply concatenations of
multiple single-accession GenBank files. Assume that these GenBank files are in a directory
called original_gb.

Output: One GenBank file for each accession. If the same accession exists in more than one
multi-accession file, assume they are the same and overwrite it. Assume that the output
GenBank files will be in a directory called plasmid_gb.

Code:

Bash Command

cd plasmid_gb

while read ifn

do

 awk -f splitMultiGB.awk "${ifn}"

done < <(ls -1 original_gb/*.gb)

 AWK Script (splitMultiGB.awk)

#! /bin/awk -f

BEGIN {

 FS="[]+";

 accession="";

 ofn="";

}

{

 if ($0 == "//" || $0 == "")

 {

 accession = "";

 ofn = "";

 }

 else if ($1 == "LOCUS")

 {

 accession = $2;

 ofn = accession ".gb";

 print $0 > ofn;

 }

 else

 {

 print $0 >> ofn;

 }

}

www.manaraa.com

 437

END {

 print "done splitting " FILENAME " by accession";

}

www.manaraa.com

 438

Step 4. Extract ORIGIN Sequence from GB to Fasta

Input: One GenBank file with a single accession in it. Assume it is in the directory
plasmid_gb and it is named after the pattern ${ACCESSION}.gb.

Output: One Fasta file with the sequence from the ORIGIN section of the GenBank file. The
Fasta file has sequences that are each on only one line. It will be in the directory
plasmid_fasta.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" ".gb"`

 awk -f extractOriginSeqFromGBtoFasta.awk \

 "plasmid_gb/${ACCESSION}.gb" \

 > "plasmid_fasta/${ACCESSION}.fasta"

done < <(ls -1 plasmid_gb/*.gb)

 AWK Script (extractOriginSeqFromGBtoFasta.awk)

#! /bin/awk -f

BEGIN {

 FS = "[]+";

 origin_found = 0; # false

}

{

 if (origin_found)

 {

 sub(/ *[0-9]+ /, "", $0);

 gsub(/ +/, "", $0);

 printf toupper($0);

 }

 else if ($1 == "ORIGIN")

 {

 origin_found = 1; # true

 print ">" gensub(/^(.+)\.gb$/, "\\1", "-1", gensub(/^.*\//,

"", "-1", FILENAME));

 }

}

www.manaraa.com

 439

END {

 printf "\n";

 print "done extracting ORIGIN seq from " FILENAME " to fasta" >

"/dev/stderr";

}

www.manaraa.com

 440

Step 5. Extract Group Lists

Input: One GenBank file with multiple accessions in it. Assume it is in the directory
original_gb and it is named after the pattern ${GROUP}.gb.

Output: Multiple text files, each with the extension ".list". Each file is a line separated list of
accession numbers that make up the group. The files will be in a directory called groups
with the name ${GROUP}.list.

Code:

Bash Command

while read ifn

do

 awk -f extractGroupLists.awk \

 "${ifn}"

done < <(ls -1 original_gb/*.gb)

 AWK Script (extractGroupLists.awk)

#! /bin/awk -f

BEGIN {

 FS="[]+";

 accession="";

 ofn="";

}

{

 if (NR == 1)

 {

 ofn = gensub(/^(.+)\.gb$/, "\\1", "-1", gensub(/^.*\//, "", "-

1", FILENAME)) ".list";

 }

 if ($1 == "LOCUS")

 {

 accession = $2;

 print accession >> ofn;

 }

}

END {

 print "done extracting accessions from " FILENAME;

}

www.manaraa.com

 441

Step 6. BLAST Incompatibility Groups

Input: Fasta files. Each contains the sequence from a single accession. Assume they are in
the directory plasmid_fasta and they are named after the pattern ${ACCESSION}.fasta.

Input: The incompatibility groups BLAST database created in step #1. It is named
incompatibility.

Output: One tab-separated value file for each input file. Each file is a modified version of
the BLAST output format 6. The format is specified as seen using the -outfmt option with
blastn. The columns are as follows: qseqid, sseqid, pident, length, evalue, qframe, qlen,
qstart, qend, sframe, slen, sstart, send, qseq, and sseq. The files will be in a directory called
blast_results and named after the pattern ${ACCESSION}_fmt6c.tsv. Note that a match
was not included in the output if the percent identity was <80%.

Code:

Bash Command

THREADS=8

while read ifn

do

 ACCESSION=`basename "${ifn}" ".fasta"`

 blastn \

 -query "${ifn}" \

 -strand both \

 -task blastn \

 -db icompatibility \

 -out blast_results/${ACCESSION}_fmt6c.tsv \

 -outfmt "6 qseqid sseqid pident length evalue qframe

qlen qstart qend sframe slen sstart send qseq sseq" \

 -num_threads ${THREADS} \

 -perc_identity 80

done < <(ls -1 plasmid_fasta/*.fasta)

BLAST Software

NCBI (United States National Center for Biotechnology Information) BLAST+ Suite
version 2.4.0 (Altschul et al. 1990; Camacho et al. 2009).

www.manaraa.com

 442

Step 7. Subset BLAST Results by Coverage Cutoff of 60%

Input: Tab-separated value files. Each contains the results from blasting the sequence of a
single accession against the incompatibility groups BLAST database. Assume they are in the
directory blast_results and they are named after the pattern ${ACCESSION}_fmt6c.tsv.

Output: One tab-separated value file for each input file. Each file is a copy of its respective
input file except some results may be omitted if the coverage was less than 60%. The files
will be in a directory called blast_results and named after the pattern ${ACCESSION}_
fmt6c_cov60.tsv. Note that a new column was inserted as column number 14 (1-based
indexing). The columns will now be as follows: qseqid, sseqid, pident, length, evalue,
qframe, qlen, qstart, qend, sframe, slen, sstart, send, scov, qseq, and sseq.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" "_fmt6c.tsv"`

 awk -f subCovCutoff60.awk \

 "${ifn}" \

 > "blast_results/${ACCESSON}_fmt6c_cov60.tsv"

done < <(ls -1 blast_results/*_fmt6c.tsv)

 AWK Script (subCovCutoff60.awk)

#! /bin/awk -f

BEGIN {

 FS="\t";

 OFS="\t";

 ORS="\n";

 count=0;

}

{

 # 4 = length, 11 = slen, scov = length / slen

 scov = $4 / $11;

 if (scov >= 0.6)

 {

 count += 1

 # keep 1-13, add new column, keep 14-15 (will become 15-16)

 for (i = 1; i <= 13; i++)

 {

 printf "%s", $i OFS;

 }

www.manaraa.com

 443

 printf "%f", scov OFS;

 for (i = 14; i <= NF; i++)

 {

 printf "%s", $i (i == NF ? ORS : OFS);

 }

 }

}

END {

 print FILENAME ": " count > "/dev/stderr";

}

www.manaraa.com

 444

Step 8. Add Incompatibility Group as Column to BLAST Results

Input: Tab-separated value files. Each contains the results from blasting the sequence of a
single accession against the incompatibility groups BLAST database. It has an added column
with the subject coverage and has only records with coverage >60%. Assume they are in the
directory blast_results and they are named after the pattern
${ACCESSION}_fmt6c_cov60.tsv.

Output: One tab-separated value file for each input file. Each file is a copy of its respective
input file except that an additional column is added. This column has the family or root of the
incompatibility group from column #2 (sseqid). The files will be in a directory called
blast_results and named after the pattern ${ACCESSION}_fmt6c_cov60_fam.tsv. Note
that a new column was inserted as column number 3 (1-based indexing). The columns will
now be as follows: qseqid, sseqid, fam, pident, length, evalue, qframe, qlen, qstart, qend,
sframe, slen, sstart, send, scov, qseq, and sseq.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" "_fmt6c_cov60.tsv"`

 awk -f addFamCol.awk \

 "${ifn}" \

 > "blast_results/${ACCESSON}_fmt6c_cov60_fam.tsv"

done < <(ls -1 blast_results/*_fmt6c_cov60.tsv)

 AWK Script (addFamCol.awk)

#! /bin/awk -f

BEGIN {

 FS="\t";

 OFS="\t";

 ORS="\n";

}

{

 # 2 = subject_id, keep 1-2, add new column,

 #keep 3-16 (will become 4-17)

 for (i = 1; i <= 2; i++)

 {

 printf "%s", $i OFS;

 }

 printf "%s", gensub(/^([^(_]+).*$/, "\\1", "-1", $2) OFS;

www.manaraa.com

 445

 for (i = 3; i <= NF; i++)

 {

 printf "%s", $i (i == NF ? ORS : OFS);

 }

}

www.manaraa.com

 446

Step 9. Filter Best Matches in BLAST Results

Input: Tab-separated value files. Each contains the results from blasting the sequence of a
single accession against the incompatibility groups BLAST database. It has two added
columns with the subject coverage (and has only records with coverage >60%) and family.
Assume they are in the directory blast_results and are named after the pattern
${ACCESSION}_fmt6c_cov60_fam.tsv.

Output: One tab-separated value file for each input file. Each file is a copy of its respective
input file except that some results are omitted. The “best” results are retained. “Best” is
defined as the result(s) with the highest percent identity and those that have percent identities
within only 1 percent of the highest one. The files will be in a directory called
blast_results and named after the pattern ${ACCESSION}_fmt6c_cov60_fam_best.tsv.
As in the input file, the columns will be as follows: qseqid, sseqid, fam, pident, length,
evalue, qframe, qlen, qstart, qend, sframe, slen, sstart, send, scov, qseq, and sseq.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" "_fmt6c_cov60_fam.tsv"`

 python3 filterBestResults.py \

 "${ifn}" \

 > "blast_results/${ACCESSON}_fmt6c_cov60_fam_best.tsv"

done < <(ls -1 blast_results/*_fmt6c_cov60_fam.tsv)

 Python Version

Python 3.6.4 (https://www.python.org).

 Python Script (filterBestResults.py

This script has at least one line that is too long to represent in this document without
sacrificing readability. Please view it in the freely-accessible online repository.

www.manaraa.com

 447

Step 10. Extract Incompatibility Families

Input: Tab-separated value files. Each contains the results from blasting the sequence of a
single accession against the incompatibility groups BLAST database. It has two added
columns with the subject coverage (and has only records with coverage >60%) and family.
Only the “best” results remain. Assume they are in the directory blast_results and are
named after the pattern ${ACCESSION}_fmt6c_cov60_fam_best.tsv.

Output: One file for each input file. Each file is a line-delimited list of incompatibility group
roots/families. The files will be in a directory called blast_results and named after the
pattern ${ACCESSION}_families.list.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}"

"_fmt6c_cov60_fam_best.tsv"`

 cut -f 3 "${ifn}" \

 | sort \

 | uniq \

 > blast_results/"${ACCESSON}_families.list"

done < <(ls -1 blast_results/*_fmt6c_cov60_fam_best.tsv

www.manaraa.com

 448

Step 11. Extract Sequencing Technologies

Input: GenBank files for each plasmid. We assume they are in the directory plasmid_gb and
they are named after the pattern ${ACCESSION}.gb.

Output: One tab-separated value file. The file has one column for the accession number, one
column containing the sequencing technology string taken from the GenBank file, and
several columns containing counts for the various sequencing technologies and groups of
technologies. The file is assumed to be called seqTechs.tsv in the plasmid_seqTech
directory. The columns are as follows: accession, sequencing_technologies, num_total,
num_short, num_long, num_illumina, num_454, num_abi, num_sanger, num_torrent,
num_pacbio, and num_nanopore.

Code:

Bash Command

printf "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" \

 'accession' \

 'sequencing_technologies' \

 "num_total" \

 "num_short" \

 "num_long" \

 "num_illumina" \

 "num_454" \

 "num_abi" \

 "num_sanger" \

 "num_torrent" \

 "num_pacbio" \

 "num_nanopore" \

 > "plasmid_seqTech/seqTech.tsv"

while read ifn

do

 ACCESSION=`basename "${ifn}" ".gb"`

 printf '%s\t' "${ACCESSION}" >> "plasmid_seqTech/seqTech.tsv"

 awk -f sequesterSeqTech.awk \

 "${ifn}" \

 >> "plasmid_seqTech/seqTech.tsv"

done < <(ls -1 plasmid_gb/*.gb)

 AWK Script (sequesterSeqTech.awk)

This script is too long to reasonably represent in this document. Please view it in the
freely-accessible online repository.

www.manaraa.com

 449

Step 12. Extract Source Information

Input: GenBank files for each plasmid. We assume they are in the directory plasmid_gb and
they are named after the pattern ${ACCESSION}.gb.

Output: One tab-separated value file. The file has one column for the accession number and
one column for each of these subsections of the GenBank file source section: organism,
isolation source, country, and collection_date. The file is assumed to be called
sourceInfo.tsv in the plasmid_sourceInfo directory. The columns are as follows:
accession, organism, isolation_source, country, and collection_date.

Code:

Bash Command

printf "%s\t%s\t%s\t%s\t%s\n" \

 'accession' \

 'organism' \

 'isolation_source' \

 'country' \

 'collection_date' \

 > "plasmid_sourceInfo/sourceInfo.tsv"

while read ifn

do

 ACCESSION=`basename "${ifn}" ".gb"`

 printf '%s\t' "${ACCESSION}" >>

"plasmid_sourceInfo/sourceInfo.tsv"

 awk -f snagSourceInfo.awk \

 "${ifn}" \

 >> " plasmid_sourceInfo/sourceInfo.tsv "

done < <(ls -1 plasmid_gb/*.gb)

 AWK Script (snagSourceInfo.awk)

This script is too long to reasonably represent in this document. Please view it in the
freely-accessible online repository.

www.manaraa.com

 450

Step 13. Extract Plasmid Search Regions

Input: This Python program requires 3 inputs. 1- The accession number of the plasmid it will
extract the search regions from. 2- The directory where the output will be placed. 3- The
directory where the GenBank file is located for that plasmid. We assume the GenBank file is
named after the pattern ${ACCESSION}.gb.

Output: One text file containing the lines from input GenBank file that will be searched
using the key terms. We assume the output file will be named after the following pattern:
${ACCESSION}_searchRegions.txt. For convenience, it will also generate a copy of the
input GenBank file with shell color codes, marking the CDS and source regions in blue, the
portions of the CDS and source regions that will be included in green, and the portion of the
CDS and source regions that will not be searched in red. The FEATURE line will be blue.
This file will have the same name as the .txt file but will have the extension .gb instead of
.txt. Note that intended search space is to consider each CDS region as a separate entity.
However, only the following subsections of each CDS region are to be considered:
/function, /gene, /note, and /product.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" ".gb"`

 python3 extractPlasmidSearchRegions.py \

 "${ACCESSION}" \

 plasmid_searchRegions \

 plasmid_gb

done < <(ls -1 plasmid_gb/*.gb)

 Python Version

Python 3.6.4 (https://www.python.org).

 Python Script (extractPlasmidSearchRegions.py

This script has at least one line that is too long to represent in this document without
sacrificing readability. Please view it in the freely-accessible online repository.

www.manaraa.com

 451

Step 14. Identify Plasmid Matches

Input: This Python program requires 3 inputs. 1- The accession number of the plasmid in
which it will identify matches. 2- The directory where the input search regions file is located.
3- The directory where the output matches will be placed. We assume the input search
regions file is named after the pattern ${ACCESSION}_searchRegions.txt.

Output: One text file containing the lines from input GenBank file that will be searched
using One tab-separated value file containing matches. We assume the output file will be
named after the following pattern: ${ACCESSION}_matches.tsv. The columns of the file are
as follows:

1. Ignored (True/False)
2. Categories (c1[,c2,…,cN])
3. Search Term
4. CDS Region

Column 1 is a simple flag denoting if the term was to be ignored. This could also be
determined based on the second column, but it was convenient to have a simple flag as its
own column. Column 2 contains the category (categories) that the search term belonged to.
Column 3 contains the regular expression used. Column 4 contains the CDS region that was
searched (all tabs and newlines were converted to \t (backslash and a t, not a tab) and \n
(backslash and an n, not a newline) to not interfere with the tab-separated value file format
and keep each record on a single line).

Search Strategy: The search terms are each part of one or more categories. It can belong to
multiple categories only if the categories are subsets of each other. Five principal categories
exist, two of which have subcategories. The category structure is as follows:

 Antimicrobial Resistance
o Beta-lactamase

 Beta-lactamase Special
 Toxin/Antitoxin System
 DNA Maintenance/Modification

o DNA Maintenance/Modification Special
 Mobile Genetic Elements
 Hypothetical Genes

The strategy could be described as top-to-bottom, in-to-out; i.e., Antimicrobial Resistance is
more important that Toxin/Antitoxin System and Beta-lactamase Special is more important
than Beta-lactamase and Antimicrobial Resistance. The reason these are shown nested
instead of simply above their parents is because a match for a Beta-lactamase Special search
term will increment the count for not only itself, but also its parents. If no matches are found,
the CDS region being searched is classified as "Other". Some CDS regions will never be
searched for these terms if they first match a term in a special "Ignored" category. Provided a
CDS region is not to be ignored, it will be searched with Beta-lactamase Special terms, then

www.manaraa.com

 452

Beta-lactamase terms, then Antimicrobial Resistance Terms, then Toxin/Antitoxin System
terms, and so-forth, until a match is found (thus halting the search on this CDS region) or no
more search terms remain (it is assigned to the "Other" category). All CDS regions are
converted to lowercase before being searched as described. See our paper for a table of
search terms.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" "_searchRegions.txt"`

 python3 identifyPlasmidMatches.py \

 "${ACCESSION}" \

 plasmid_searchRegions \

 plasmid_matches

done < <(ls -1 plasmid_searchRegions/*_searchRegions.txt)

 Python Version

Python 3.6.4 (https://www.python.org).

 Python Script (identifyPlasmidMatches.py

This script has at least one line that is too long to represent in this document without
sacrificing readability. Please view it in the freely-accessible online repository.

www.manaraa.com

 453

Step 15. Summarize Plasmid Matches

Input: This Python program requires 2 inputs. 1- The accession number of the plasmid in
which it will summarize matches. 2- The directory where the input matches are to be found
and the output summarized matches will be placed. We assume the input matches file is
named after the pattern ${ACCESSION}_matches.tsv in a directory called
plasmid_matches.

Output: One tab-separated value file containing summarized matches. It will have two lines
only. The first is a header line; the second the data. We assume the output file will be named
after the following pattern: ${ACCESSION}_matches-summary.tsv in a directory called
plasmid_matches. The columns of the file are as follows:

1. Accession #
2. Antimicrobial Resistance CDS
3. Antimicrobial Resistance CDS %
4. Beta-lactamase CDS
5. Beta-lactamase CDS %
6. Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy #
7. Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Beta-

lactamase
8. Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Total
9. Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Absent (Yes/No)
10. Plasmid Transfer CDS
11. Plasmid Transfer CDS %
12. Toxin/Antitoxin System CDS
13. Toxin/Antitoxin System CDS %
14. Toxin/Antitoxin System Present (Yes/No)
15. DNA Maintenance/Modification CDS
16. DNA Maintenance/Modification CDS %
17. DNA Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD)

Copy #
18. DNA Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD)

Copy # % of DNA Maintenance/Modification
19. DNA Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD)

Copy # % of Total
20. DNA Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD)

Present (Yes/No)
21. Mobile Genetic Elements CDS
22. Mobile Genetic Elements CDS %
23. Hypothetical Genes CDS
24. Hypothetical Genes CDS %
25. Other CDS
26. Other CDS %
27. Total CDS

www.manaraa.com

 454

This data, with the exception of the first column, will be copied into the plasmid csv file
created later. Column number 6 will also be used to drop plasmids.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" "_sorted_matches.tsv"`

 python3 summarizePlasmidMatchInfo.py \

 "${ACCESSION}" \

 plasmid_matches

done < <(ls -1 plasmid_matches/*_sorted_matches.tsv)

 Python Version

Python 3.6.4 (https://www.python.org).

 Python Script (summarizePlasmidMatchInfo.py

This script has at least one line that is too long to represent in this document without
sacrificing readability. Please view it in the freely-accessible online repository.

www.manaraa.com

 455

Step 16. Drop Plasmids

Input: This script acts on all the plasmids directly (i.e., not calling on a subroutine in Python
or AWK for each of the plasmids). It requires no user input directly as it ascertains the
plasmid accession numbers from file names. It also relies on the directory structure to find
the files named after the pattern ${ACCESSION}_matches-summary.tsv in a directory called
plasmid_matches.

Output: Two new directories in the groups directory: keep and discard. Inside the
discard directory will be a file called discard.list. It will contain the accession numbers
(one per line) that are to be excluded from the rest of the analysis. The same is true in the
keep directory, except the accession numbers are the ones that will be retained for the rest of
the analysis and the file will be called keep.list. Also in the keep directory is a new group
list file for each of the groups found in groups directory. These lists are the same as the
originals except that the discarded accessions have been removed.

Code:

Bash Command

while read ifn

do

 GROUP=`basename "${ifn}" ".list"`

 while read ACCESSION

 do

 COUNT=`tail -n 1 \

 "plasmid_matches/${ACCESSION}_matches-summary.tsv" \

 | cut -d '\t' -f 6 \

 | tr -d '"'`

 if [$COUNT -ge 1] && [$COUNT -le 6]

 then

 printf "${ACCESSION}\n" >> "groups/keep/${GROUP}.list"

 printf "${ACCESSION}\n" >> "groups/keep/keep.list"

 else

 printf "${ACCESSION}\n" >> "groups/discard/discard.list"

 fi

 done < "${ifn}"

done < <(ls -1 groups/*.list)

www.manaraa.com

 456

Step 17. Create Plasmid BLAST Database

Input: Fasta files for each plasmid. We assume they are in the directory plasmid_fasta and
they are named after the pattern ${ACCESSION}.fasta.

Output: One BLAST database. We are creating this so we can do pairwise BLAST between
the plasmid fastas. The objective is to identify plasmids that are "identical". Identical will, for
our purposes, be defined as >=98% percent identity and >=98% query and subject coverage.

Code:

Bash Command

cat plasmid_fasta/*.fasta > plasmid_blast_results/plasmids.fasta

cd plasmid_blast_results

makeblastdb \

 -dbtype nucl \

 -in plasmids.fasta \

 -input_type fasta \

 -title plasmids \

 -parse_seqids \

 -hash_index \

 -out plasmids \

 -max_file_sz 2GB \

 -logfile makeBlastDB.log

BLAST Software

NCBI (United States National Center for Biotechnology Information) BLAST+ Suite
version 2.4.0 (Altschul et al. 1990; Camacho et al. 2009).

www.manaraa.com

 457

Step 18. BLAST Plasmid

Input: Fasta files. Each contains the sequence from a single accession. Assume they are in
the directory plasmid_fasta and they are named after the pattern ${ACCESSION}.fasta.

Input: The plasmids BLAST database created in step #12. It is named plasmids.

Output: One tab-separated value file for each input file. Each file is a modified version of
the BLAST output format 6. The format is specified as seen using the -outfmt option with
blastn. The columns are as follows: qseqid, sseqid, pident, length, evalue, qframe, qlen,
qstart, qend, sframe, slen, sstart, send, qseq, and sseq. The files will be in a directory called
plasmid_blast_results and named after the pattern ${ACCESSION}_fmt6c.tsv. Note that
a match was not included in the output if the percent identity was <98%.

Code:

Bash Command

THREADS=8

while read ifn

do

 ACCESSION=`basename "${ifn}" ".fasta"`

 blastn \

 -query "${ifn}" \

 -strand both \

 -task blastn \

 -db plasmids \

 -out plasmid_blast_results/${ACCESSION}_fmt6c.tsv \

 -outfmt "6 qseqid sseqid pident length evalue qframe qlen

qstart qend sframe slen sstart send qseq sseq" \

 -num_threads ${THREADS} \

 -perc_identity 98

done < <(ls -1 plasmid_fasta/*.fasta)

BLAST Software

NCBI (United States National Center for Biotechnology Information) BLAST+ Suite
version 2.4.0 (Altschul et al. 1990; Camacho et al. 2009).

www.manaraa.com

 458

Step 19. Extract Identical Plasmids with BLAST Result Coverage Cutoff of 98%

Input: Tab-separated value files. Each contains the results from blasting the sequence of a
single accession against the plasmids BLAST database. Assume they are in the directory
plasmids_blast_results and they are named after the pattern ${ACCESSION}_fmt6c.tsv.
Note that these BLAST results all have >=98% sequence identity.

Output: One file for each input file. Each file is a line-delimited list of accessions associated
with "identical" plasmids. The files will be in a directory called plasmid_blast_results
and named after the pattern ${ACCESSION}_identicalPlasmids.list. The BLAST results
are further filtered based on the query and subject coverage; each must be >= 98%. Coverage
is determined based on number of bases covered by the other sequence. This coverage can
come from one or more BLAST hits, as long as the total number of covered bases is >=98%
of the number of possible bases.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" "_fmt6c.tsv"`

 python3 queryAndSubCovCutoff98-multiHit.py \

 "${ifn}" \

 >

"plasmid_blast_results/${ACCESSON}_identicalPlasmids.list"

done < <(ls -1 blast_results/*_fmt6c.tsv)

 Python Version

Python 3.6.4 (https://www.python.org).

 Python Script (queryAndSubCovCutoff98.py

This script has at least one line that is too long to represent in this document without
sacrificing readability. Please view it in the freely-accessible online repository.

www.manaraa.com

 459

Step 20. Fix Identical Plasmid Non-concordance

Input: This Python program requires 6 inputs. 1- the path of the coverage information files.
2- the path of the identical plasmid files. Inputs 3-6 are suffixes to file names; the assumed
base of the name is the accession number. 3- the suffix of the input coverage info file. 4- the
suffix of the output coverage info file. 5- the suffix of the input identical plasmids file. 6- the
suffix of the output identical plasmids file.

Output: Two text files. The first will be the output coverage info file. It will be the
concordant version of its respective input file. The second will be the output identical
plasmids file. It will be the concordant version of its respective input file. We assume they
are both in the plasmid_blast_results directory and have the suffixes
_covInfo_concordant.tsv and _identicalPlasmids_concordant.list, respectively.
Another term for concordance might be reciprocal. This step accounts for inconsistencies in
BLAST outputs. One might get hits from sequence A to B with >=98% identity and >=98%
query and subject coverage, yet get no hits from B to A. This non-concordance is “fixed” in
this step to force reciprocity of the BLAST hits. These hits are not updated in the BLAST
output file, though the outcome is affected in the two output files from this step.

Code:

Bash Command

python3 fixIdenticalPlasmidsNonConcordance.py \

 plasmid_blast_results \

 plasmid_blast_results \

 "_covInfo.tsv" \

 "_covInfo_concordant.tsv" \

 "_identicalPlasmids.list" \

 "_identicalPlasmids_concordant.list"

 Python Version

Python 3.6.4 (https://www.python.org).

 Python Script (fixIdenticalPlasmidsNonConcordance.py

This script has at least one line that is too long to represent in this document without
sacrificing readability. Please view it in the freely-accessible online repository.

www.manaraa.com

 460

Step 21. Generate Plasmid CSVs

Input: This Python program requires 8 inputs. 1- The accession number of the plasmid it will
generate a CSV file for. 2- The directory where the output CSV file is to be placed. 3- The
directory where the plasmid fasta file is located. We assume it is named after the pattern
${ACCESSION}.fasta. 4- The directory where the input plasmid matches file is located. We
assume it is named after the pattern ${ACCESSION}_matches-summary.tsv. 5- The directory
where the input incompatibility groups (derived from the BLAST results) are located. We
assume it is named after the pattern ${ACCESSION}_families.list. 6- The filename of the
source info. We assume it is named sourceInfo.tsv in the plasmid_sourceInfo directory.
7- The directory of the plasmid BLAST results. We assume it is called
plasmid_blast_results. 8- The filename of the sequence technologies information. We
assume it is at plasmid_seqTech/seqTech.tsv.

Output: One comma-separated value file. It will be placed in the directory specified in the
input position 2. We assume the output file will be named after the following pattern:
${ACCESSION}.csv. The columns of the file are as follows:

"Accession #","Identical Plasmids","Source: Organism","Source: Isolation
Source","Source: Country","Source: Collection Date","Sequencing
Technologies","Sequencing Technologies Count","Short Read Count","Long Read
Count","Illumina Count","Roche 454 Count","ABI Solid Count","Sanger Count","Ion
Torrent Count","PacBio Count","ONT Count","Plasmid Length","Antimicrobial
Resistance CDS","Antimicrobial Resistance CDS %","Beta-lactamase CDS","Beta-
lactamase CDS %","Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy
#","Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Beta-
lactamase","Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of
Total","Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Absent
(Yes/No)","Plasmid Transfer CDS","Plasmid Transfer CDS %","Toxin/Antitoxin System
CDS","Toxin/Antitoxin System CDS %","Toxin/Antitoxin System Present
(Yes/No)","DNA Maintenance/Modification CDS","DNA Maintenance/Modification
CDS %","DNA Maintenance/Modification Special
(mucA,mucB,polymerase,umuC,umuD) Copy #","DNA Maintenance/Modification
Special (mucA,mucB,polymerase,umuC,umuD) Copy # % of DNA
Maintenance/Modification","DNA Maintenance/Modification Special
(mucA,mucB,polymerase,umuC,umuD) Copy # % of Total","DNA
Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) Present
(Yes/No)","Mobile Genetic Elements CDS","Mobile Genetic Elements CDS
%","Hypothetical Genes CDS","Hypothetical Genes CDS %","Other CDS","Other CDS
%","Total CDS","Incompatibility Groups"

Code:

Bash Command

www.manaraa.com

 461

while read ifn

do

 ACCESSION=`basename "${ifn}" ".fasta"`

 python3 generatePlasmidCSV.py \

 "${ACCESSION}" \

 plasmid_csv \

 plasmid_fasta \

 plasmid_matches \

 blast_results \

 plasmid_sourceInfo/sourceInfo.tsv \

 plasmid_blast_results \

 plasmid_seqTech/seqTech.tsv

done < <(ls -1 plasmid_fasta/*.fasta)

 Python Version

Python 3.6.4 (https://www.python.org).

 Python Script (generatePlasmidCSV.py

This script has at least one line that is too long to represent in this document without
sacrificing readability. Please view it in the freely-accessible online repository.

www.manaraa.com

 462

Step 22. Create Group CSVs from Plasmid CSVs

Input: The inputs required are the group list files that contain the plasmids in each group
(see step #4) and the individual plasmid CSVs (see step #12). The group list files are
assumed to be in the directory groups and named after the pattern ${GROUP}.list. The
plasmid CSVs are assumed to be in the plasmid_csv directory and named after the pattern
${ACCESSION}.csv.

Output: One comma-separated value file containing the same header line as all the plasmid
CSVs and a concatenation of the non-header lines from the plasmid CSVs. We assume the
output file will be in the directory group_csv and will be named after the following pattern:
${GROUP}.csv.

Code:

Bash Command

while read ifn

do

 GROUP=`basename "${ifn}" ".list"`

 ofn="group_csv/${GROUP}.csv"

 # get and write a header

 hfn=plasmid_csv/`head -q -n 1 "${ifn}"`".csv"

 head -q -n 1 "${hfn}" > "${ofn}"

 # get and write the non-headers lines

 nhfns=`cat "${ifn}" | sed -r 's,^(.+)$,plasmid_csv/\1.csv,' |

tr '\n' ' '`

 tail -q -n +2 ${nhfns} >> "${ofn}"

done < <(ls -1 groups/*.list)

 sed Note

sed must be GNU (https://www.gnu.org) sed. -r does not enable extended regular
expression syntax with BSD (http://www.bsd.org) sed.

www.manaraa.com

 463

Step 23. Create Group Matches from Plasmid Matches

Note that this step is not technically necessary to generate the desired output (the group CSV
files (step #13) and the group statistics files (step #15)). This is really for convenience in
inspecting results.

Input: The inputs required are the group list files that contain the plasmids in each group
(see step #4) and the individual plasmid matches (see step #11). The group list files are
assumed to be in the directory groups and named after the pattern ${GROUP}.list. The
plasmid matches are assumed to be in the plasmid_matches directory and named after the
pattern ${ACCESSION}_matches.tsv.

Output: One text file containing the matches for the group. We assume the output file will
be in the directory group_matches and will be named after the following pattern:
${GROUP}_matches.tsv.

Code:

Bash Command

while read ifn

do

 GROUP=`basename "${ifn}" ".list"`

 ofn="group_matches/${GROUP}_matches.tsv"

 fns=`cat "${ifn}" \

 | sed -r 's,^(.+)$,plasmid_matches/\1_matches.tsv,' \

 | tr '\n' ' '`

 head -q -n 1 ${fns} | head -n 1 > "${ofn}"

 tail -q -n +2 ${fns} >> "${ofn}"

done < <(ls -1 groups/*.list)

 sed Note

sed must be GNU (https://www.gnu.org) sed. -r does not enable extended regular
expression syntax with BSD (http://www.bsd.org) sed.

www.manaraa.com

 464

Step 24. Calculate Group Statistics from Group CSV

Input: This Python program requires 2 inputs. 1- The CSV file for a group. Here, we show
the CSV files in the directory group_csv, named after the pattern ${GROUP}.csv. 2- The
output statistics file for the group. Here, we show the statistics files in the directory
group_stats, named after the pattern ${GROUP}.stats.

Output: One text file named as described in position 2 of the input to the Python program.
That file is formatted as follows:

GROUP_NAME

==========

Total # of Plasmids: ##

Incompatibility Groups Structure:

 Inc. Plasmid Size Size

 Group Count Mean St. Dev.

 IncGrp1 # #.### #.###

 IncGrp2 # ######.### #####.###

 .

 .

 .

 IncGrpN # #####.### ####.###

Plasmid Lengths Summary:

 Min: ####

 Max: ######

 Median: #####

 Mean: ######.###

 St. Dev.: ######.###

Key Words Structure:

 Key Plasmid Size Size

 Word Count Mean St. Dev.

 anti_microb_resist ## ######.### ######.###

 anti_microb_resist_not # ######.### ######

 beta_lact ## ######.### ######.###

 beta_lact_not # ######.### ######

 plasmid_transfer ## ######.### ######.###

 plasmid_transfer_not # #####.### #####.###

 toxin ## ######.### #####.###

 toxin_not ## #####.### ######.###

 dna_maint ## ######.### ######.###

 dna_maint_not # ######.### ######

 mob_gen_elem ## ######.### ######.###

 mob_gen_elem_not # ######.### ######.###

 hypo_genes ## ######.### ######.###

 hypo_genes_not # ######.### ######

 other ## ######.### ######.###

 other_not # ######.### ######.###

Plasmid Structure:

 This information is already reported in the CSV file: GROUP_NAME.csv

www.manaraa.com

 465

Sequencing Technologies:

 Sequencing Num Occurances per Percent Total Percent

Known

 Technology Plasmids Plasmid Plasmids Plasmids

 Known ## NA ##.### ###.###

 Unknown ## NA ##.### #.###

 Illumina ## #.### ##.### ##.###

 Roche ### # #.### #.### ##.###

 ABI Solid # #.### #.### #.###

 Sanger # #.### #.### #.###

 Ion Torrent # #.### #.### #.###

 PacBio # #.### ##.### ##.###

 ONT # #.### #.### #.###

 Short ## #.### ##.### ##.###

 Long # #.### ##.### ##.###

 Multiple Short # #.### #.### #.###

 Multiple Long # #.### #.# #.#

 Short Only ## #.### ##.### ##.###

 Long Only # #.### #.### #.###

 Short & Long # #.### #.### ##.###

Identical Plasmids Summary:

 Plasmids (GROUP_NAME): ##

 Discrete Plasmids: ##

 Indiscrete Plasmids (inside GROUP_NAME): ##

 Indiscrete Plasmids (outside GROUP_NAME): ##

 Indiscrete Plasmids: ##

 Groups of Indiscrete Plasmids: ##

 Group Member Count Min: ##

 Group Member Count Max: ##

 Group Member Count Median: ##

 Group Member Count Mean: ##.###

 Group Member Count St. Dev.: ##.###

Identical Plasmids Groups:

 Discrete (GROUP_NAME):

 ######## ######## ########

 ######## ######## ########

 ######## ######## ########

 ######## ######## ########

 ######## ######## ########

 ######## ######## ########

 ######## ######## ########

 ######## ######## ########

 Indiscrete Group #1:

 ######## ######## ########

 ######## ######## ########

 ######## ######## ########

 ########

 ...

 ...

 ...

www.manaraa.com

 466

 Indiscrete Group #n:

 ######## ########

Code:

Bash Command

while read gfn

do

 GROUP=`basename "${gfn}" ".list"`

 ifn="group_csv/${GROUP}.csv"

 ofn="group_stats/${GROUP}.stats"

 python3 calcGroupCSVstats.py \

 "${ifn}" \

 "${ofn}"

done < <(ls -1 groups/*.list)

 Python Version

Python 3.6.4 (https://www.python.org).

 Python Script (calcGroupCSVstats.py

This script has at least one line that is too long to represent in this document without
sacrificing readability. Please view it in the freely-accessible online repository.

www.manaraa.com

 467

Step 25. Create Distance Matrix

Input: This script acts on all the files directly (i.e., not calling on a subroutine in Python or
AWK for each of the accession numbers). It requires no user input directly as it ascertains the
plasmid accession numbers from file names. It also relies on the directory structure to find
the files named after the pattern ${ACCESSION}_identicalPlasmids_concordant.list in
a directory called plasmid_blast_results.

Output: One file per each accession. Each file is effectively a single row in the distance
matrix. Once they are all created, they are combined into an additional file, the full distance
matrix. The distance matrix is a full matrix (not only the bottom or upper halves); it is a csv
file. The format looks like this:

Accession A B C D
A 0 x y a
B x 0 i j
C y i 0 k
D a j k 0

Code:

Bash Command

This script is too long to reasonably represent in this document. Please view it in the
freely-accessible online repository.

Distance Metric Definition and Examples:

Definition

The distance metric is the sum of the query and subject covered bases divided by the sum
of the query and subject sequences. A covered base is defined as a base covered by (i.e.,
included in) the alignment. Given that 𝑑 is the distance between a query and subject
sequence, 𝑐 is the coverage (i.e., bases included in the alignment) from a given sequence,
and 𝑙 is the length of a given sequence, the distance metric can be expressed in equation
notation:

𝑑 =
𝑐𝑞𝑢𝑒𝑟𝑦 + 𝑐𝑠𝑢𝑏𝑗𝑒𝑐𝑡

𝑙𝑞𝑢𝑒𝑟𝑦 + 𝑙𝑠𝑢𝑏𝑗𝑒𝑐𝑡

This metric is calculated for each pair of query and subject sequences; in other words, it
is calculated in an all-vs-all fashion between the sequence for each plasmid.

Example

www.manaraa.com

 468

Given a query sequence that is 10 bases long and a subject sequence that is 20 bases long,
consider an alignment that has a length of 6 bases and looks like this:

 Query: AAAAACGGGG
Subject: A-GGGGTTTTTGGGGGCCCCC

The length of the alignment is 6. The number of covered bases (i.e., bases in the
alignment) from the query sequence is 6. For the subject sequence, the number is 5. The
distance can be found using the equation:

𝑑 =
𝑐𝑞𝑢𝑒𝑟𝑦 + 𝑐𝑠𝑢𝑏𝑗𝑒𝑐𝑡

𝑙𝑞𝑢𝑒𝑟𝑦 + 𝑙𝑠𝑢𝑏𝑗𝑒𝑐𝑡
=

6 + 5

10 + 20
=

11

30
 ≅ 0.367

This example is for a single pairwise comparison and would need to be repeated for every
pair of plasmids.

www.manaraa.com

 469

Step 26. Create Distance Tree

Input: The input is the distance matrix from the previous step. We assume it is called
dist_matrix.csv in the tree directory.

Output: One text file called dist_tree.newick in the tree directory. It is in the Newick
tree format.

Code:

Bash Command

makeNewick.py \

 -i "tree/dist_matrix.csv" \

 -o "tree/dist_tree.newick"

 Python Version

Python 3.6.4 (https://www.python.org).

 Python Script (makeNewick.py)

This script is not part of this package. It must be downloaded and installed separately.
The only substantive requirement is Python 3.5+. makeNewick.py comes from a software
package called CAM - Codon Aversion Motifs for Alignment-free Phylogenies (Miller et
al. 2019). CAM is freely-available on GitHub at https://github.com/ridgelab/cam.

www.manaraa.com

 470

Step 27. Add Leaf Labels to Tree

Input: The input is the distance tree in Newick format from the previous step. We assume it
is called dist_tree.newick in the tree directory. It also requires the location of source
information (e.g., the country of origin of the plasmid) file and the name of the output file.

Output: This step appends additional information to the accession numbers that are the leaf
labels in the tree. It creates a new tree, also in Newick format. We assume the output tree is
in the tree directory and is called dist_tree_labels.newick.

Code:

Bash Command

python3 modifyLeafLabels.py \

 "plasmid_sourceInfo/sourceInfo.tsv" \

 "tree/dist_tree.newick" \

 "tree/dist_tree_labels.newick"

 Python Version

Python 3.6.4 (https://www.python.org).

 Python Script (modifyLeafLabels.py)

This script has at least one line that is too long to represent in this document without
sacrificing readability. Please view it in the freely-accessible online repository.

www.manaraa.com

 471

Step 28. Add Color to Leaf Labels

Input: The input is the labeled distance tree in Newick format from the previous step. We
assume it is called dist_tree_label.newick in the tree directory. Additional input is a
colors mapping file. We assume it is called colors.tsv. The format is assumed to be one
entry per line, where each entry has one column for the group and another column for the hex
color (without the # symbol). The file we used is as follows:

IMP FF0000

KPC 0000FF

NDM 00B600

VIM 000000

As you can see, we were looking for four groups for this tree figure in our analysis: IMP,
KPC, NDM, and VIM. The final inputs required are a list of associated accession numbers
for each group. We assume the files are named after the pattern ${GROUP}.list in the
directory groups/keep.

Output: This step includes the Newick-formatted tree from the input in a new Nexus file. It
relies on a taxa block to specify colors for the leaf labels. As an example, the leaf label will
have the label (e.g., \t'some label here') followed by the color specification (e.g.,
[&!color=#6789AB]). This Nexus file will be available for directly opening with FigTree
(https://github.com/rambaut/figtree) and, presumably, by other tree viewing/editing software.
We assume the output tree is in the tree directory and is called
dist_tree_labels_colors.nexus.

Code:

Bash Command

python3 convertNewick2NexusAndAddColor.py \

 "tree/dist_tree_labels_colors.nexus" \

 "colors.tsv" \

 "tree/dist_tree_labels.newick" \

 "groups/keep/IMP.list" \

 "groups/keep/KPC.list" \

 "groups/keep/NDM.list" \

 "groups/keep/VIM.list"

 Python Version

Python 3.6.4 (https://www.python.org).

 Python Script (convertNewick2NexusAndAddColor.py)

This script has at least one line that is too long to represent in this document without
sacrificing readability. Please view it in the freely-accessible online repository.

www.manaraa.com

 472

A comment on data availability

The version of the PlasmidFinder database that we downloaded is no longer available.

Accordingly, we release the fasta file we downloaded for reproducibility purposes. However, we

advise a fresh download for any new experiments. This file may be found in the repository at the

following path: data/original_incompatibility_groups/incompatibility.fasta.

Similarly, many GenBank files have been updated since our download on 1 March 2018. We

likewise release the versions we downloaded here for reproducibility purposes. However, we

recommend fresh downloads of these files for new analyses. A script (labelled as “Step 0”) is

released with the online code repository for such a purpose. Please note that additional plasmids

could now (and should) be included if the Entrez search strategy were to be re-done. The script

would not reflect such changes as it downloads the specific GenBank groupings we used via

accession numbers, completely ignoring the Entrez strategy. This is appropriate for reproducing

our results, but it would probably not be ideal for a future study.

www.manaraa.com

 473

SUPPLEMENTAL REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic Local
Alignment Search Tool. Journal of Molecular Biology 215: 403-410. doi:10.1016/S0022-
2836(05)80360-2.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden,
T.L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421.
doi:Artn 421. doi:10.1186/1471-2105-10-421.

Carattoli, A., Zankari, E., Garcia-Fernandez, A., Voldby Larsen, M., Lund, O., Villa, L., Moller
Aarestrup, F., and Hasman, H. 2014. In silico detection and typing of plasmids using
PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother
58(7): 3895-3903. doi:10.1128/aac.02412-14.

Miller, J.B., McKinnon, L.M., Whiting, M.F., and Ridge, P.G. 2019. CAM: an alignment-free
method to recover phylogenies using codon aversion motifs. PeerJ 7: e6984.
doi:10.7717/peerj.6984.

www.manaraa.com

 474

APPENDIX 8

Chapter 7 – File S2

SUPPLEMENTARY TABLES
============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK =============

www.manaraa.com

 475

Supplementary Table 1. Full Dataset. This dataset is available online at the journal website as a spreadsheet. It is
too wide to display meaningfully in this document.

Supplementary Table 2. Percent of plasmids belonging to each incompatibility group. Note: IncHI2 and
IncHI2A were always found together, IncY replicon was only found in conjunction with other replicons.

Percent of plasmids Inc Group Percent of plasmids Inc Group
0.22% IncA/C 0.67% IncN3

10.08% IncA/C2 0.22% IncP1
0.22% IncB/O/K/Z 0.90% IncP6
0.67% Col 0.67% IncQ1
1.12% Col440I 0.22% IncQ2
1.12% ColRNAI 3.81% IncR
2.02% IncFIA 2.24% repA
8.74% IncFIB 1.12% IncU

13.00% IncFII 12.11% IncX3
0.22% IncHI1B 0.22% IncX4
0.45% IncHI2,HI2A 0.90% IncX5
0.22% IncI1 0.67% IncX6
0.90% IncI2 0.00% IncY
2.47% IncL/M 13.90% Multi-replicon

12.56% IncN 7.62% NA
0.67% IncN2

www.manaraa.com

 476

Supplementary Table 3. Relative abundance of incompatibility groups among carbapenemase-carrying plasmids. Note: IncHI2 and IncHI2A were always
found together, IncY replicon was only found in conjunction with other replicons.

Carbapenemase
Family

Incompatibility Groups (Percent of plasmids)

IncA/C IncA/C2 IncB/O/K/Z IncCol IncCol440I IncColRNAI IncFIA IncFIB IncFII IncHI1B IncHI2/HI2A

KPC 0.00% 3.10% 0.00% 0.00% 2.00% 2.60% 1.50% 15.80% 8.20% 0.00% 0.00%
NDM 0.00% 15.10% 0.60% 0.00% 0.00% 0.00% 3.60% 4.20% 25.30% 0.60% 0.00%
IMP 0.00% 22.40% 0.00% 0.00% 0.00% 0.00% 0.00% 2.00% 2.00% 0.00% 4.10%
VIM 3.40% 16.10% 0.00% 9.70% 3.20% 0.00% 0.00% 6.50% 3.20% 0.00% 0.00%

IncI1 IncI2 IncL/M IncN IncN2 IncN3 IncP1 IncP6 IncQ1 IncQ2 IncR

KPC 0.00% 2.00% 2.60% 15.80% 0.00% 1.00% 0.50% 1.50% 1.50% 0.50% 5.60%
NDM 0.00% 0.00% 1.20% 3.00% 1.80% 0.00% 0.00% 0.00% 0.00% 0.00% 1.80%
IMP 2.00% 0.00% 8.20% 32.70% 0.00% 2.00% 0.00% 0.00% 0.00% 0.00% 0.00%
VIM 0.00% 0.00% 0.00% 13.80% 0.00% 0.00% 0.00% 3.40% 0.00% 0.00% 10.30%

repA IncU IncX3 IncX4 IncX5 IncX6 IncY Multi-
replicon NA

KPC 5.10% 1.00% 3.50% 0.00% 1.50% 1.50% 0.00% 17.30% 5.60%
NDM 0.00% 0.00% 28.30% 0.60% 0.00% 0.00% 0.00% 11.40% 2.40%
IMP 0.00% 6.10% 0.00% 0.00% 2.00% 0.00% 0.00% 6.10% 16.30%

VIM 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 37.90%

www.manaraa.com

 477

APPENDIX 9

Chapter 7 – File S3

SUPPLEMENTARY FIGURES

Figure S1. Distribution of length for all 446 plasmid sequences in this study.

www.manaraa.com

 478

E

Figure S2. Various characteristics of carbapenemase carrying plasmids. A) Average gene content of plasmids
by gene ontology. B) Average length of plasmids by characteristic of interest (Presence or absence of toxin-antitoxin
system, polymerase genes, and carbapenemase carried. C) Determination of species on plasmid length. D)
Determination of replicon type on plasmid length. E) Determination of multi-replicon content on plasmid length.

	Applications of and Algorithms for Genome Assembly and Genomic Analyses with an Emphasis on Marine Teleosts
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Lingering Taxonomic Challenges Hinder Conservation and Management of Global Bonefishes
	Abstract
	Background
	Ecology and Life History
	Population Declines
	Cryptic Species

	Taxonomic History
	Albula argentea complex
	Albula nemoptera complex
	Albula vulpes complex
	A. vulpes (Bonefish)
	A. glossodonta (Roundjaw Bonefish)
	A. esuncula (Eastern Pacific Bonefish)
	A. sp. cf. vulpes
	A. koreana (Korean Bonefish)
	A. gilberti (Cortez Bonefish)
	A. goreensis (Channel Bonefish)

	A Note on Distribution Maps

	Conservation and Management Implications
	Future Directions

	Acknowledgements
	Tables & Figures
	References

	Chapter 2: Genome Assembly of the Roundjaw Bonefish (Albula glossodonta), a Vulnerable Circumtropical Sportfish
	Abstract
	Introduction
	Methods
	Tissue Collection and Preservation
	Sequencing
	DNA Sequencing
	mRNA Sequencing
	Hi‑C Sequencing
	ddRAD Library Preparation and Sequencing

	Read Error Correction
	Illumina DNA
	Illumina RNA
	PacBio CLRs

	Genome Size Estimation
	Genome Assembly, Polishing, and Scaffolding
	Transcriptome Assembly
	ddRAD Sequence Assembly and Filtering
	Computational Annotation of Assembled Genome
	Statistical Analysis of Population Genomic Data
	Detection of Loci under Selection
	Population Structure and Genetic Differentiation

	Results 
	Sequencing
	DNA Sequencing
	mRNA Sequencing
	Hi‑C Sequencing
	ddRAD sequencing

	Read Error Correction
	Illumina DNA
	Illumina RNA
	PacBio CLRs

	Genome Size Estimation
	Genome Assembly, Polishing, and Scaffolding
	Transcriptome Assembly
	Computational Annotation
	Population Genomic Analysis

	Discussion
	Conclusions

	Data Availability
	Author Contributions
	ORCIDs
	Acknowledgements
	Funding
	Conflict of Interest
	Additional Files
	Tables & Figures
	References

	Chapter 3: De novo genome assembly of the marine teleost, Bluefin Trevally (Caranx melampygus)
	Abstract
	Introduction
	Materials and Methods
	Sample Acquisition & Sequencing
	Sequence Assembly and Scaffolding
	Computational Annotation
	Demographic History
	Data Availability

	Results and Discussion
	Sequencing
	PacBio CLR Error Correction
	Genome Assembly and Scaffolding
	Transcriptome Assembly & Computational Annotation
	Population Demography
	Conclusion

	Author Contributions
	Acknowledgements
	Funding
	Conflict of Interest
	ORCIDs
	Tables & Figures
	Literature Cited

	Chapter 4: Genome assembly of marine apex predator, Giant Trevally (Caranx ignobilis)
	Abstract
	Background & Summary
	Methods
	Sample Acquisition & Sequencing
	Sequence Assembly, Duplicate Purging, and Scaffolding
	Genome Assembly Validation

	Technical Validation
	Sequencing
	PacBio CLR Error Correction
	Genome Assembly, Duplicate Purging, and Scaffolding
	Comparison of Giant Trevally with Other Carangoid Genomes

	Data Records
	Code Availability
	Author Contributions
	Acknowledgements
	Funding
	Competing Interests
	ORCIDs
	Additional Information
	Supplementary Information

	Tables & Figures
	References

	Chapter 5: SA-SSR: a suffix array-based algorithm for exhaustive and efficient SSR discovery in large genetic sequences
	Abstract
	1. Introduction
	2. Algorithm
	3. Results
	Acknowledgements
	Funding
	Conflict of Interest
	Supplemental Materials
	Tables   
	References

	Chapter 6: Kmer-SSR: A Fast and Exhaustive SSR Search Algorithm
	Abstract
	1. Introduction
	2. Materials and Methods
	2.1 Overview
	2.2 Memory Requirements
	2.3 SSR filters

	3. Results
	4. Discussion
	Acknowledgements
	Funding
	Conflict of Interest
	Tables & Figures
	References

	Chapter 7: Molecular epidemiology of carbapenem-resistance plasmids using publicly available sequences
	Abstract
	Introduction
	Carbapenemases
	Klebsiella pneumoniae carbapenemase
	New Delhi metallo-β-lactamase
	Verona integron-encoded metallo-β-lactamase
	Imipenem-resistant metallo-β-lactamase

	Materials and methods
	Sequence acquisition
	Plasmid gene composition
	Incompatibility group/replicon typing and plasmid characterization
	Nondiscrete plasmid groups
	Statistical analyses

	Results  
	Plasmid gene composition
	Plasmid incompatibility group/replicon typing
	Geographic spread and species promiscuity of plasmids

	Discussion
	Conflict of interest statement
	Acknowledgements
	Tables & Figures
	References

	Chapter 8: TANOS: TAxon jackknife for NOdal Stability with genomic data
	Abstract
	1. Introduction
	1.1 Character Jackknife in Phylogeny
	1.2 Taxon Jackknifing and the Taxon Influence Index
	1.3 Needs in a genomics era

	2. Materials and Methods
	2.1 Conceptual Examples
	2.1.1 Meta-Methods

	2.2 Detailed Methods
	2.2.1 Subsetting Alignments
	2.2.2 Generating Trees
	2.2.3 Calculating Nodal Stability

	3. Results
	3.1 Computation
	3.2 Case study in higher level classification of Insects

	4. Discussion
	4.1 Case Study
	4.2 General implications

	Author Contributions
	Acknowledgements
	Funding
	Conflict of Interest
	Tables & Figures
	References

	Chapter 9: Current state of and suggestions for vertebrate genome sequencing: some assembly required
	Abstract
	Introduction
	Review of Literature
	A (Very) Brief History
	Short Read Sequencing and Assembly
	Reference-guided Assembly
	Scaffolding with Mate Pair Libraries
	Scaffolding with RNA-seq Libraries
	Synthetic Long Reads

	Long Read Sequencing and Assembly
	Oxford Nanopore Technologies Reads
	Pacific Biosciences Reads
	Continuous Long Reads (CLRs)
	High-Fidelity (HiFi) Reads

	Long-Read Assembly Software
	Diploid Assembly

	Polishing Genome Assemblies
	Scaffolding Genome Assemblies
	Linkage Maps
	Physical Maps
	Optical Maps
	Chromosome Conformation Capture (3C)
	Other Physical Maps

	Manual Inspection & Curation
	Interoperability & Composite Softwares
	++itr (Iterate, Iterate, Iterate)
	Assessing Genome Assemblies
	Contiguity
	Completeness
	Correctness

	Annotating Genome Assemblies

	Commentary & Guidance
	Assembly with Long, Noisy Reads
	Read Correction
	Short Read Correction

	Noisy Read Correction vs. Polishing

	Genome Size Determination
	Tips for Select Software Packages
	(Hi)Canu
	MAKER
	purge_dups

	Scaffolding Scaffolds
	Recommendations for New Projects
	Bioinformatics Best-practices for Genome Assembly

	Conclusions & Future Directions
	Abbreviations
	Author Contributions
	Acknowledgements
	Funding
	Conflict of Interests
	Tables & Figures
	References

	Appendix 1: Chapter 1 – Supplementary File 1
	Appendix 2: Chapter 2 – Additional File 1
	Supplementary Bioinformatics Methods
	S.1 – Tissue Collection and Preservation
	S.2 – Sequencing
	S.3 – Read Error Correction
	S.3.1 – Illumina DNA
	S.3.2 – Illumina RNA
	S.3.3 – PacBio CLRs
	S.3.3.1 – Dual Correction Strategy
	S.3.3.2 – Correction Experiments

	S.4 – Genome Size Estimation
	S.5 – Genome Assembly, Polishing, and Scaffolding
	S.5.1 – Genome Assembly
	S.5.2 – Polishing
	S.5.3 – Scaffolding
	S.5.3.1 – Hi-C Scaffolding
	S.5.3.2 – RNA-seq Scaffolding

	S.5.4 – Assembly Statistics

	S.6 – Transcriptome Assembly
	S.7 – Computational Annotation
	S.7.1 – MAKER Round #1
	S.7.2 – ab initio Gene Prediction
	S.7.2.1 – GeneMark-ES
	S.7.2.2 – AUGUSTUS
	S.7.2.3 – SNAP

	S.7.3 – MAKER Round #2
	S.7.4 – ab initio Gene Prediction
	S.7.4.1 – gFACs Filtering
	S.7.4.2 – AUGUSTUS
	S.7.4.3 – SNAP

	S.7.5 – MAKER Round #3
	S.7.6 – MAKER Post-processing and Functional Annotation

	Supplemental References

	Appendix 3: Chapter 2 – Additional File 2
	Supplemental Tables

	Appendix 4: Chapter 3 – Supplementary File 1
	Supplementary Bioinformatics Methods
	Read Error Correction
	Genome Assembly and Scaffolding
	Genome Assembly
	Scaffolding
	Assembly Statistics

	Transcriptome Assembly
	Computational Annotation
	MAKER Round #1
	ab initio Gene Prediction
	GeneMark-ES
	AUGUSTUS
	SNAP    
	MAKER Round #2
	ab initio Gene Prediction
	gFACs Filtering
	AUGUSTUS
	SNAP    
	MAKER Round #3
	MAKER Post-processing and Functional Annotation

	Demographic History

	Supplemental References

	Appendix 5: Chapter 4 – Supplementary File 1
	Supplementary Bioinformatics Methods
	Read Error Correction
	Genome Assembly and Scaffolding
	Genome Assembly
	Scaffolding and Mis-assembly Detection with Hi-C Data
	Scaffolding with RNA-seq Data
	Assembly Statistics

	Genome Comparisons with Single-copy Orthologs

	Supplemental References

	Appendix 6: Chapter 5 – Supplement
	Supplementary Texts
	Supplementary Text 1. Suffix and Longest Common Prefix Arrays
	Supplementary Text 2. Calculating SSR Length and Position from Suffix and Longest Common Prefix Arrays

	Supplementary Figures
	Supplementary Tables
	Supplemental References

	Appendix 7: Chapter 7 – File S1
	Supplementary Bioinformatics Methods
	Overview
	Identical Plasmids
	GenBank Metadata
	GenBank Annotations
	Incompatibility Groups

	Detailed Methods
	Summary
	Outline of Steps

	Step 1. Format Incompatibility Groups Fasta File
	Step 2. Create Incompatibility Groups BLAST database
	Step 3. Split Multi-Accession GenBank Files
	Step 4. Extract ORIGIN Sequence from GB to Fasta
	Step 5. Extract Group Lists
	Step 6. BLAST Incompatibility Groups
	Step 7. Subset BLAST Results by Coverage Cutoff of 60%
	Step 8. Add Incompatibility Group as Column to BLAST Results
	Step 9. Filter Best Matches in BLAST Results
	Step 10. Extract Incompatibility Families
	Step 11. Extract Sequencing Technologies
	Step 12. Extract Source Information
	Step 13. Extract Plasmid Search Regions
	Step 14. Identify Plasmid Matches
	Step 15. Summarize Plasmid Matches
	Step 16. Drop Plasmids
	Step 17. Create Plasmid BLAST Database
	Step 18. BLAST Plasmid
	Step 19. Extract Identical Plasmids with BLAST Result Coverage Cutoff of 98%
	Step 20. Fix Identical Plasmid Non-concordance
	Step 21. Generate Plasmid CSVs
	Step 22. Create Group CSVs from Plasmid CSVs
	Step 23. Create Group Matches from Plasmid Matches
	Step 24. Calculate Group Statistics from Group CSV
	Step 25. Create Distance Matrix
	Step 26. Create Distance Tree
	Step 27. Add Leaf Labels to Tree
	Step 28. Add Color to Leaf Labels

	A comment on data availability

	Supplemental References

	Appendix 8: Chapter 7 – File S2
	Supplementary Tables

	Appendix 9: Chapter 7 – File S3
	Supplementary Figures

