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ABSTRACT 

Applications of and Algorithms for Genome Assembly 
and Genomic Analyses with an Emphasis 

on Marine Teleosts 
 

Brandon D. Pickett 
Department of Biology, BYU 

Doctor of Philosophy 
 

The burgeoning frequency of genome sequencing in recent years is a testament to both 
the improvements in sequencing technologies and the utility of genomic analyses for biological 
discovery. The rapid proliferation in technological advancements and availability of 
complementary data types and techniques has obfuscated the optimal process of genome 
assembly and raised the barrier to entry to unprecedented levels. In this dissertation, we describe 
the genome assemblies performed for several marine teleosts and discuss the algorithms and 
applications required for genome assembly, including some of our specific contributions to the 
genome assembly and annotation space. In Chapter 1 and Chapter 2, we review the taxonomy, 
life history, and biogeography of the Roundjaw Bonefish (Albula glossodonta) and describe its 
genome assembly. The genome assemblies with some analyses are described for the Bluefin 
(Caranx melampygus) and Giant (Caranx ignobilis) Trevallies in Chapter 3 and Chapter 4, 
respectively. Chapter 5 and Chapter 6 define and assess algorithms for the annotation of simple 
sequence repeats in genomic sequences. Publicly available annotations of carbapenem-resistance 
plasmids were epidemiologically analyzed in Chapter 7. The resiliency of phylogenetic trees to 
the removal of taxa is explored with a new nodal stability metric and algorithm, TANOS, in 
Chapter 8. Finally, in Chapter 9, a review of and commentary on vertebrate genome assembly is 
presented with recommendations for new projects. The aim of this dissertation, and the final 
chapter in particular, is to explore genome assembly methods and reduce the barrier to entry for 
new entrants.  
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ABSTRACT 

Despite expanding research on the popular recreational fishery, bonefish taxonomy 
remains murky. The genus Albula, comprising these iconic circumtropical marine sportfishes, 
has a complex taxonomic history driven by highly-conserved morphology. Presently, 12 putative 
species are spread among three species complexes. The cryptic morphology hinders visual 
identification, requiring genetic species identification in some cases. Unclear nomenclature can 
have unintended consequences, including exacerbating taxonomic uncertainty and complicating 
resolution efforts. Further, ignoring this reality in publications may erode management and 
conservation efforts. In the Indian and Pacific oceans, ranges and areas of overlap are unclear; 
precluding certainty about which species support the fishery and hindering conservation efforts. 
Species overlap, at both broad and localized spatial scales, may mask population declines if one 
is targeted primarily (as demonstrated in the western Atlantic fishery). Additional work is 
necessary, especially to increase our understanding of spatiotemporal ecology across life history 
stages and taxa. If combined with increased capacity to discern between cryptic species, 
population structure may be ascertained, and fisheries stakeholders will be enabled to make 
informed decisions. To assist in such efforts, we have constructed new range maps for each 
species and species complex. For bonefishes, conservation genomic approaches may resolve 
lingering taxonomic uncertainties, supporting effective conservation and management efforts. 
These methods apply broadly to taxonomic groups with cryptic diversity, aiding species 
delimitation and taxonomic revisions. 
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BACKGROUND 

Bonefish (Albulidae) Albula spp. are tropical, marine, benthivorous fish found principally 

in sand flats, sea grasses, and mangroves. They are characterized by an inferior mouth with the 

snout extending beyond the mandible (Hildebrand 1963; Datovo and Vari 2014) (Figure 1). 

Although bonefish are a source of food in some parts of the world (Breder 1948; Scott and Scott 

1988), the principal interests to humans are fishing and tourism as bonefish are prized sportfish 

since they are elusive and difficult to land. The sportfishing tourism industry for bonefish in the 

Bahamas was estimated at $141 million USD (Fedler 2010), while the flats fishery (bonefish and 

other flats species) in the Florida Keys was estimated at $465 million USD (Fedler 2013). 

Despite a culture, sometimes enforced by law, of catch-and-release fishing (Adams and Cooke 

2015; Adams 2016), bonefish catch rates appear to be declining around the globe (Friedlander 

and Rodgers 2008; Santos et al. 2019a). Preserving bonefish diversity and the flats fisheries 

depends on increasing our understanding of each species’ ecology and life history; however, 

most research has focused on a single species, Albula vulpes (Linnaeus 1758). In part, this is a 

result of the complicated taxonomy that is currently under revision. Much of the difficulty 

emanates from several cryptic species – species that are effectively impossible to discern visually 

due to high morphological similarity. After providing a brief background in bonefish life history 

and ecology, global depletions of bonefish populations, and cryptic species, we discuss bonefish 

taxonomic history and the resulting implications for conservation and management. 

 

Ecology and Life History 

Bonefish are circumtropical shorefish with an interesting life history. Although the bulk 

of our knowledge comes from A. vulpes and is, in some cases, based on a single site or region, 
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most characteristics and behaviors may be similar across the genus, except perhaps for the 

Albula nemoptera complex. Additional research for all species, including A. vulpes, is still 

required to fill in the gaps in our understanding of bonefish spatiotemporal ecology. 

Like all elopomorphs, bonefishes spend time in development as transparent, ribbon-like 

larvae called leptocephali (Hollister 1939; Rasquin 1955; Inoue et al. 2004). The leptocephali 

feed principally on plankton as they grow in length to about 6-9 cm (Hollister 1936; Pfeiler 

1984; Vásquez-Yeomans et al. 2009). Exact pelagic larval duration may vary considerably across 

taxa, however in A. vulpes ranges 41-71 days (Mojica et al. 1994; Adams and Cooke 2015). They 

then undergo a fascinating metamorphosis in which they shrink to about two cm, resulting in 

individuals reaching the same length three times during development. During the approximately 

ten day metamorphosis, the leptocephalus transitions to a miniature of the adult form (Hollister 

1936; Pfeiler 1984). Pre-metamorphic larvae have some swimming capacity; however, 

considering ocean currents, they may disperse hundreds of km away from their spawning site 

(Zeng et al. 2019).  

Post-metamorphic larvae move into shallower water to utilize mangroves and estuaries as 

nurseries for 2-4 years. Evidence from Florida (USA) and Cuba, based on A. vulpes and A. sp. cf. 

vulpes (Wallace and Tringali 2010), suggests that juveniles prefer the less saline waters in 

estuaries compared to the more saline environment of the flats where adults are typically found 

(Santos et al. 2019b). However, A. goreensis (Cuvier and Valenciennes 1847; commonly, 

Channel Bonefish) appears to also utilize more exposed beach habitat (Haak et al. 2019), and 

preferred juvenile habitat for other species is unknown. The juvenile diet consists primarily of 

amphipods and carideans, though diet analyses are limited (Griffin et al. 2019). Despite the 
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importance of early life history to population stability and resilience (Lefcheck et al. 2019), 

relatively little is known of juvenile behavior and ecology. 

Adults grow to lengths of 100 cm (Scott and Scott 1988) and up to 8 kg in weight 

(Robins and Ray 1986), though size reports vary among species and locations; a typical adult is 

probably half as long and heavy (Donovan et al. 2015; Kamikawa et al. 2015). Bonefish 

lifespans can extend past 20 years, though they average less (Posada et al. 2008). Their diet 

consists primarily of mollusks and crustaceans, but other benthic fauna is not unusual (Warmke 

and Erdman 1963; Colton and Alevizon 1983; Liston et al. 2013). Some evidence suggest they 

forage nomadically, changing location every few days (Ault et al. 2008), though they have high 

site-fidelity for a general area (Murchie et al. 2013; Boucek et al. 2019; Moxham et al. 2019). In 

A. vulpes, spawning migrations of varied distances (over 80 km documented) occur October 

through May (Murchie et al. 2015), sometimes near the full or new moons (Adams et al. 2019). 

Large pre-spawning aggregations with hundreds to thousands of fish form in relatively shallow 

water, and then move to deep-water drop-offs at dusk to spawn (Danylchuk et al. 2011; 

Danylchuk et al. 2019). Though other bonefishes may exhibit similar spawning behaviors to A. 

vulpes, timing likely varies across taxa and reproductive ecology has not been evaluated in other 

species. This information is important for conservation and management globally, as pre-

spawning aggregations are vulnerable to harvest and coastal migratory corridors are susceptible 

to human disturbance.   

Relative to A. vulpes, the literature on the ecology and life history of other bonefish 

species is sparse. Differences have been identified between species complexes and some 

individual species. Of particular importance is research to determine fishery species composition 

at local scales in areas of known species overlap and further elucidate spawning behaviors and 
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locations for species supporting fisheries. Without this fundamental information, population 

declines within a particular fishery (i.e., island or nation) may be masked due to the presence of 

cryptics and conservation efforts may be confounded due to interspecific variability.  

 

Population Declines 

Decreases in bonefish catch rates and instances of shifting baselines have been reported 

around the globe. However, accurate data from all relevant components of the fishery 

(recreational catch and release, subsistence harvest, targeted and incidental commercial harvest) 

are often lacking. Anthropogenic habitat loss is suspected as the primary contributor to 

population declines in most areas, but exploitation in under-regulated fisheries is also a 

significant problem (Bunce et al. 2008; Adams et al. 2012g; Filous et al. 2019a). Even in catch 

and release fisheries, the negative impact to the target species may be larger than previously 

thought (Dallas et al. 2010; Raby et al. 2014; Brownscombe et al. 2015; Cook et al. 2015), and 

recent research has focused on understanding and mitigating the effects of catch-and-release 

practices (Hannan et al. 2015; Adams 2016; Brownscombe et al. 2017). Regardless of the precise 

cause, The International Union for the Conservation of Nature (IUCN) Red List of Threatened 

Species™ reports A. glossodonta (Forsskål 1775; commonly, Roundjaw Bonefish) as 

"Vulnerable", A. vulpes as "Near Threatened", and A. esuncula (Garman 1899; commonly, 

Eastern Pacific Bonefish) as "Least Concern" (Nielsen et al. 2010; Adams et al. 2014). Five other 

species are listed as “Data Deficient” and the remaining four have not yet been evaluated (see 

Table 1). Insufficient data is clearly a bottleneck for ecological work with most bonefish species. 

Yet, even for A. vulpes where information is relatively plentiful, data is still deficient to (a) 

determine how much population decline is caused by overfishing as opposed to anthropogenic 
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habitat loss and (b) which species in the A. vulpes species complex may be most vulnerable 

(Adams et al. 2014). Indeed, information is not available for many areas and species, but 

available data does raise concerns: (a) catch rates are decreasing in the Southwestern Indian 

Ocean and the Florida Keys (Florida, USA) according to fishers (Bunce et al. 2008; Frezza and 

Clem 2015; Santos et al. 2019a) (b) demand from recreational tourist fishers is increasing in the 

Bahamas (Danylchuk et al. 2008), (c) data from the National Oceanic and Atmospheric 

Administration (NOAA) Marine Recreational Information Program (MRIP) suggest population 

declines in the Western Atlantic Ocean (National Marine Fisheries Service, Fisheries Statistics 

Division, pers. comm.), (d) data from Hawai‘i's Department of Land and Natural 

Resources/Division of Aquatic Resources and the United States Fish Commission demonstrate 

precipitous declines in landings in Hawaiian waters (Friedlander and Rodgers 2008), and (e) 

unsustainable fishing practices and extirpation of spawning groups have been documented in the 

South Pacific Ocean (Johannes and Yeeting, 2000; Ram-Bidesi, 2011; Ram-Bidesi and Petaia, 

2010). The clear consensus is that population declines are occurring; the uncertainties are to what 

extent they are occurring, specific causes, and which species are at the highest risk. 

 

Cryptic Species 

In bonefishes, the presence of morphologically cryptic species creates challenges to 

conservation and management (Colborn et al. 2001; Pfeiler et al. 2002; Wallace and Tringali 

2016). Correct identification of cryptic species is a prerequisite to examinations of biogeographic 

and ecological processes as well as conservation applications (Jörger and Schrödl 2013). Cryptic 

species are relatively widespread, and their recognition is generally considered nontrivial 

(Bickford et al. 2007; Trontelj and Fišer 2009; Reist et al. 2013). Black basses (Micropterus 



www.manaraa.com

 8 

spp.) and Charrs (Salvelinus), iconic sportfishes themselves, are similarly under active taxonomic 

revision (Reist et al. 2013; Taylor et al. 2019). The conservation and management challenges for 

any group with cryptic species are inherently similar. In bonefishes, the presence of cryptic 

species and broadly overlapping ranges make it very difficult to determine the species 

composition in various fisheries. Occurrences of secondary contact (Pfeiler et al. 2008b) and 

hybrids (Wallace and Tringali 2016; Rennert et al. 2019) have been documented among 

bonefish. While the extent and frequency of hybrids are unknown, they further challenge efforts 

to understand bonefish relationships and ecology. Unsurprisingly, Albula is too often described 

as monotypic and placeholder names are perpetuated after formal descriptions have updated the 

terms for a given species (Galdino Brandão et al. 2016; Joshi et al. 2016; Abdussamad 2017). 

Without distinguishing between cryptic species of bonefish in areas of overlap, conservation and 

management decisions will remain difficult. Increased understanding of spatiotemporal ecology 

for the various life stages and ability to discriminate between the various cryptic species are 

necessary to discern population structure and making effective policy decisions.  

 

TAXONOMIC HISTORY 

Bonefish were initially described by Linnaeus (1758) as Albula vulpes. Twenty-three  

independent discoveries of bonefish were described under various names, but were eventually 

synonymized into a circum-global A. vulpes by 1940 (Whitehead 1986; Colborn et al. 2001; 

Bowen et al. 2008) as no significant characters were able to consistently delineate species 

(Hildebrand 1963). However a second bonefish species, A. nemoptera (Fowler 1911; commonly, 

Threadfin Bonefish), was recognized at this time; it is both rarely encountered by anglers due to 

its deep-water habitat and easily distinguished by an elongated caudal ray of the dorsal fin 
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(Fowler 1911; Rivas and Warlen 1967). This new status quo was later broken by Shaklee and 

Tamaru (1981) when they demonstrated by molecular analysis that two species of bonefish are 

present in Hawaiian waters, A. glossodonta and A. neoguinaica (Cuvier and Valenciennes 1847). 

A. neoguinaica was subsequently renamed to A. forsteri (Bloch and Schneider 1801) and then A. 

argentea (Forster in Bloch and Schneider 1801) (see Bowen et al. (2008) for further details). 

Colborn et al. (2001) confirmed and extended the results of Shaklee and Tamaru’s study with 

additional molecular analyses, screening 174 specimens from 26 globally distributed sites for a 

portion of the mtDNA cytochrome b gene. They concluded that the three species (A. vulpes, A. 

glossodonta, and A. neoguinaica (now A. argentea)) are distinct and that up to five additional 

species may be present, which they labeled as A. spp. A-E. Since then, these and additional 

species have been described resulting in twelve putative species spread across three species 

complexes (see Table 2 for a summary of species names and distributions and Figures 3-6 and 

Supplementary Figures 1-16 for maps of their distributions). 

Some morphological traits enable distinction between the complexes, but expertise is 

usually required. The currently accepted phylogeny, based on portions of the mtDNA 

cytochrome b gene, is represented in Figure 2. The three complexes form distinct clades, with the 

A. vulpes and A. argentea complexes as sisters relative to the A. nemoptera complex. Given the 

currently accepted relationships (Figure 2), we summarize each of the three complexes. Note that 

we are not reviewing the two deep-water bonefish species in the genus Pterothrissus. See 

Wallace (2014) for a discussion on whether Pterothrissus belongs in the order Albuliformes and 

Hidaka et al. (2017) for more recent taxonomic reclassification. 

 

Albula argentea complex 
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Bonefish in the A. argentea complex are distributed throughout the Indian and Western 

and Central Pacific Oceans (Pfeiler et al. 2011; Wallace 2014) (Figure 4; Supplementary Figures 

1-4). This species complex is well reviewed by Hidaka et al. (2008). In brief, the complex is 

comprised of three species: A. argentea, A. oligolepis (Hidaka et al. 2008; commonly, Smallscale 

Bonefish), and A. virgata (Jordan and Jordan 1922; commonly, Longjaw Bonefish). The species 

in this complex were resurrected from synonymy with A. vulpes, beginning with Shaklee and 

Tamaru’s study (1981). The Hawaiian specimens they identified as A. neoguinaica are now 

known as A. virgata as a result of Hidaka et al. (2008); their work clarified A. forsteri as a junior 

synonym of  A. argentea, accounting for the non-endemic specimens that Shaklee and Tamaru 

(1981) identified as A. neoguinaica. Albula oligolepis was described as a new species in the 

same paper (Hidaka et al. 2008). These are distinct from A. glossodonta (in the A. vulpes 

complex), whose range overlaps in the Indian and Western Pacific Oceans (Supplementary 

Figure 10), due to molecular differences and because A. oligolepis has a more pointed lower jaw. 

All species in the A. argentea complex share this trait relative to those in the A. vulpes complex. 

Albula oligolepis is A. sp. D from Colborn et al. (2001). 

 

Albula nemoptera complex 

The threadfin bonefish, A. nemoptera, was first described by Fowler (1911) in the genus 

Dixonina but later synonymized with Albula (Rivas and Warlen 1967). The range for the species 

in this complex is the Western Atlantic and Eastern Pacific Oceans and they are typically found 

in deeper water (often in estuaries (Robins and Ray 1986)) than bonefish in the A. argentea and 

A. vulpes complexes (Bowen et al. 2008) (Figure 5; Supplementary Figures 5-7). Albula 

nemoptera spp. (A. sp. E from Colborn et al. (2001)) are further distinguished by shorter total 
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length, elongated anal fin and caudal ray of the dorsal fin, mouth reaching a point below the eye, 

small scales, and a few differences in dentition and meristic characters (Rivas and Warlen 1967; 

Robins and Ray 1986). The Western Atlantic Ocean form is A. nemoptera and the Eastern 

Pacific Ocean form is designated A. pacifica (Beebe 1942; commonly, Pacific Shafted Bonefish) 

(Pfeiler et al. 2006; Pfeiler 2008). Based on cytochrome b sequence data, they were designated 

sister species (Pfeiler 2008); additional nuclear gene sequence data supports this (Wallace 2014). 

We will discuss neither A. nemoptera nor A. pacifica further in this review as they are easily 

distinguished morphologically from other bonefish and not the target of a large sportfishing 

industry. 

 

Albula vulpes complex 

Bonefish in the A. vulpes complex can be found around the globe (Figure 6; 

Supplementary Figure 8). Presently, seven species are recognized: A. vulpes, A. glossodonta, A. 

esuncula, A. sp. cf. vulpes, A. koreana (Kwun and Kim 2011; commonly, Korean Bonefish), A. 

gilberti (Pfeiler et al. 2011; commonly, Cortez Bonefish), and A. goreensis. 

 

A. vulpes (Bonefish) 

This is the original bonefish, described by Linnaeus (1758), with which all other species 

were synonymized by 1940 (Whitehead 1986; Colborn et al. 2001; Bowen et al. 2008). As 

additional species were later recognized or resurrected, the range of this species has decreased 

from worldwide to only the Caribbean, Gulf of Mexico, and Western Atlantic Ocean (Wallace 

2014) (Supplementary Figure 9). 
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A. glossodonta (Roundjaw Bonefish) 

Albula glossodonta was identified in Hawaiian waters by Shaklee and Tamaru (1981) 

based on molecular data. It possesses the largest range of any bonefish species, encompassing the 

Indian Ocean and Western and Central Pacific Ocean (Wallace 2014) (Supplementary Figure 

10). Recent studies suggest that A. glossodonta individuals are larger, on average, than A. vulpes 

(Donovan et al. 2015). They may also live half as long and spawn between March and 

September, instead of between October and May as A. vulpes does (Filous et al. 2019b). 

 

A. esuncula (Eastern Pacific Bonefish) 

Albula esuncula occurs in the Eastern Pacific Ocean; it was previously identified as A. sp. 

C in Colborn et al. (2001) and later clarified in Pfeiler et al. (2008a). Its range stretches south to 

Panama and reaches north to Sinaloa, Mexico where it occurs sympatrically with A. gilberti 

(Supplementary Figures 11 & 16). Albula gilberti (A. sp. A in Colborn et al. (2001)) is found 

northward in the Gulf of California, stretching south to Sinaloa, Mexico. Thus, these two species 

occur principally in parapatry, except in the southern Gulf of California, where they are found in 

sympatry.  Albula esuncula was formally described by Pfeiler et al. (2011) as a necessary step in 

the description of A. gilberti. They are morphological cryptics; however, they may be 

distinguished genetically (Pfeiler et al. 2008a; Díaz-Viloria et al. 2017). 

 

A. sp. cf. vulpes 

Continuing the nomenclature of Colborn et al. (2001), A. sp. F was postulated as another 

species by Valdez-Moreno et al. (2010). Further identification was then provided by Wallace and 

Tringali (2010) and the species is presently referred to by the placeholder A. sp. cf. vulpes. A 

formal description is forthcoming.  This species is a morphological cryptic of A. vulpes; its range 
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is the Western Atlantic Ocean, Gulf of Mexico, and Caribbean (Wallace and Tringali 2010; 

Wallace 2014) (Supplementary Figure 12). 

 

A. koreana (Korean Bonefish) 

This species was described by Kwun and Kim (2011) after morphological and molecular 

comparison with A. argentea; it has a restricted range in the southern Sea of Japan and East 

China Sea (Supplementary Figure 13). They differ based on vertebrae count and tooth patch 

distributions on the parasphenoid and mesopterygoid bones. Molecular differences (nuclear and 

mitochondrial) were also identified (Kwun et al. 2011; Wallace 2014). 

 

A. gilberti (Cortez Bonefish) 

Albula gilberti occurs in the Eastern Pacific Ocean (previously A. sp. A from Colborn et 

al. (2001)). Its range extends northward in the Gulf of California, stretching south around 

Sinaloa, Mexico – where it is sympatric, likely through secondary contact, with A. esuncula 

(Pfeiler et al. 2008b) (Supplementary Figures 14 & 16). 

 

A. goreensis (Channel Bonefish) 

Wallace (2014) resurrected A. goreensis, a morphological cryptic, from synonymy with 

A. vulpes. Albula goreensis is A. sp. B from Colborn et al. (2001) and has previously been 

referred to as A. garcia (Bowen et al. 2008; Valdez-Moreno et al. 2010; Galdino Brandão et al. 

2016). Its range extends across the tropical Western and Eastern Atlantic Ocean, Gulf of Mexico, 

and the Caribbean (Whitehead 1990; Bowen et al. 2008; Wallace 2014) (Supplementary Figure 

15). Recent work suggests A. goreensis adults are smaller than A. vulpes and they may occupy a 

different hydrodynamic niche (Haak et al. 2019; Rennert et al. 2019). 
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A Note on Distribution Maps 

We generated new distribution maps for each of the bonefish species. Much of this 

information was derived from the IUCN reports, when available. The remaining information 

resulted from sieving the literature and the personal knowledge of the authors. Deviations from 

IUCN reported ranges are based on genetically verified collections. While uncertainties exist, 

these maps represent the best information currently available regarding bonefish species ranges. 

The full extent of ranges remains unknown for many species – absence on a map indicates no 

recorded and genetically verified collections. In areas with appropriate habitat, bonefish may 

occur there – we simply lack data. Alternately, the coastline of a country may be indicated, 

though appropriate bonefish habitat likely has a patchy distribution. Further, the exact width of 

highlighted areas is not intended to carry meaning – highlighted areas are simply wide enough to 

see easily. In some areas, the highlighted width is thinner to avoid overlapping other areas. All 

maps were generated by hand using Adobe Illustrator CC 2019 (https://www.adobe.com/

creativecloud.html); native vector graphics files are available in multiple formats on The Open 

Science Framework at the following DOI: 10.17605/OSF.IO/J4KSW. 

 

CONSERVATION AND MANAGEMENT IMPLICATIONS 

Pursuing the goals of conserving bonefish diversity and ensuring the long-term 

sustainability of recreational fisheries is a complicated challenge. For the global fishery, a 

primary impediment is the dearth of necessary biological and ecological information. Bonefish 

taxonomy remains under active revision, many life history and ecological traits are unknown, 

and the presence of cryptics creates additional conservation challenges. The focus of this review 
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has been the current state of the taxonomic revisions, which have been hampered by divergent 

lineages with highly conserved morphology. The difficulties regarding species identification 

have also impeded our understanding of basic life history characteristics and behaviors. Recent 

research suggests differences between (a) cryptic species in the Western Atlantic Ocean and 

Caribbean Sea (Adams et al. 2008; Haak et al. 2019; Rennert et al. 2019), (b) cryptic species in 

the Pacific Ocean (Donovan et al. 2015), and (c) species in the Atlantic Ocean and the Indian and 

Pacific Oceans (Filous et al. 2019b). However, life history traits for many taxa remain unknown.  

Research efforts have broached topics such as juvenile habitat (Szekeres 2017; Santos et 

al. 2019b), energy dynamics (Murchie et al. 2011; Szekeres et al. 2014; Nowell et al. 2015), 

spawning (Luck et al. 2019; Mejri et al. 2019a; Mejri et al. 2019b), habitat use (Brownscombe et 

al. 2019) and threats (Steinberg 2015; Cissell and Steinberg 2019; Sweetman et al. 2019), 

migration (Murchie et al. 2015; Boucek et al. 2019; Perez et al. 2019), anthropogenic 

exploitation (Filous et al. 2019a), leptocephalus larval dispersion (Zeng et al. 2019), gear 

restriction (Donovan et al. 2016), light pollution (Szekeres et al. 2017), and local ecological 

knowledge (Kamikawa et al. 2015; Rehage et al. 2019; Santos et al. 2019a). Research efforts 

have begun to expand beyond A. vulpes, especially into A. glossodonta. Nevertheless, additional 

research is still needed; of principle importance is understanding species composition of fisheries 

at local scales. 

 

Future Directions 

The continuation of research efforts on the aforementioned variety of topics in fisheries 

around the globe is crucial, as is clarifying the taxonomic status of bonefishes. The designation 

of species and evolutionarily significant units (ESUs) provides the necessary foundation for 



www.manaraa.com

 16 

conservation efforts and protections afforded through the Endangered Species Act, IUCN Red 

List, and Convention on International Trade in Endangered Species of Wild Fauna and Flora 

(CITES). Taxonomic clarity can further aid prioritization of conservation and management 

actions given the realities of increasing anthropogenic ecosystem alterations and limited 

resources for conservation. Since relatively few morphological characters are capable of 

distinguishing between only some species, bonefish research will continue to require a large 

genetic component. Identification has routinely been accomplished based on mitochondrial 

cytochrome b sequence identity (Colborn et al. 2001; Pfeiler et al. 2002; Pfeiler et al. 2006; 

Pfeiler 2008; Valdez-Moreno et al. 2010; Kwun and Kim 2011; Kwun et al. 2011; Wallace 2014; 

— 2015; Díaz-Viloria et al. 2017), though some bonefishes may also be identified using 

microsatellite markers (Seyoum et al. 2008; Wallace 2015; Wallace and Tringali 2016). To 

resolve interspecific relationships, a robust phylogenetic analysis of the family will require more 

data as single-gene methods – especially from mtDNA – provide an incomplete picture of 

evolutionary history (Pamilo and Nei 1988; Nichols 2001; Song et al. 2008). A multi-locus 

approach, especially at the whole-genome or transcriptome scale, would improve confidence in 

species delimitation and could provide higher-resolution insights into population structure. 

In combination with other biological and ecological studies, genetic / genomic 

approaches can illuminate a wide range of biodiversity issues necessary for conservation goals at 

population, species, and higher taxonomic levels. Remaining information needs regarding how 

bonefish species are distributed, such as ESUs, species delimitation, stock identification, 

adaptation, bottlenecks, introgressive hybridization, and phylogenetic relationships, can be 

addressed with advanced genomics techniques. To meet these needs, pooled sequencing of 

specimens will allow the identification of orders of magnitude more markers and will help assess 
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variation and perform accurate identification. In addition, at least one assembled and annotated 

genome from each species complex would be a valuable resource and would facilitate additional 

research on Elopomorpha. Efforts are currently underway with the goal of improved ability to 

identify species and further study the life history and ecology of the various bonefish species.  

Further, protection of presumed endangered species of bonefish is impossible without a 

multidisciplinary approach. Albula glossodonta, Red List Vulnerable and targeted by 

consumptive fisheries, may be at greatest risk of regional extirpation and many others in the 

genus remain data deficient.  Larger-scale genetic or genomic analyses may provide key 

information necessary to make important management decisions. Conservation of bonefishes 

must include actions at multiple spatial and temporal scales. Effectively managed reserves (such 

as for spawning sites) play an important role; however, additional consideration must be given to 

migration corridors, as well as larval settlement and juvenile nursery habitats – all of which will 

vary among species. These areas extend beyond the scale practical for formal reserve status and 

will require proactive management largely focused on mitigation of coastal habitat degradation. 

As we learn more about the distinct larval settlement and juvenile nursery habitat requirements 

among sympatric bonefishes, it will aid comprehensive and proactive habitat protections and 

mitigation efforts.  Habitat conservation efforts will necessarily include limitations on coastal 

development. In consumptive fisheries, determination of sustainable harvest levels and 

enforcement of regulations remain high priorities. Clarification of taxonomic status, species 

boundaries, and areas of overlap are foundational to all of these directed conservation efforts. 

Ultimately, fisheries managers and conservationists remain in a quandary over bonefish 

preservation until additional data are obtained. Presently, twelve putative species are distributed 

across three species complexes. The geographic extent, size, and species composition of global 
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fisheries remains unelucidated. Studies with higher-density genetic variation data from 

populations around the globe, will greatly aid clarification of relationships among these iconic 

sportfishes. Such approaches are invaluable conservation tools, especially among sympatric 

cryptic species. These methods will assist ongoing bonefish conservation efforts, and similar 

genomic techniques will aid species and population delineation in other groups containing 

morphological cryptics. 
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Table 1. Taxonomic and conservation statuses of each bonefish species. All species, except A. sp. cf. vulpes, are recognized in Eschmeyer’s Catalog of Fishes 
(Fricke et al. 2019). Near Threatened, Vulnerable, Least Concern, and Data Deficient are formal classifications of the International Union for the Conservancy of 
Nature (IUCN); the term Unevaluated indicates the IUCN has not yet evaluated the status of that species. Common names all include bonefish (e.g., smallscale 
bonefish). 

Scientific name Common name Taxonomic status Conservation 
status 

Albula argentea complex    
A. argentea (Forster in Bloch and Schneider 1801) NA Described species Data Deficient 
A. oligolepis (Hidaka et al. 2008) Smallscale Described species Data Deficient 
A. virgata (Jordan and Jordan 1922) NA Described species Data Deficient 
Albula nemoptera complex    
A. nemoptera (Fowler 1911) Threadfin Described species Data Deficient 
A. pacifica (Beebe 1942) Pacific Shafted Described species Unevaluated 
Albula vulpes complex    
A. vulpes (Linnaeus 1758) Bonefish Described species Near Threatened 
A. glossodonta (Forsskål 1775) Roundjaw Described species Vulnerable 
A. esuncula (Garman 1899) Eastern Pacific Described species Least Concern 
A. sp. cf. vulpes (Wallace and Tringali 2010) NA Provisional species Unevaluated 
A. koreana (Kwun and Kim 2011) Korean Described species Data Deficient 
A. gilberti (Pfeiler et al. 2011) Cortez Described species Unevaluated 
A. goreensis (Cuvier and Valenciennes 1847) Channel Described species Unevaluated 
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Table 2. Summary of other applied names and geographic distribution. See Figures 3-6 and Supplementary Figures 1-16 for maps of the geographic 
distributions. 

Species Other applied names Distribution 
Albula argentea complex   
Albula argentea (Forster in Bloch and Schneider 1801) A. forsteri, A. neoguinaica Western & Central Pacific 
Albula oligolepis (Hidaka et al. 2008) A. sp. D Indian & Western Pacific 
Albula virgata (Jordan and Jordan 1922) A. neoguinaica Hawai‘i, USA 
Albula nemoptera complex   
Albula nemoptera (Fowler 1911) A. sp. E, Dixonina nemoptera Western Atlantic & Caribbean 
Albula pacifica (Beebe 1942) A. nemoptera Tropical Eastern Pacific 
Albula vulpes complex   
Albula vulpes (Linnaeus 1758) NA Western Atlantic & Caribbean 
Albula glossodonta (Forsskål 1775) NA Indian, Western & Central Pacific 
Albula esuncula (Garman 1899) A. sp. C, A. neoguinaica Tropical Eastern Pacific, Southern Gulf of California 
Albula sp. cf. vulpes Wallace and Tringali (2010) A. sp. F Western Atlantic & Caribbean 
Albula koreana (Kwun and Kim 2011) NA Western Pacific (East China Sea) 
Albula gilberti (Pfeiler et al. 2011) A. sp. A Eastern Pacific, Gulf of California 
Albula goreensis (Cuvier and Valenciennes 1847) A. sp. B, A. garcia, A. nova sp. Tropical Atlantic & Caribbean 

*Amended from Wallace (2014) 
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Figure 1. Illustration of Albula vulpes – copyright Diane Rome Peebles, used with permission. 

 
 
 
 
 
 
 
 

 
Figure 2. Relationships among all species of Albula. Tree topology was inferred using RAxML (Stamatakis 2014) 
with a portion of the cytochrome b mitochondrial gene. Branch lengths represent sequence divergence between taxa, 
and bootstrap support values are shown when above 90%. For additional details, see Wallace (2014). A text-based 
version of the tree can be found in Supplementary File 1 (Appendix 1 herein).  
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Figure 3. Distribution map of each species complex in Albula. Individual maps for each complex can be found in 
Supplementary Figures 1, 5, and 8. Please see the note on distribution maps. 
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Figure 4. Distribution map of species in the Albula argentea species complex. A non-specific map showing this 
complex can be found in Supplementary Figure 1. Individual maps for each species can be found in Supplementary 
Figures 2-4. Please see the note on distribution maps.  
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Figure 5. Distribution map of species in the Albula nemoptera species complex. A non-specific map showing this 
complex can be found in Supplementary Figure 5. Individual maps for each species can be found in Supplementary 
Figures 6 and 7. Please see the note on distribution maps. 
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Figure 6. Distribution map of species in the Albula vulpes species complex. A non-specific map showing this 
complex can be found in Supplementary Figure 8. Individual maps for each species can be found in Supplementary 
Figures 9-15. A subset of this map showing only Albula esuncula and Albula gilberti may be found in 
Supplementary Figure 16. Please see the note on distribution maps. 
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Supplementary Figure 1. Distribution map of the Albula argentea species complex. A map showing each of the 
species in this complex can be found in Figure 4. Individual maps for each species can be found in Supplementary 
Figures 2-4. To see how the distribution of this complex compares with other complexes, see  Figure 3. Please see 
the note on distribution maps.  
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Supplementary Figure 2. Distribution map of Albula argentea. To see how the distribution of Albula argentea 
compares with other species in the Albula argentea species complex, see Figure 4. Please see the note on 
distribution maps. 
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Supplementary Figure 3. Distribution map of Albula oligolepis. To see how the distribution of Albula oligolepis 
compares with other species in the Albula argentea species complex, see Figure 4. Please see the note on 
distribution maps. 
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Supplementary Figure 4. Distribution map of Albula virgata. To see how the distribution of Albula virgata 
compares with other species in the Albula argentea species complex, see Figure 4. Please see the note on 
distribution maps. 
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Supplementary Figure 5. Distribution map of the Albula nemoptera species complex. A map showing each of 
the species in this complex can be found in Figure 5. Individual maps for each species can be found in 
Supplementary Figures 6 and 7. To see how the distribution of this complex compares with other complexes, see 
Figure 3. Please see the note on distribution maps. 

 
  



www.manaraa.com

 31 

 
Supplementary Figure 6. Distribution map of Albula nemoptera. To see how the distribution of Albula 
nemoptera compares with other species in the Albula nemoptera species complex, see Figure 5. Please see the note 
on distribution maps. 
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Supplementary Figure 7. Distribution map of Albula pacifica. To see how the distribution of Albula pacifica 
compares with other species in the Albula nemoptera species complex, see Figure 5. Please see the note on 
distribution maps. 
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Supplementary Figure 8. Distribution map of the Albula vulpes species complex. A map showing each of the 
species in this complex can be found in Figure 6. Individual maps for each species can be found in Supplementary 
Figures 9-15. To see how the distribution of this complex compares with other complexes, see Figure 3. Please see 
the note on distribution maps. 
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Supplementary Figure 9. Distribution map of Albula vulpes. To see how the distribution of Albula vulpes 
compares with other species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution 
maps. 
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Supplementary Figure 10. Distribution map of Albula glossodonta. To see how the distribution of Albula 
glossodonta compares with other species in the Albula vulpes species complex, see Figure 6. Please see the note on 
distribution maps. 
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Supplementary Figure 11. Distribution map of Albula esuncula. View Supplementary Figure 16 to see the areas 
of sympatry and parapatry with Albula gilberti. To see how the distribution of Albula esuncula compares with other 
species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution maps. 
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Supplementary Figure 12. Distribution map of Albula sp. cf. vulpes. To see how the distribution of Albula sp. cf. 
vulpes compares with other species in the Albula vulpes species complex, see Figure 6. Please see the note on 
distribution maps. 
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Supplementary Figure 13. Distribution map of Albula koreana. To see how the distribution of Albula koreana 
compares with other species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution 
maps.  
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Supplementary Figure 14. Distribution map of Albula gilberti. View Supplementary Figure 16 to see the areas of 
sympatry and parapatry with Albula esuncula. To see how the distribution of Albula gilberti compares with other 
species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution maps. 
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Supplementary Figure 15. Distribution map of Albula goreensis. To see how the distribution of Albula goreensis 
compares with other species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution 
maps. 

 
  



www.manaraa.com

 41 

 
Supplementary Figure 16. Distribution map of Albula esuncula and Albula gilberti. This map shows the 
approximate areas of sympatry and parapatry between these two species. View Supplementary Figures 11 and 14 to 
see individual maps for these species. To see how the distribution of Albula esuncula and Albula gilberti compares 
with other species in the Albula vulpes species complex, see Figure 6. Please see the note on distribution maps. 
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ABSTRACT 

Background: Bonefishes are cryptic species indiscriminately targeted by subsistence and 
recreational fisheries worldwide. The roundjaw bonefish, Albula glossodonta is the most 
widespread bonefish species in the Indo-Pacific and is listed as vulnerable to extinction by the 
IUCN’s Red List due to anthropogenic activities. Whole-genome datasets allow for improved 
population and species delimitation, which – prior to this study – were lacking for Albula 
species. 
 
Results: We generated a high-quality genome assembly of an A. glossodonta individual from 
Hawai‘i, USA. The assembled contigs had an NG50 of 4.75 Mbp and a maximum length of 28.2 
Mbp. Scaffolding yielded an NG50 of 14.49 Mbp, with the longest scaffold reaching 42.29 Mbp. 
Half the genome was contained in 20 scaffolds. The genome was annotated with 28.3 K protein-
coding genes. We then analyzed 66 A. glossodonta individuals and 38,355 SNP loci to evaluate 
population genetic connectivity between six atolls in Seychelles and Mauritius in the Western 
Indian Ocean. We observed genetic homogeneity between atolls in Seychelles and evidence of 
reduced gene flow between Seychelles and Mauritius. The South Equatorial Current could be 
one mechanism limiting gene flow of A. glossodonta populations between Seychelles and 
Mauritius.  
 
Conclusions: Quantifying the spatial population structure of widespread fishery species such as 
bonefishes is necessary for effective transboundary management and conservation. This 
population genomic dataset mapped to a high-quality genome assembly allowed us to discern 
shallow population structure in a widespread species in the Western Indian Ocean. The genome 
assembly will be useful for addressing the taxonomic uncertainties of bonefishes globally. 
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INTRODUCTION 

Bonefishes (Albula spp.) are popular and economically important sportfishes found in the 

tropics around the globe. In the Florida Keys (Florida, USA) alone, $465 million of the annual 

economy is attributed to sportfishing tourism for bonefish and other fishery species inhabiting 

coastal flats [1]. Considering only bonefish, the sportfishing industry generates $169 million 

annually in the Bahamas [2, 3]. Unfortunately, population declines of bonefish have been 

observed around the globe, raising questions about how best to conserve bonefish and manage 

the associated fisheries [4]. Albula contains many morphological cryptic species, which, when 

combined with baseline data gaps, creates a significant hurdle to effective management [5-7]. 

All bonefish species were historically synonymized to a single species, Albula vulpes 

(Linnaeus 1758) [8], by 1940 [9-11], except for the threadfin bonefish, A. nemoptera (Fowler 

1911) [12], which is morphologically distinct [12, 13]. Molecular testing in the last several 

decades has enabled specific distinctions that were not previously possible [6, 9, 14-16]. 

Presently, three species complexes (A. argentea, A. nemoptera, and A. vulpes complexes) contain 

the twelve putative albulid species, although identification remains difficult in most cases [4]. 

The roundjaw bonefish (Fig. 1), A. glossodonta (Forsskål 1775) [17], is one of seven species in 

the A. vulpes complex. 

Most of the species in the A. vulpes complex can be found in the Caribbean Sea and 

Atlantic Ocean. By contrast, A. glossodonta can be found throughout the Indian and Pacific 

Oceans; this range overlaps slightly with A. koreana (Kwun and Kim 2011) [18] from the A. 

vulpes complex and drastically with each species in the A. argentea complex [4]. Albula 

glossodonta may be distinguished genetically from other species, but morphological 

identification based on its more-rounded jaw and larger average size is difficult for non-experts 
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[4, 19]. This difficulty, alongside underregulated fisheries and anthropogenic habitat loss, poses 

significant threats to the future of this species. In point of fact, A. glossodonta has been evaluated 

as “Vulnerable” on the International Union for the Conservation of Nature’s (IUCN) Red List of 

Threatened Species™ [7], and several incidents of overexploitation, including regional 

extirpation, have been reported [20-24]. 

The threat to A. glossodonta and other bonefish species will persist unless identification 

is made easier and population genomics techniques are employed to understand and identify 

evolutionarily significant units, areas of overlap between species, presence and extent of 

hybridization, and life-history traits, especially migration and spawning [4]. Genetic 

identification has hitherto been accomplished using only a portion of the mitochondrial 

cytochrome b gene and some microsatellite markers [6, 9, 15, 18, 25-32], which likely provide 

an insufficient taxonomic history [4, 33-35]. To contribute to a more robust capacity for 

identification and enable more complex genomics-based analyses, we present a high-quality 

genome assembly of an A. glossodonta individual. A transcriptome assembly was also created 

and was used alongside computational annotation methods to create structural and functional 

annotations for the genome assembly. Additionally, we present results from a population 

genomic analysis of A. glossodonta populations in Seychelles and Mauritius, two island nations 

that support lucrative bonefish fly fishing industries. The raw data, assembly, and annotations are 

available on the National Center for Biotechnology Information (NCBI) website under 

BioProject Accessions PRJNA668352 and PRJNA702254. 

 

METHODS 
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An overview of the methods used in this study is provided here. Where appropriate, 

additional details, such as the code for custom scripts and the commands used to run software, 

are provided in the Supplementary Bioinformatics Methods [see Additional File 1]. 

 

Tissue Collection and Preservation 

Blood, gill, heart, and liver tissues from one A. glossodonta individual were collected off 

the coast of Moloka‘i (near Kaunakakai, Hawai‘i, USA) in February 2016. Heart tissue from a 

second individual was also collected at the same location in September 2017. Tissue samples 

were flash-frozen in liquid nitrogen, and blood samples were preserved in EDTA. All samples 

were packaged in dry ice for transportation to Brigham Young University (BYU; Provo, Utah, 

USA) and stored at ‑80°C until sequencing. The blood sample from the first individual was used 

for short-read DNA sequencing. The gill, heart, and liver samples from the same individual were 

used for short-read RNA sequencing. The heart sample from the second individual was used for 

long-read sequencing and Hi‑C sequencing.  

For population genomic analyses, tissues (dorsal muscle samples or fin clips) were 

collected by fly fishing charter operators from 96 individuals of A. glossodonta from six coral 

atolls in the Southwest Indian Ocean (SWIO; Fig 1; Table S1 [Additional File 2]). All tissues 

were preserved in 95% EtOH at -20℃ until sequencing, and thereafter cataloged and preserved 

in -80℃  in the tissue biobank of South African Institute for Aquatic Biodiversity (Makhanda, 

South Africa) [36]. 

 
Sequencing 

DNA Sequencing 
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DNA was prepared for long-read sequencing with Pacific Biosciences (PacBio; Menlo 

Park, California, USA) [37] SMRTbell Library kits, following the protocol “Procedure & 

Checklist – Preparing >30 kb SMRTbell Libraries Using Megaruptor Shearing and BluePippin 

Size-Selection for PacBio RS II and Sequel Systems”. Continuous long-read (CLR) sequencing 

was performed on thirteen SMRT cells for a 10-hour movie on the PacBio Sequel at the BYU 

DNA Sequencing Center (DNASC) [38], a PacBio Certified Service Provider. Short-read 

sequencing was performed in Rapid Run mode for 250 cycles in one lane on the Illumina (San 

Diego, California, USA) [39] Hi-Seq 2500 at the DNASC after sonication with Covaris 

(Woburn, Massachusetts, USA) [40] Adaptive Focus Acoustics technology and preparation with 

New England Biolabs (Ipswich, Massachusetts, USA) [41] NEBNext Ultra II End Repair and 

Ligation kits with adapters from Integrated DNA Technologies (Coralville, Iowa, USA) [42]. 

 

mRNA Sequencing 

RNA was prepared with Roche (Basel, Switzerland) [43] KAPA Stranded RNA-Seq kit, 

following manufacturer recommendations. Paired-end sequencing was performed in High Output 

mode for 125 cycles on the three samples together in one lane on the Illumina Hi-Seq 2500 at the 

DNASC. 

 
Hi‑C Sequencing 

DNA was prepared with Phase Genomics (Seattle, Washington, USA) [44] Proximo Hi‑C 

Kit (Animal) using the Sau3AI restriction enzyme (cut site: GATC) following recommended 

protocols. Paired-end sequencing was performed in Rapid Run mode for 250 cycles in one lane 

on the Illumina Hi-Seq 2500 at the DNASC. 

 
ddRAD Library Preparation and Sequencing 



www.manaraa.com

 59 

We employed double digest restricted site-associated (ddRAD) sequencing to measure 

intraspecific genetic variation across six sampling localities in the SWIO. We extracted total 

DNA using Qiagen DNeasy Tissue kits per the manufacturer’s protocol (Qiagen, Inc., Valencia, 

California, USA) [45]. We examined the quality of DNA extractions visually using gel 

electrophoresis and by quantifying isolated DNA using a Qubit fluorometer (Life Technologies, 

Carlsbad, California, USA) [46].  

We modified a protocol developed by Peterson et al. [47] to prepare samples for ddRAD 

sequencing. We used the rare cutter PstI (5´-CTGCAG-3´ recognition site) and common cutter 

MspI (5´-CCGG-3´ recognition site). We carried out double digests of 150 – 200 ng total DNA 

per sample using the two enzymes in the manufacturer’s supplied buffer (New England Biolabs) 

for 8 hours at 37℃. We randomly distributed samples from different localities across the 

sequencing plate to minimize bias during library preparation. We visually examined samples 

using gel electrophoresis to determine digestion success and then ligated barcoded Illumina 

adapters to DNA fragments [47]. After ligation, we pooled samples into 12 libraries and 

performed a clean-up using the QIAquick PCR Purification Kit. We then performed PCR using 

Phusion Taq (New England Biolabs) and Illumina indexed primers [47]. Library DNA 

concentration was checked using a Qubit fluorometer, followed by normalization, a second 

round of pooling into four libraries, and an additional QIAquick cleanup step. We then re-

measured DNA concentration using a Qubit and combined equal amounts from each of the four 

pools into one. We analyzed this final pool using a BioAnalyzer (Agilent, Santa Clara, 

California, USA) [48] and performed size-selection using a Pippin Prep (Sage Science, Beverly, 

Massachusetts, USA) [49], selecting for fragments between 300 – 500 bp. This was followed by 

a final measure of concentration using a BioAnalyzer. We sent the library to the University of 
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Oregon Genomics and Cell Characterization Core Facility [50] where concentrations were 

verified via qPCR before 100 bp single-end sequencing on an Illumina Hi-Seq 4000. 

 

Read Error Correction 

Illumina DNA 

Illumina whole-genome sequencing (WGS) reads were corrected using Quake v0.3.5 

[51], which depended upon old versions of R (v3.4.0) [52] and the R package VGAM (v0.7-8) 

[53, 54]. Quake attempts to automatically choose a k‑mer cutoff, traditionally based on k‑mer 

counts provided by Jellyfish [55]. To generate q‑mer counts instead of k‑mer counts, BFCounter 

v0.2 [56] was used. Quake suggested a q‑mer cutoff of 2.33, which was subsequently used by the 

correction phase of Quake. Unlike the WGS reads, the Illumina DNA reads created with the 

Hi‑C library preparation were not corrected. 

 
Illumina RNA 

Illumina RNA-seq reads underwent a correction procedure using Rcorrector v1.0.2 [57]. 

Rcorrector automatically chooses a k‑mer cutoff based on k‑mer counts provided by Jellyfish 

[55], which Rcorrector runs automatically for the user. Alternately, Jellyfish can be run 

externally or bypassed with an alternate k‑mer counting program, and counts can subsequently 

be provided to Rcorrector, which may be started at what it calls “stage 3”. We bypassed Jellyfish 

by using BFCounter v0.2 [56] to count k‑mers. Note that Rcorrector made no changes to the 

reads. 

 
PacBio CLRs 

Several methods were attempted for the correction of the PacBio CLRs. The corrected 

reads from each method that did not fail were assembled, and the assembly results were used to 
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choose the correction strategy. Ultimately, a hybrid correction strategy was employed. First, the 

reads were self-corrected using Canu v1.6 [58]. Second, the self-corrected reads were further 

corrected using Illumina short-reads (previously corrected with Quake) using CoLoRMap 

downloaded April 2018 [59]. 

 

Genome Size Estimation 

Genome size was estimated using a k‑mer analysis on the corrected Illumina WGS reads. 

First, the k‑mer coverage was estimated using ntCard v1.0.1 [60]. The k‑mer coverage histogram 

was computationally processed to calculate the area under the curve and identify the peak to 

determine genome size according to the following equation: a / p = s, where a is the area under 

the curve, p is the number of times the k‑mers occur (the x-value) at the peak, and s is the 

genome size. 

 

Genome Assembly, Polishing, and Scaffolding 

Multiple assemblies were generated from various correction strategies. The final 

assembly was based on a hybrid correction strategy as described in the previous section “PacBio 

CLRs”. The assembly was created using Canu v1.6 [58]. The assembly underwent two rounds of 

polishing with the corrected Illumina WGS reads using RaCon v1.3.1 [61]. The polished contigs 

were scaffolded in a stepwise fashion using two types of long-range information: Hi-C and 

RNA-seq reads. Both scaffolding steps required read mapping to the contigs before determining 

how to order and orient contigs. The Hi-C data alignments were performed following the Arima 

Genomics (San Diego, California, USA) [62] Mapping Pipeline [63], which relied on bwa 

v0.7.17-r1998 [64], Picard v2.19.2 [65], and SAMtools v1.6 [66]. BEDTools v2.28.0 [67] was 
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used to prepare the Hi-C alignments for scaffolding. The RNA-seq data were aligned using HiSat 

v0.1.6-beta [68]. Scaffolding was performed for the Hi-C and RNA-seq data, respectively, with 

SALSA, downloaded 29 May 2019 [69, 70], and Rascaf, downloaded June 2018 [71]. Assembly 

continuity statistics, e.g., N50 and auN [72], were calculated with caln50 downloaded 10 April 

2020 [73] and a custom Python [74] script. Assembly correctness was assessed using single-copy 

orthologs with BUSCO v4.0.6 [75] and OrthoDB v10 [76] (Table S2 [Additional File 2]).  

 
Transcriptome Assembly 

The transcriptome was assembled from Illumina RNA-seq reads from all three tissues 

(i.e., gill, heart, and liver). The raw reads were used because Rcorrector did not modify any 

bases, thus making the raw reads and the “corrected” reads identical. The transcripts were 

assembled using Trinity v2.6.6 [77]. Assembly correctness was assessed using single-copy 

orthologs with BUSCO v4.0.6 [75] and OrthoDB v10 [76] (Table S2 [Additional File 2]). 

 

ddRAD Sequence Assembly and Filtering 

We assembled all ddRAD data using the program ipyrad v0.9.31 [78]. The input 

parameters for ipyrad are included in the supplementary materials (Table S3 [Additional File 2]). 

All A. glossodonta reads were mapped to the genome assembly. In step one of the ipyrad 

workflow, we demultiplexed sequences by identifying individual sample barcode sequences and 

restriction overhangs. During step two, we trimmed barcodes and adapters from reads, which 

were then hard-masked using a q-score threshold of 20 and filtered for a maximum number of 

undetermined bases per read. In step three we clustered reads with a minimum depth of coverage 

of six to retain clusters in the ddRAD assembly. During step four, we jointly estimated 

sequencing error rate and heterozygosity from site patterns across the clustered reads assuming a 
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maximum of two consensus alleles per individual. In step five, we determined consensus base 

calls for each allele using the parameters from step four and filtered for a maximum number of 

undetermined sites per locus. During step six, we clustered consensus sequences and aligned 

reads for each sample. During step seven, we filtered the data by the maximum number of alleles 

per locus, the maximum number of shared heterozygous sites per locus, and other criteria [78] 

and formatted output files for downstream analyses. We included all loci shared by at least 10 

individuals. 

We performed additional filtering steps after running ipyrad to account for missing data 

and rare alleles. Using VCFtools v0.1.16 [79] and BCFtools v1.6 [66], we removed individuals 

missing more than 98% of genotype calls. We retained only biallelic single nucleotide 

polymorphisms (SNPs) and removed (i) indels, (ii) loci with minor allele frequencies < 0.05 to 

exclude singletons and false polymorphic loci due to potential sequencing errors, (iii) alleles with 

a minimum count < 2, and (iv) loci with high mean depth values (> 100). We then implemented 

an iterative series of filtering steps based on missing data and genotype call rates to maximize 

genomic coverage per individual (Table S4 [Additional File 2]) [80]. Thereafter, we removed 

loci out of Hardy-Weinberg Equilibrium to filter for excess heterozygosity. We then used PLINK 

v1.9 [81] to perform linkage disequilibrium pruning by calculating the squared coefficient of 

correlation (r2) on all SNPs within a 1 kb window [82]. We removed all SNPs with an r2 value 

greater than 0.6. 

 
Computational Annotation of Assembled Genome  

The MAKER v3.01.02-beta [83] pipeline was used to annotate the assembly. With minor 

modifications (see Supplementary Bioinformatics Methods, Additional File 1), annotation 

proceeded according to the process described in the most recent Maker Wiki tutorial [84]. A 
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custom repeat library was created using RepeatModeler v1.0.11 [85]. The transcriptome 

assembly, genome assembly, and proteins from UniProtKB Swiss-prot [86, 87] were used as 

input to MAKER to create initial annotations. Gene models based on these annotations were 

used to train the following ab initio gene predictors: AUGUSTUS v3.3.2 [88, 89] and SNAP 

downloaded 3 June 2019 [90]. AUGUSTUS was trained using BUSCO [75] as a wrapper; SNAP 

was trained without a wrapper. Genemark-ES v4.38 [91-93] was also trained on the assembled 

genome. These models were all provided to MAKER for a second round of structural annotation. 

The gene models based on those annotations were filtered with gFACs v1.1.1 [94] and again 

provided to AUGUSTUS and SNAP. As Genemark-ES does not accept initial gene models, it 

did not need to be run again. The gene models from the ab initio gene predictors were again 

provided to MAKER for a third and final round of annotation. Functional annotations were 

added using MAKER accessory scripts, the BLAST+ Suite v2.9.0 [95, 96], and InterProScan 

v5.45-80.0 [97, 98]. The annotations in GFF3 format were validated with GenomeTools v1.6.1 

[99] and manually curated to adhere to GenBank submission guidelines. 

 
Statistical Analysis of Population Genomic Data 

Detection of Loci under Selection 

Before conducting population genomic analyses, we performed outlier tests to identify 

loci putatively under selection, which are generally identified by a significant difference in allele 

frequencies between populations [100]. Specifically, we implemented two outlier detection 

methods that accommodate missing data: pcadapt v4.1.0 [100] and BayeScan v2.1 [101]. The 

assumption behind pcadapt is that loci associated with population structure, ascertained via 

principal component analysis (PCA), are under selection [100]. pcadapt is advantageously fast 

and able to handle large numbers of loci. The number of principal components (K) was chosen 
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based on visualization of a scree plot of the eigenvalues of a covariance matrix. Once the K-

value was chosen, the Mahalanobis distance (D test statistic) was calculated using multiple linear 

regression of the number of SNPs versus K [100, 102]. To account for false discovery rates, the 

p-values generated using the Mahalanobis distance D were transformed to q-values using the R 

v3.6.3 [52] q-value package v2.15.0 [103] with the cut-off point (α) set to 10% (0.1). 

BayeScan measures allele frequencies between different populations and identifies loci 

that are perceived to be undergoing natural selection based on their FST values [104, 105]. The 

method applies linear regression to generate population- and locus-specific FST estimates and 

calculates subpopulation FST coefficients by taking the difference in allele frequency between 

each population and the common gene pool. BayeScan incorporates uncertainties in allele 

frequencies due to small sample sizes, as well as imbalances in the number of samples between 

populations [101]. We assigned each of the six sampling localities as a population. Our analyses 

were based on 1:50 prior odds and included 100,000 iterations and a false discovery rate of 10%. 

We used the default values for the remaining parameters and visualized results in R v3.6.3 

following the developer’s manual [106]. After running both pcadapt and BayeScan, we used R to 

assess the number of outliers identified by both programs and subsequently removed outlier loci 

to generate a neutral dataset for downstream analyses.  

 
Population Structure and Genetic Differentiation 

To examine population structure, we used a model-based clustering method to reconstruct 

the genetic ancestry of individuals using sparse nonnegative matrix factorization (sNMF) and 

least-squares optimization. Model-based analyses were performed using the package LEA v2.6.0 

[107] in R. The sNMF function in LEA estimates the number of ancestral populations and the 

probability of the number of gene pools from which each individual originated by calculating an 
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ancestry coefficient and investigating the model’s fit through cross-entropy criterion [108]. We 

calculated and visualized cross-entropy scores of K population clusters ranging from 1–10 with 

10 replicates. To complement sNMF, we also used principal component analysis (PCA), a 

distance-based approach based on variation in allele distributions, implemented in VCFtools 

v0.1.16 [79]. For sNMF and PCA analyses, no populations were assigned a priori. We assigned 

each of the six sampling localities as populations for subsequent visualization, grouped into four 

“island groups” based on the proximity of some of the atolls that comprised our sampling 

localities (Fig. 2). The five Seychelles atolls we sampled were spread amongst three separate 

clusters of islands that are commonly referred to as the “outer island groups” due to the 

geographic locations of these outlying coralline islands relative to the densely-populated, granitic 

“inner islands” of the Seychelles Archipelago. The island groups consisted of (i) Amirantes (St. 

Joseph’s Atoll), (ii) Farquhar (Farquhar and Providence Atolls), (iii) Aldabra (Aldabra and 

Cosmoledo Atolls), as well as (iv) Mauritius (St. Brandon’s Atoll; Table S1 [Additional File 2]). 

We computed summary statistics in R v3.6.3, including pairwise FST estimates (StAMPP v1.6.1 

[109]), isolation by distance via the Mantel Rand test (adegenet v2.1.3 [110]), and expected and 

observed heterozygosity (hierfstat v0.5-7 [111]) to compare genetic diversity and differentiation 

between the four island groups. 

 

RESULTS  

Sequencing 

DNA Sequencing 

Paired-end, short-read sequencing (Illumina) yielded 109.5M pairs of reads comprised of 

53.86Gbp. The mean and N50 read lengths were 245.981 and 250, respectively. Continuous 
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long-read sequencing (PacBio) generated 9.5M reads with a total of 69.85Gbp. The mean and 

N50 read lengths were 7,352.726 and 13,831, respectively. The longest read was 103,889bp. The 

read length distribution is plotted in Figure 2. Result summaries for both sequencing runs are 

available in Table 1.  

 

mRNA Sequencing 

RNA-seq from the three tissues (i.e., gill, heart, and liver) generated 270.7M pairs of 

reads totaling 67.2Gbp. The gill tissue yielded 107.7M pairs of reads, with a total of 26.7Gbp. 

The heart tissue generated 19.6Gbp across 78.8M pairs of reads. The 84.2M pairs of reads from 

the liver tissue were comprised of 20.9Gbp. Across all three tissues, the mean and N50 read 

lengths were 124.122 and 125, respectively. The combined results from all three tissues are 

summarized in Table 1.  

 
Hi‑C Sequencing 

Sequencing yielded 88.7M pairs of reads comprised of 44.28Gbp. The mean and N50 

read lengths were 249.493 and 250, respectively. A summary of these results is presented in 

Table 1. 

 
ddRAD sequencing 

After data processing using ipyrad, we recovered a mean of 114,324 reads per individual 

for A. glossodonta and an average of 107,105 loci per individual. Following filtering for missing 

data, minor allele frequency, and linkage disequilibrium, the dataset contained 66 individuals and 

38,355 SNPs. BayeScan, being a more conservative outlier detection method than pcadapt, did 

not identify any outliers; we thus used only outlier detection results from pcadapt. Subsequent 
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removal of pcadapt outliers (N = 155) resulted in a neutral dataset containing 38,200 SNPs with 

9% missing data. 

 
Read Error Correction 

Illumina DNA 

When Quake corrects paired-end reads, three outcomes are possible for each pair of 

reads: (i) both reads are either already correct or correctable, (ii) one read is either correct or 

correctable and the other is low-quality, or (iii) both reads are low-quality. Of the original 

218.96M reads (109.5M pairs of reads), Quake corrected 62.7M of them and removed 51.6M of 

them. 5.97M pairs of reads were discarded because both reads were rated as erroneous. 39.6M 

pairs of reads had one read that was correct or correctable and one read that was low-quality; 

these were also discarded. The remaining 63.88M pairs of reads were either correct or 

correctable and were kept in the final read set containing 29.11Gbp of sequence.  

 
Illumina RNA 

No corrections were made to the RNA-seq reads by the error correction software. 

 
PacBio CLRs 

The dual-correction strategy (self-correction followed by hybrid-correction) reduced the 

number of reads from 9.5M to 2.79M and the total number of bases from 69.85Gbp to 36.79Gbp. 

The mean and N50 read lengths were changed from 7,354 and 13,831 to 13,193 and 15,483, 

respectively. The longest read was 63,271 bases. The distribution of read lengths can be viewed 

in Fig. 3. 

 
Genome Size Estimation 
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The genome size was estimated to be approximately 0.933Gbp as a result of the k‑mer 

analysis, which was consistent with the authors’ expectations based on two closely related 

elopomorph species [112, 113].  

 
Genome Assembly, Polishing, and Scaffolding 

The initial assembly from Canu was comprised of 3.8K contigs with a total assembly size 

of 1.05Gbp. The mean contig length, N50, NG50, and maximum contig length were 276.2Kbp, 

3.6Mbp, 4.7Mbp, and 28.2Mbp, respectively. The L50 was 57, and the LG50 was 43. The auN 

was 8.17M. After two rounds of polishing these contigs with the corrected Illumina WGS reads 

using RaCon, the assembly statistics changed only marginally. The number of contigs, L50, and 

LG50 were unchanged. The assembly size decreased by 318.7Kbp (0.03%). The mean contig 

length, N50, NG50, and maximum contig length were reduced by 83.8bp (0.03%), 1.3Kbp 

(0.04%), 1.5Kbp (0.03%), and 3.8Kbp (0.01%), respectively. The auN decreased by 2Kbp 

(0.02%). 

The scaffolding with the Hi-C data joined some polished contigs together, reducing the 

sequence count to 3.6K (-4.69%). The number of bases, excluding unknown bases (Ns), was 

unchanged; however, it is important to note that when SALSA creates gaps while ordering and 

orienting contigs, it always uses a gap size of 500bp. The result, in this case, was adding 116Kbp 

of Ns, which means 232 gaps were created. These gaps were spread across 113 scaffolds. No 

scaffold had more than six gaps (seven contigs ordered and oriented together). The mean 

scaffold length, scaffold N50, scaffold NG50, and maximum scaffold length increased by 

13.6Kbp (4.92%), 3.8Mbp (106.25%), 5.79Mbp (121.90%), and 14.1Mbp (49.85%), 

respectively. Coupled with these increases were decreases of 29 (50.88%) and 22 (51.16%) in 

the L50 and LG50, respectively. The auN increased to 14.1M (+72.81%). The quality of the 
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Hi‑C scaffolding can be visualized (Fig. 4) via a contact matrix generated by PretextMap [114] 

and PretextView [115]. 

The genome assembly was further improved by scaffolding with RNA-seq data. As 

expected, the magnitude of the changes between sets of scaffolds was smaller than what was 

observed between contigs and scaffolds. The total number of sequences was reduced by 176 to 

3.4K (-4.69%). The number of known bases was again unchanged; however, it is important to 

note that when Rascaf orders and orients contigs (or other scaffolds) it always inserts a gap of 

17bp to represent gaps of unknown size. Rascaf added 179 new gaps (3,043 unknown bases) 

across 148 sequences. Three gaps (1,500 unknown bases) from SALSA were removed, but the 

rest remained unchanged. The most gaps added to a single sequence by Rascaf was five. The 

sequence with the most total gaps (from either source) had seven gaps (six from Hi-C), thus eight 

contigs were joined together. 

This resulting set of scaffolds (which also includes all the contigs that were not joined to 

another contig in some way) had a mean length of 304.5Kbp (+5.11% from the Hi-C only value) 

and a maximum length of 42.29Mbp (+0.08%). The N50 and NG50 increased to 7.97Mbp 

(+7.04%) and 14.49Mbp (+37.58%), respectively. Decreases to 26 (-7.14%) and 20 (-4.76%) 

were observed for L50 and LG50, respectively. The auN increased to 14.7M (+4.37%). Table 2 

summarizes the assembly continuity statistics, and the area under the N-curve (auN) is visualized 

in Fig. 5. 

The assembly correctness, as assessed with single-copy orthologs, was also evaluated at 

each stage (Table S2 [Additional File 2]). The results suggest that the modifications made to the 

primary Canu-based assembly from polishing and scaffolding did not significantly impact the 

correct assembly of single-copy orthologs. The final set of scaffolds had 3,481 complete single-
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copy orthologs (95.6% of 3,640 from the ODB10 Actinopterygii set). Of these 88.4% (3,076) 

were present in the assembly only once, and 11.6% (405) were present more than once. Twenty-

five (0.7%) and 135 (3.7%) single-copy orthologs were fragmented in and missing from the 

assembly, respectively. 

 
Transcriptome Assembly 

The transcriptome assembly generated by Trinity was comprised of 455K sequences with 

a mean sequence length of 1,177bp. The N50 and L50 were 2.6Kbp and 56K, respectively. The 

N90 and L90 were, respectively, 410bp and 270K. Of the 3,640 single-copy orthologs in the 

ODB10 Actinopterygii set, 86.4% (3,144) were complete; 39.5% (1,241) of which were present 

only once in the transcript set. 128 (3.5%) single-copy orthologs were fragmented in the 

transcript set, 368 (10.1%) were missing. (See Table S2 [Additional File 2]) 

 

Computational Annotation 

Computational structural and functional annotation yielded 28.3K protein-coding genes. 

Of these, 17.2K and 15.6K have annotated 5′ and 3′ UTRs, respectively. 1.8K tRNA genes were 

also identified. The annotations are available with the assembly on GenBank. 

 

Population Genomic Analysis 

Cross-entropy scores generated by the model-based population differentiation analysis, 

sNMF, provided support for a single population of A. glossodonta across all localities. However, 

individual ancestry plots generated by sNMF showed evidence of genetic differentiation in 

individuals from Mauritius (St. Brandon’s Atoll), compared to the Seychelles sites (Fig. 6A). 

This differentiation was corroborated by PCA visualization of the first two principal 
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components, where St. Brandon’s Atoll individuals clustered separately from the four Seychelles 

island groups (Fig. 6B). Together, both population differentiation analyses indicated weak 

geographic population structure across all sampling localities, with reduced gene flow between 

St. Brandon’s Atoll and the Seychelles sites. 

Pairwise FST results also indicated greater genetic differentiation between St. Brandon’s 

Atoll and all other island groups (Table 3). Estimates of observed and expected heterozygosity 

were similar across island groups (Table S5 [Additional File 2]), suggesting no differences in 

genetic diversity between sampling localities and providing no evidence for distinguishing 

metapopulation processes such as inbreeding. A test of isolation by distance between sampling 

sites was not significant (p = 0.1501). 

 

DISCUSSION 

Albula glossodonta is an important fishery species in the Indo-Pacific for both 

subsistence and recreational purposes [20, 30, 116, 117]. Given this species’ current 

“Vulnerable” IUCN status [7, 118] amidst recent taxonomic uncertainties [4], understanding 

patterns of gene flow and population structure in A. glossodonta is important for fisheries 

management [30, 119].  

We observed a genetically homogenous population of A. glossodonta across five island 

atolls in the Seychelles Archipelago, with limited gene flow between Seychelles and Mauritius. 

Unlike highly migratory species such as eels (Anguillidae), which are close relatives of 

bonefishes, adult bonefishes are known for high site fidelity with relatively short migrations 

(~10-100 km) [117, 120, 121]. We hypothesized that adult bonefishes would not migrate 

between the Seychelles islands, or between the Seychelles and St. Brandon’s Atoll in Mauritius, 
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since these distances span 400–2,000 km. Consequently, the observed trend of genetic 

homogeneity across the Seychelles is likely not a result of adult long-distance migrations, but 

rather pelagic larval dispersal, the primary dispersal mechanism for bonefishes [32, 121-123]. 

Bonefish larvae, also referred to as leptocephali, have a long pelagic larval duration ranging from 

41–72 days, which enables them to drift long distances with ocean currents [21, 124]. The 

estimated pelagic larval duration for A. glossodonta is 57 days, based on observations of 

individuals from French Polynesia in the South Pacific [21]. The Seychelles islands are located 

in the South Equatorial Current, which flows westwards from the Indian Ocean towards the 

eastern coast of continental Africa, enabling larvae to be transported across the Seychelles 

islands, even across depths exceeding 4000 m (Fig. 2) [125, 126]. 

Genetic homogeneity is not always an outcome of long pelagic larval duration, as 

demonstrated by Anguilla marmorata, for which 2–5 stocks were identified in the Indo-Pacific 

[127, 128], and A. glossodonta, where putative stocks between the Indian and Pacific Oceans 

were suggested [119]. Indeed, we found evidence of restricted gene flow between the Seychelles 

sampling sites and St. Brandon’s Atoll, Mauritius, which is ~1500–2000 km from the Seychelles 

Islands (Fig. 2). This genetic structuring was unexpected, given the long pelagic larval duration 

of A. glossodonta. However, there is evidence of limited gene flow between Seychelles and 

Mauritius in other marine fish species with pelagic larvae, such as Lutjanid kasmira [129], 

Lethrinus nebulosus [130], and Pristipomoides filamentous [131].  

We attribute the observed genetic structure between Seychelles and St. Brandon’s Atoll 

to the ocean currents in the southwestern Indian Ocean and their role in larval transport [132, 

133]. St. Brandon’s Atoll is in the direct path of one of the bifurcated arms of the South 

Equatorial Current as it passes through the Mascarene Plateau [125, 134]. The South Equatorial 
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Current pushes water westward, which may create a barrier to gene flow to islands south of 

Seychelles such as Mauritius and Réunion [130, 131, 134]. Although there are currently no 

bonefish – or even elopomorph – larval dispersal models for the Indian Ocean, pelagic larval 

dispersal simulation models of coral species in the southwestern Indian Ocean corroborate the 

biogeographic break between Seychelles and Mauritius, suggesting connectivity is limited even 

when the pelagic larval duration is between 50–60 days [125, 134]. However, these models 

considered coral larvae, which are completely reliant on currents for their dispersal [122, 134, 

135]. Whilst the dispersal behavior of A. glossodonta larvae is unknown, we speculate that, 

similar to eels (Anguillidae; which also have long pelagic larval durations), bonefishes could 

disperse greater distances than passive corals by having the ability to swim (e.g., Anguilla 

japonica [136]) or may even take part in vertical migrations (e.g., Anguilla japonica [137, 138]). 

While officially undescribed, swimming ability in bonefish leptocephali has been observed 

[139], and vertical migrations have previously been theorized [122, 140]. 

Genome-wide datasets have enabled researchers to better-delineate population 

connectivity across seascapes for marine species where conventional markers (e.g., mtDNA, 

microsatellites) have not provided sufficient genomic resolution [127, 141, 142]. Such advances 

in genomic sequencing have altered our view of population connectivity in other marine fishes 

such as yellowfin tuna (Thunnus albacores [143]) and the American eel (Anguilla rostrata 

[144]). These studies, including ours, highlight the power of large genomic datasets for 

investigating connectivity in open-ocean environments containing few, if any, natural barriers 

that were traditionally thought to drive population structure. Although there has been a rapid 

increase in the number of studies using next-generation sequencing datasets for marine fishes, 
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few studies to date have employed the use of genomic datasets on elopomorphs, and none on 

bonefish [144-146]. 

 

Conclusions 

This is the first genome assembly and annotation for an albulid species, as well as the 

first use of a genome-wide single-nucleotide polymorphism dataset to investigate population 

structure for Albula glossodonta or any bonefish species in the Indian Ocean. Individuals of A. 

glossodonta were genetically homogenous across four coralline island groups in the Seychelles 

Archipelago, but they showed evidence of genetic differentiation between the Seychelles and 

Mauritius (St. Brandon’s Atoll). These patterns of connectivity are likely facilitated by pelagic 

larval dispersal, which is presumed to be strongly shaped by currents in the southwestern Indian 

Ocean. Only with high-resolution genomic data were we able to discern this pattern of 

population structure between Seychelles and Mauritius. Our dataset serves as a valuable resource 

for future genomic studies of bonefishes to facilitate their management and conservation. 
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Table 1. Sequencing Information. The 
results from each type of DNA and RNA 
sequencing from Albula glossodonta. PE=
Paired-end reads. SMRT=Single-Molecule, 
Real-Time sequencing. CLR=Continuous 
Long-reads. 

Company  Illumina Illumina Illumina PacBio 

Instrument 
 

Hi-Seq 
2500 

Hi-Seq 
2500 

Hi-Seq 
2500 Sequel I 

Mode 
 

Rapid 
Run 

High 
Output 

Rapid 
Run NA 

Sequencing 
Type 

 
PE PE Hi-C, 

PE 
SMRT, 

CLR 

Duration 
 

250 
cycles 

125 
cycles 

250 
cycles 

30 
hours 

Specimen  1 1 2 2 

Tissues 

 

Blood 
Gill, 

Heart, 
Liver 

Heart Heart 

Molecule  DNA RNA DNA DNA 

Millions of 
Read( Pair)s 

 
109.5 270.7 88.7 9.5 

Mean Read 
Length 

 
246 124 245 7,353 

Read N50  250 125 250 13,831 

Nucleotides 
(Gb) 

 
53.86 67.2 44.28 69.85 

 

Table 2. Continuity Statistics. Continuity statistics 
for the Albula glossodonta genome assembly at 
various stages. Note that the auN value is the area 
under the NG curve, not the N curve. Also note that 
when submitted to GenBank, the gaps were all 
converted to a length of 100 bp. 

 Contigs 
Polished 
Contigs 

Scaffolds 
(Hi‑C) 

Scaffolds 
(Hi‑C + 

RNA‑seq) 

Sequences 3,799 3,799 3,621 3,445 

Known 
Bases 1.04935 Gb 1.04903 Gb 1.04903 Gb 1.04903 Gb 

Mean 
Length 276,217.073 276,133.196 289,707.267 304,507.986 

Max. 
Length 28,203,290 28,199,443 42,256,846 42,290,388 

NG50 4,747,926 4,746,442 10,532,420 14,490,288 

NG90 503,090 503,135 739,806 827,489 

LG50 43 43 21 20 

LG90 289 289 181 162 

auN 8,165,188 8,163,173 14,106,761 14,723,001 

Sequences 
with Gaps - - 133 236 

Gaps - - 232 408 

Unknown 
Bases - - 116,000 117,543 

Mean 
Gap 

Length 
- - 500.000 288.096 

 
 
 
 
 
 
 
 
 
Table 3. Pairwise FST Comparisons by 
Island Group. 

 Amirantes Farquhar Aldabra 

Farquhar 0.0014*   
Aldabra   0.0005 0.0020*  

Mauritius 0.0034* 0.0043* 0.0040* 
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Figure 1. Roundjaw Bonefish (Albula glossodonta) adult. Quantitative morphological data for this illustration of 
A. glossodonta were obtained primarily from two articles: Hidaka et al. 2008 [163] and Shaklee and Tamaru 1981 
[14]. These were then evaluated by the artist, with assistance and input from the authors, to select specific values for 
details such as the number of pored lateral line scales (76) and the number of rays in the pectoral (18), dorsal (16), 
pelvic (10), and anal fins (9). Each of these was portrayed in the illustration to be at or near the middle of the ranges 
reported in the aforementioned articles. While some limited information was found in the literature describing 
coloration and general shape, the artist found particular benefit in some excellent, detailed photographs by Derek 
Olthuis of samples that were both personally caught in Hawai‘i and later genetically identified as A. glossodonta by 
Dr. J. S. K. Kauwe. Illustration Copyright: Tim Johnson, used with permission. 
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Figure 2. Sampling localities for A. glossodonta population genomic analysis. The upper panel shows the marine 
boundaries for the Seychelles and Mauritius in light blue. Locations of sampling sites are indicated by dark blue 
ovals. The lower panel shows the atolls comprising the four island groups: Amirantes, Farquhar, Aldabra, and 
Mauritius.  
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Figure 3. Frequency of Pacific Biosciences Read Lengths. The change in read length distribution is demonstrated 
as reads are corrected. The dramatic shift from raw to corrected reads is evident. The self-corrected (purple) data 
points are slightly larger than the dual-corrected (yellow) data points to make the purple distribution visible, the size 
has no meaning. 
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Figure 4. Hi-C Contact Matrix showing Scaffolding Correctness. In the context of scaffolding, Hi-C contact 
matrices show how correct the scaffolds are. Off-diagonal marks, especially those that are bright and large, are 
evidence of mis-assembly and/or incorrect scaffolding. The interpretations of the lighter and smaller off-diagonal 
marks in this image are ambiguous because the assembly is unphased with some relatively short contigs/scaffolds. 
Additional detail may be viewed by zooming in on the high-resolution image. 
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Figure 5. Area Under the N-curve (auN) for each Assembly Step. The N-curve and the area under it are plotted 
for each major step of the assembly: contigs, polished contigs, scaffolds from only Hi-C data, and scaffolds from 
both Hi-C and RNA-seq data. The auN for the polished contigs (green) is very similar to the contigs (yellow). Most 
of the curve was completely blocked by the contigs (yellow) curve. To show that the polished contigs (green) share 
nearly the same curve, the line was plotted more thickly so it can just barely be seen. Similarly, the Hi-C + RNA-seq 
scaffolds (purple) curve is very similar to the Hi-C only scaffolds (blue) curve. In this case, differences are more 
apparent. In certain places, e.g., at the highest peak, the Hi-C + RNA-seq scaffolds (purple) are plotted more thickly 
so it can be seen behind the Hi-C only scaffolds (blue). 
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Figure 6. Population Differentiation Analyses. Weak geographic population structure is present across all 
sampling localities, with reduced gene flow between St. Brandon’s Atoll and the Seychelles sites. Island groups are 
colored as in Fig. 2. (A) Individual ancestry plots generated using sNMF, indicating K = 2 putative populations. (B) 
Principal component analysis biplot showing the first two principal components. 
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ABSTRACT 

The bluefin trevally, Caranx melampygus, also known as the bluefin kingfish or bluefin 
jack, is known for its remarkable, bright-blue fins. This marine teleost is a widely-prized 
sportfish, but few resources have been devoted to the genomics and conservation of this species 
because it is not targeted by large-scale commercial fisheries. Population declines from 
recreational and artisanal overfishing have been observed in Hawai‘i, USA, resulting in both an 
interest in aquaculture and concerns about the long-term conservation of this species. Most 
research to-date has been performed in Hawai‘i, raising questions about the status of bluefin 
trevally populations across its Indo-Pacific range. Genomic resources allow for expanded 
research on stock status, genetic diversity, and population demography. We present a high-
quality nuclear genome assembly of a Hawaiian bluefin trevally from noisy long-reads with a 
contig NG50 of 1.2Mbp. Some of the contigs were arranged into scaffolds using RNA-seq data 
from eight tissues from the same individual. This is the first whole-genome assembly for the 
carangoid clade Carangini. Using this assembled genome, a multiple sequentially Markovian 
coalescent model was implemented to assess population demography. Estimates of effective 
population size suggest population expansion has occurred since the Late Pleistocene. This 
genome will be a valuable resource for comparative phylogenomic studies of carangoid fishes 
and will help elucidate demographic history and delineate stock structure for bluefin trevally 
populations throughout the Indo-Pacific. 
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INTRODUCTION 

The bluefin trevally (Caranx melampygus; Cuvier 1833) is a marine teleost fish 

(Carangiformes: Carangoidei) inhabiting coastal environments throughout the tropical and 

subtropical Indo-Pacific (Fig. 1). C. melampygus is a top predator on coral and rocky reef 

ecosystems, reaching up to 117 cm in length and feeding predominantly on shallow-water fishes 

and invertebrates (Sudekum et al. 1991; Meyer et al. 2001). In the Northwestern Hawaiian 

Islands, for example, bluefin trevallies consume an estimated 11,000 metric tons of prey per 

year, confirming their role as important predators in this region (Sudekum et al. 1991). Caranx 

melampygus is also targeted by small-scale and recreational fisheries in Hawai‘i, where it is 

known by its Native Hawaiian name, ‘omilu (Meyer et al. 2001). In recent decades, the C. 

melampygus population in Hawai‘i has been impacted by overharvesting and habitat destruction 

(Friedlander and Dalzell 2004). For this reason, there has been significant interest in Hawai‘i in 

captive breeding for aquaculture (Moriwake et al. 2001; Zhao and Lu 2006). Because the bulk of 

research on the bluefin trevally has been conducted in Hawai‘i, observations of population 

declines raise concerns for populations in other parts of its range, where abundance and biomass 

estimates remain unknown. 

Recent genomic evidence suggests C. melampygus comprises a unique population in 

Hawai‘i compared to several localities sampled across the Indo-Pacific (Glass et al. In Press), 

and an analysis of complete mitochondrial genomes suggests individuals from Guam are also 

genetically distinct (Genomic Resources Development Consortium et al. 2014). Given 

population declines and evidence of unique stock structure in Hawai‘i, whole genome data for C. 

melampygus would provide unprecedented value for inferring demographic history, estimating 

effective population size, and testing for selection and local adaptation. Juvenile and adult 
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individuals frequently utilize estuarine habitats, for example, and have a strong tolerance for 

freshwater in coastal locations where estuaries are present (Blaber and Cyrus 1983). Studying the 

evolution and physiology of C. melampygus in a genomic context is valuable to the broader 

scientific and reef fish community, especially given interest in the genomic mechanisms of 

adaptation of marine and anadromous fishes to freshwater (Kültz 2015). Furthermore, whole 

genome data provide baseline biological information for delineating wild stocks, a critical 

component of transboundary fisheries management, while also serving as an important reference 

for the aquaculture industry to examine genomic signatures of growth in captivity and 

susceptibility to disease (Zhao and Lu 2006). At present, published whole genome data are 

available for only seven out of approximately 150 carangoid species: Echeneis naucrates 

(Linnaeus 1758) (Koepfli et al. 2015) , Trachinotus ovatus (Linnaeus 1758) (Zhang et al. 2019), 

Selene dorsalis (Gill 1863) (Malmstrøm et al. 2017) , and four Seriola sp. (Purcell et al. 2015; 

Araki et al. 2018; Ozaki and Araki 2017; Yasuike et al. 2018), all of which diverged from C. 

melampygus approximately 48–50 Mya  (Harrington et al. 2016). Here, we present an annotated 

de novo genome assembly of C. melampygus to facilitate future research for aquaculture 

development and expand the genomic resources of carangoid fishes for comparative 

phylogenomic analysis. 

 

MATERIALS AND METHODS 

An overview of the methods used in this study is provided here. Where appropriate, 

additional details, such as the code for custom scripts and the commands used to run software, 

are provided in the Supplementary Bioinformatics Methods (Supplementary File 1; Appendix 4 

herein). 
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Sample Acquisition & Sequencing 

One C. melampygus individual was captured in 3-9 m of water <1 km off the coast of 

O‘ahu (near Kaneohe, Hawai‘i, USA: 21°26'45.3"N 157°48'07.5"W) in April 2018. The 

specimen was caught using a Shimano (Sakai, Osaka, Japan) ocean rod outfitted with a Daiwa 

(Cypress, California, USA) Saltiga 6500 reel and a white feather jig. Brain, eye, fin, gill, heart, 

kidney, liver, and muscle tissue samples were collected immediately upon capture, flash-frozen 

in liquid nitrogen, and packaged in dry ice for transportation to Brigham Young University 

(BYU; Provo, Utah, USA) for storage at ‑80° until sequencing. All tissue samples were used for 

short-read RNA sequencing. The heart tissue was also used for long-read DNA sequencing. 

DNA was prepared for long-read sequencing with a Pacific Biosciences (PacBio; Menlo 

Park, California, USA; https://www.pacb.com) SMRTbell Library kit, adhering to the following 

protocol: “Procedure & Checklist – Preparing >30 kb SMRTbell Libraries Using Megaruptor 

Shearing and BluePippin Size-Selection for PacBio RS II and Sequel Systems”. Continuous 

long-read (CLR) sequencing was performed on ten SMRT cells for a 10-hour movie on the 

PacBio Sequel at the BYU DNA Sequencing Center (DNASC; https://dnasc.byu.edu), a PacBio 

Certified Service Provider. RNA was prepared with Roche (Basel, Switzerland; 

https://sequencing.roche.com) KAPA Stranded RNA-Seq kit, following recommended protocols. 

Paired-end sequencing was performed in Rapid Run mode for 250 cycles with the eight samples 

across two lanes on the Illumina (San Diego, California, USA; https://www.illumina.com) Hi-

Seq 2500 at the DNASC. 

 

Sequence Assembly and Scaffolding 
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The PacBio CLR reads were self-corrected and assembled with Canu v1.6 (Koren et al. 

2017). The contigs were scaffolded using RNA-seq reads. The scaffolding step required read 

mapping to the contigs before determining how to order and orient contigs. The RNA-seq reads 

were aligned using HiSat v0.1.6-beta (Kim et al. 2015). Scaffolding was performed with RNA-

seq data using the latest (June 2018) commit of Rascaf (Song et al. 2016). Assembly continuity 

statistics, e.g., N50 and auNG (Li 2020), were calculated with caln50 downloaded April 2020 

(https://github.com/lh3/calN50) and a custom Python (https://www.python.org) script. The 

genome size provided to Canu and used for assembly statistics was based on values recorded in 

the Animal Genome Size Database (Gregory 2018). A C-value was not listed in the database for 

C. melampygus; we used 0.8 (782.4 Mbp) as an upper limit based on recorded genome size 

values for other Caranx species. 

The transcriptome was assembled from Illumina RNA-seq reads from all eight tissues 

(i.e., brain, eye, fin, gill, heart, kidney, liver, and muscle). The transcripts were assembled using 

Trinity v2.6.6 (Grabherr et al. 2011). Both the genome and transcriptome assemblies were 

assessed for correctness using single-copy orthologs with BUSCO v4.0.6 (Simão et al. 2015) and 

the Actinopterygii subset of OrthoDB v10 (Kriventseva et al. 2019). 

 

Computational Annotation 

The MAKER v3.01.02-beta (Holt and Yandell 2011) pipeline was used to annotate the 

genome assembly. Generally speaking, annotation proceeded according to the process described 

in the most recent Maker Wiki tutorial (Holt and Yandell 2018). A custom repeat library was 

created using RepeatModeler v1.0.11 (Smit and Hubley 2008). The transcriptome assembly, 

genome assembly, and proteins from UniProtKB Swiss-prot (The Uniprot Consortium 2019; 
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Boutet et al. 2007) were used as input to MAKER to create initial annotations. Gene models 

based on these annotations were used to train the following ab initio gene predictors: 

AUGUSTUS v3.3.2 (Stanke et al. 2006; Stanke and Waack 2003) and SNAP downloaded 3 June 

2019 (Korf 2004). AUGUSTUS was trained using BUSCO (Simão et al. 2015) as a wrapper; 

SNAP was trained without a wrapper. Genemark-ES v4.38 (Lomsadze et al. 2005; Brůna et al. 

2020; Lomsadze et al. 2014) was also trained, though necessarily without the initial models from 

MAKER. These models were all provided to MAKER for a second round of structural 

annotation. The gene models based on those annotations were filtered with gFACs v1.1.1 

(Caballero and Wegrzyn 2019) and again provided to AUGUSTUS and SNAP. As Genemark-ES 

does not accept initial gene models, it had no need to be run again. The gene models from the ab 

initio gene predictors were again provided to MAKER for a third and final round of annotation. 

Functional annotations were added using MAKER accessory scripts, the BLAST+ Suite v2.9.0 

(Camacho et al. 2009; Altschul et al. 1990), and InterProScan v5.45-80.0 (Jones et al. 2014; 

Mitchell et al. 2019). 

 

Demographic History 

We inferred the historical demography of C. melampygus and its close relative, the giant 

trevally (Caranx ignobilis), by implementing the multiple sequentially Markovian coalescent 

(MSMC) model (Schiffels and Durbin 2014) to generate estimates of effective population size 

(Ne) over time. MSMC estimates the rate of coalescent events between two alleles at each locus 

along an unphased, single diploid genome. We used the self-corrected PacBio reads, filtered for 

scaffolds > 500Kbp, and applied additional cutoffs to ensure sufficient sequencing depth and 

quality using MSMC-tools downloaded 8 October 2020 (https://github.com/stschiff/msmc-tools; 
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Schiffels and Wang 2020; Mather et al. 2020). We used a draft de novo genome for C. ignobilis 

(Pickett et al. 2021). We ran MSMC v1.1.0 using the following time patterning parameters to 

estimate 20-time intervals and one free coalescent rate parameter: “1*2+16*1+1*2”. We then 

generated 1,000 bootstrap estimates using a simulated dataset that randomly pulled, with 

replacement, 500Kbp long segments and arranged them into 52 segments per “chromosome.” 

We generated 30 simulated “chromosomes” to construct artificial 780Mbp long genomes, 

reflecting the estimated size of the C. melampygus genome, to determine confidence intervals 

around Ne estimates.  We used the same MSMC parameters for C. ignobilis, except that we 

generated 30 simulated “chromosomes” to construct 630Mbp long genomes to reflect the 

estimated size of the C. ignobilis genome (Pickett et al. 2021). After running MSMC, we 

converted population sizes and times into number of individuals and years, respectively, using a 

per site per generation mutation rate (𝜇 = 3.7 e-8) from another marine teleost species (Liu et al. 

2016). For C. melampygus, we used a generation time of four, based on the average age of sexual 

maturity of C. melampygus (two) multiplied by two (Mather et al. 2020; Nadachowska-Brzyska 

et al. 2016). For C. ignobilis, we used a generation time of six, given an average age of three for 

sexual maturity in this species. The scripts to perform this analysis are available on GitHub 

(https://github.com/pickettbd/msmc-slurmPipeline) with supporting documentation. 

 

Data Availability 

Raw reads have been deposited in the National Center for Biotechnology Information 

(NCBI) Sequence Read Archive (SRA) under BioProject PRJNA670455. The genome assembly 

and annotations are associated with the same BioProject and can be found in GenBank under 

accession JAFELL010000000. 
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RESULTS AND DISCUSSION 

Sequencing 

Continuous long-read sequencing (PacBio) generated 4.45M reads with a total of 

52.67Gbp, which is approximately 67x physical coverage of the genome. The mean and N50 

read lengths were 11,834.678 and 19,264, respectively. The longest read was 116,429bp. The 

read length distribution is plotted in Figure 2. A summary of the results for the sequencing run is 

available in Table 1. This genome represents the first for the Caranx genus and ranks among the 

highest quality genomes available for Carangoidea in terms of N50 (Zhang et al. 2019). 

RNA-seq from the eight tissues (i.e., brain, eye, fin, gill, heart, kidney, liver, and muscle) 

generated 257.47M pairs of reads totaling 114.61Gbp. Across all eight tissues, the mean and N50 

read lengths were 222.6 and 249, respectively. The combined results from all eight tissues are 

represented in Table 1, while the results from each tissue are made available in Table 2.  

 

PacBio CLR Error Correction 

The self-correction strategy reduced the number of reads from 4.45M to 1.77M and the 

total number of bases from 52.67Gbp to 29.6Gbp for an approximate physical coverage of 37.8x. 

The mean and N50 read lengths were changed from 11,835 and 19,264 to 16,769 and 19,027, 

respectively. The longest read was 78,163 bases. The distribution of read lengths can be viewed 

in Figure 2. 

 

Genome Assembly and Scaffolding 
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The initial assembly from Canu was comprised of 3.6K contigs with a total assembly size 

of 711Mbp. The mean contig length, N50, NG50, and maximum contig length were 198.8Kbp, 

1.5Mbp, 1.2Mbp, and 8.9Mbp, respectively. The L50 was 120, and the LG50 was 147. The 

auNG was 1.93M. The scaffolding with the RNA-seq data joined some contigs together, 

reducing the sequence count to 3.3K (-8.08%). The number of bases, excluding unknown bases 

(Ns), was unchanged; however, it is important to note that when Rascaf creates gaps while 

ordering and orienting contigs, it always uses a gap size of 17bp to represent gaps of unknown 

size. The result in this case was adding 4.9Kbp of Ns, which means 289 gaps were created. 

These gaps were spread across 254 scaffolds. No scaffold had more than three gaps (four contigs 

ordered and oriented together). The mean scaffold length, scaffold N50, and scaffold NG50 

increased by 17.5Kbp (8.79%), 213.8Kbp (12.70%), and 156.7Kbp (11.75%), respectively. 

Coupled with these increases were decreases of 13 (10.33%) and 17 (11.56%) in the L50 and 

LG50, respectively. The maximum scaffold length was unchanged from the maximum contig 

length. The auNG increased to 2.14M (+11.05%). Table 3 summarizes the assembly continuity 

statistics, and the area under the NG-curve (auNG) is visualized in Figure 3. 

The assembly correctness, as assessed with single-copy orthologs, was also evaluated at 

the contig and scaffold level. The results suggest that the modifications made to the primary 

Canu-based assembly from scaffolding did not significantly impact the correct assembly of 

single-copy orthologs. The final set of scaffolds had 3,474 complete single-copy orthologs 

(95.5% of 3,640 from the ODB10 Actinopterygii set). Of these 89.8% (3,267) were present in the 

assembly only once, and 6.4% (207) were present more than once. Twenty-two (0.6%) and 144 

(3.9%) single-copy orthologs were fragmented in and missing from the assembly, respectively. 
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Transcriptome Assembly & Computational Annotation 

The transcriptome assembly generated by Trinity was comprised of 680K sequences with 

a mean sequence length of 1,171bp. The N50 and L50 were 2.4Kbp and 89K, respectively. The 

N90 and L90 were, respectively, 434bp and 419K. Of the 3,640 single-copy orthologs in the 

ODB10 Actinopterygii set, 93.3% (3,399) were complete; 33.8% (1,148) of which were present 

only once in the transcript set. 112 (3.1%) single-copy orthologs were fragmented in the 

transcript set, 129 (3.6%) were missing. Computational structural and functional annotation 

using the transcriptome assembly and the MAKER pipeline yielded 32.9K protein-coding genes. 

Of these, 21.8K and 20.7K have annotated 5′ and 3′ UTRs, respectively. 2.3K tRNA genes were 

also identified. The annotations are available in GFF3 format alongside the assembly. 

 

Population Demography 

Results of MSMC modeling indicated a gradual increase in effective population size (Ne) 

of both C. melampygus and C. ignobilis beginning around 150 kya, with strong fluctuations in C. 

melampygus population sizes between ~30-75 kya (Fig. 4). The increase in Ne was greater for C. 

melampygus than C. ignobilis. Our observed corroborate a previous demographic analysis of 

both species from Hawai‘i using mitochondrial loci, which also recovered evidence of 

population expansion compared to C. ignobilis (Santos et al. 2011). Other demographic 

components of wild populations (e.g., population structure, nonrandom mating, selection) are 

also known to affect estimates of coalescent rates (Mazet et al. 2016). For example, decreases in 

sea level have been linked to the isolation of marine populations (Cacciapaglia et al. 2021; Norris 

and Hull 2012), which would lead to demographic changes such as population structure and 

nonrandom mating. Sea levels decreased globally from the beginning of the Upper Pleistocene 
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(~129 kya) until the last glacial maximum (~19–26 kya), with several fluctuations in-between 

caused by glacial-interglacial cycles (Grant et al. 2014). Moreover, ocean circulation patterns 

were weaker during glacial periods (Rahmstorf 2002), which would limit connectivity between 

populations of marine fishes such as C. melampygus and C. ignobilis that disperse primarily via 

pelagic larval drifting.  

Recent evidence suggests C. melampygus and C. ignobilis individuals are a genetically 

unique population in Hawai‘i (Glass et al. 2021). During the last glacial maximum, exposed 

limestone bridges linked the Hawaiian Islands of Maui, Lāna‘i, and Moloka‘i and supported reef 

habitats which became drowned after sea levels began rising (Grigg et al. 2002). These limestone 

reef features may have created increased habitat availability in Hawai‘i during periods of 

glaciation and supported population expansion. Notably, these species are large-bodied and 

associated with coastal habitats, including rock and coral reefs, but are not reef-obligate. Overall, 

some reef fishes exhibit evidence of dramatic declines in population size during glaciation 

periods (Gaither et al. 2010), whereas others exhibit evidence of population expansion similar to 

what is reported here for C. melampygus (Delrieu-Trottin et al. 2017). An analysis of 

demographic history for C. melampygus individuals from the widespread, Indo-West Pacific 

population, and individuals of C. ignobilis from other identified populations (Glass et al. 2021) 

would allow us to compare population expansion and contractions over time and assess how sea 

level changes may have affected C. melampygus and C. ignobilis differently across the Indo-

Pacific. 

 

Conclusion 
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The assembled genome of Caranx melampygus represents the first whole-genome 

assembly and annotation for the genus Caranx and second in the clade Carangini, the most 

speciose subclade of Carangoidea. The high quality of this reference genome builds on previous 

carangoid whole genome datasets and is important for delineating stock structure and 

demographic history of C. melampygus, especially given evidence of a unique genetic lineage in 

Hawai‘i. The bluefin trevally genome is also a valuable resource for comparative phylogenomic 

studies of carangoid fishes. 
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Table 1. Sequencing Information. The 
results from each type of DNA and RNA 
sequencing from Caranx melampygus. PE=
Paired-end reads. SMRT=Single-Molecule, 
Real-Time sequencing. CLR=Continuous 
Long-reads. 

Company  Illumina PacBio 

Instrument  Hi-Seq 2500 Sequel I 

Mode 
 Rapid 

Run NA 

Sequencing 
Type 

 PE SMRT, CLR 

Duration 
 250 

cycles 
30 

hours 

Specimen  1 1 

Tissues 

 Brain, Eye, 
Fin, Gill, 

Heart, Kidney, 
Liver, Muscle 

Heart 

Molecule  RNA DNA 

Millions of 
Read( Pair)s 

 
257.47 4.45 

Mean Read 
Length (bp) 

 
222.6 11,834.7 

Read N50 
(bp) 

 249 19,264 

Nucleotides 
(Gbp) 

 
114.61 52.67 

 

Table 2. RNA Sequencing Details per Tissue. The 
results of RNA sequencing for each tissue from one 
Caranx melampygus individual. The eight tissues 
were spread across two lanes and run on an Illumina 
Hi-Seq 2500 in Rapid Run mode for 250 cycles to 
generate paired-end reads. Unless otherwise 
specified, lengths of nucleotide sequences are 
measured in base pairs (bp). 

 
 Millions 

of Read 
Pairs 

Mean 
Read 

Length 

Read 
N50 

Nucleotides 
(Gbp) 

Brain  31.3 219.8 249 13.76 

Eye  37.96 219.9 249 16.7 

Fin  33.02 219.9 249 14.52 

Gill  28.97 225.4 249 13.06 

Heart  32.98 228.9 249 15.09 

Kidney  32.51 222.5 249 14.47 

Liver  30.10 224.6 249 13.52 

Muscle  30.63 220.3 249 13.49 

All  257.47 222.6 249 114.61 
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Table 3. Continuity Statistics. Continuity statistics 
for the Caranx melampygus genome assembly at the 
contig and scaffold level. Note that the auNG value is 
the area under the NG-curve and is unitless. Unless 
otherwise specified, all nucleotide sequences and 
gaps are measured in base pairs (bp). 

 Contigs Scaffolds 

Sequences 3,577 3,288 

Known 
Bases 710.963 Mbp 710.963 Mbp 

Mean 
Length 198,759.666 216,229.722 

Max. 
Length 8,932,605 8,932,605 

NG50 1,176,926 1,333,605 

NG90 24,428 24,595 

LG50 147 130 

LG90 3,179 2,892 

auNG 1,927,338 2,140,376 

Sequences 
with Gaps - 254 

Gaps - 289 

Unknown 
Bases - 4,913 

Mean 
Gap 

Length 
- 17 
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Figure 1. Bluefin trevally (Caranx melampygus) adult and juvenile. Quantitative morphological data for this 
illustration of C. melampygus were obtained primarily from (Heemstra et al. 2021). These were then evaluated by 
the artist who selected specific values for details such as number of lateral line scutes (32), number of rays (23) and 
spines (8) in the dorsal fin, and number of rays (19) and spines (2) in the anal fin. Each of these was portrayed in the 
illustration to be near the middle of the ranges reported. Illustration copyright: Tim Johnson, used with permission. 
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Figure 2. Frequency of Pacific Biosciences Read Lengths. The change in read length distribution is demonstrated 
as reads are corrected. The dramatic shift from raw to corrected reads is evident. 
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Figure 3. Area Under the NG-curve (auNG) for each Assembly Step. The NG-curve and the area under it are 
plotted for the contigs and scaffolds. This visually demonstrates that the scaffold NGx is equal or larger at any value 
of x (i.e., percent of the genome size). As these scaffolds were generated with only RNA-seq data, the difference is 
not as dramatic as it might be with another data type (e.g., Hi-C). 
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Figure 4. MSMC Analysis of Demographic History. Inferred demographic history of C. melampygus over time 
using MSMC. The dark blue line represents median effective population size (Ne) estimates. The light blue lines 
indicate 1,000 individual bootstrap replicates. 
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ABSTRACT 

Caranx ignobilis, commonly known as the kingfish or giant trevally, is a large, reef-
associated apex predator. It is a prized sportfish, targeted heavily throughout its tropical and 
subtropical range in the Indian and Pacific Oceans, and it has drawn significant interest in 
aquaculture due to an unusual tolerance for freshwater. In this study, we present a high-quality 
nuclear genome assembly of a C. ignobilis individual from Hawaiian waters, which have 
recently been shown to host a genetically distinct population. The assembly has a contig NG50 
of 7.3Mbp and scaffold NG50 of 46.3Mbp. Twenty-five of the 203 scaffolds contain 90% of the 
genome. We also present the raw Pacific Biosciences continuous long-reads from which the 
assembly was created. A Hi-C dataset (Dovetail Genomics Omni-C) and Illumina-based RNA-
seq from eight tissues are also presented; the latter of which can be particularly useful for 
annotation and studies of freshwater tolerance. Overall, this genome assembly and supporting 
data is a valuable tool for ecological and comparative genomics studies of kingfish and other 
carangoid fishes. 
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BACKGROUND & SUMMARY 

The “genomic revolution” continues to rapidly advance our understanding of human 

evolution, as well as the evolution of non-model organisms 1. Comparative genomic approaches 

using whole genome datasets allow for new discoveries at every scale: from genome to 

chromosome to organism to entire clades of organisms. Genomic datasets for non-model marine 

teleost fishes, the most diverse clade of vertebrates, are invaluable for investigating evolutionary 

questions relating to adaptation, selection, genome duplication, and phylogenetic conservatism in 

vertebrates.  

We present a high-quality genome assembly of the marine teleost, giant trevally (Caranx 

ignobilis; Carangiformes: Carangoidei; Fig. 1). This assembly serves as a valuable resource for 

the field of evolutionary biology, ecology, and phylogenetics. Caranx ignobilis is a member of 

the Carangini clade, the most specious subclade within Carangoidei. Carangoid fishes are known 

for their extreme diversity in morphology and ecology 2,3. The giant trevally, specifically, is 

known to be highly tolerant of freshwater environments, leading to a surge of interest in this 

species for aquaculture 4-6 and making it an ideal candidate species to investigate linkages 

between genotype and phenotype in the context of freshwater adaptation by marine fishes 7,8. 

Caranx ignobilis is an apex predator in tropical and subtropical reefs and coastal environments in 

the Indian and Pacific Oceans 9 and is heavily targeted by small-scale and recreational fisheries 

throughout its range. Understanding its evolutionary and ecological role in ecosystem structure 

and function is important for fisheries management and the protection of reef and coral 

ecosystems. Importantly, new putative populations of C. ignobilis in the Indian and Pacific 

Oceans have recently been described using genomic datasets 10. A high-quality genome thus 

allows for the inference of demographic history, genomic signals of selection and adaption, and 
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comparative genomic studies with other Carangoid fishes, such as hybridization with the closely 

related bluefin trevally, Caranx melampygus 11. 

For this C. ignobilis assembly, we present results using 58.25 Gb of Pacific Biosciences 

(PacBio) Single-molecule, Real-time (SMRT) sequencing data. Illumina paired-end sequencing 

data was also generated with libraries for both RNA‑seq and Hi‑C, totaling 347.6 Gb. Both were 

used for scaffolding purposes and are valuable datasets individually. The estimated genome size 

was 625.92 Mb 12,13, of which 96.7% is covered by known bases in the primary haploid 

assembly. In addition to being highly-contiguous, the genome assembly contained complete, 

unduplicated copies of >95% of expected single-copy orthologs, suggesting the assembly is 

reasonably accurate and complete. The assembly and supporting sequencing datasets are 

sufficiently high-quality to serve as a valuable resource for a variety of prospective comparative 

and population genomics studies. 

 

METHODS 

An overview of the methods used in this study is provided here. Where appropriate, 

additional details, such as the code for custom scripts and the commands used to run software, 

are provided in the Supplementary Bioinformatics Methods (Supplementary File 1; Appendix 5 

herein). 

 

Sample Acquisition & Sequencing 

Blood, brain, eye, fin, gill, heart, kidney, liver, and muscle tissues from one C. ignobilis 

individual were collected off the coast of O‘ahu (near Kaneohe, Hawai‘i, USA) in April 2019. 

Blood was preserved in EDTA, and other tissue samples were flash-frozen in liquid nitrogen. All 
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samples were packaged in dry ice for transportation to Brigham Young University (BYU; Provo, 

Utah, USA) for storage at ‑80°C until sequencing. The blood sample was used to create the 

Omni‑C dataset. All non-blood tissue samples were used for short-read RNA sequencing; the 

heart tissue was also used for long-read DNA sequencing. 

DNA was prepared for long-read sequencing with a Pacific Biosciences (PacBio; Menlo 

Park, California, USA; https://www.pacb.com) SMRTbell Library kit, adhering to the following 

protocol: “Procedure & Checklist - Preparing gDNA Libraries Using the SMRTbell Express 

Template Preparation Kit 2.0”. Continuous long-read (CLR) sequencing was performed on seven 

SMRT cells for a 10-hour movie on the PacBio Sequel at the BYU DNA Sequencing Center 

(DNASC; https://dnasc.byu.edu), a PacBio Certified Service Provider. RNA was prepared with 

Roche (Basel, Switzerland; https://sequencing.roche.com) KAPA Stranded RNA‑seq kit, 

following recommended protocols. Paired-end sequencing was performed in High Output mode 

for 125 cycles with the eight samples across two lanes on the Illumina (San Diego, California, 

USA; https://www.illumina.com) Hi-Seq 2500 at the DNASC. Finally, the “Omni‑C Proximity 

Ligation Assay Protocol” version 1.0 was followed using a Dovetail Genomics Omni‑C kit to 

prepare for Illumina Paired-end sequencing. Adapters were provided by Integrated DNA 

Technologies, and sequencing proceeded in Rapid Run mode for 250 cycles in one lane on an 

Illumina Hi-Seq 2500. 

 

Sequence Assembly, Duplicate Purging, and Scaffolding 

The PacBio CLR reads were self-corrected and assembled with Canu v1.8 14. To get a 

haploid representation of the genome, duplicates were purged with purge_dups v1.2.5 15. The 

primary set of 329 contigs was selected for scaffolding with Omni‑C data, which required reads 
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to be mapped to the assembly before determining how to order and orient the contigs. The 

Omni‑C reads were aligned following the Arima Genomics (San Diego, California, USA; 

https://arimagenomics.com) Mapping Pipeline commit #2e74ea4 (https://github.com/

ArimaGenomics/mapping_pipeline), which relied on BWA‑MEM2 v2.1 16,17, Picard v2.19.2 18, 

and SAMtools v1.9 19. BEDTools v2.28.0 20 was used to prepare the Omni‑C alignments for 

scaffolding with SALSA commit #974589f 21. Before the scaffolding step was performed, 

SALSA cleaned the assembly by breaking mis-assemblies as determined by Omni‑C read 

mappings. This set of contigs was then used simultaneously for both the remainder of the 

SALSA pipeline and for scaffolding with Rascaf v1.0.2 commit #690f618 22 using the RNA‑seq 

data from all tissues  aligned using HiSat v0.1.6-beta 23. The two sets of scaffolds were combined 

using custom Python (https://www.python.org) scripts, which used the Omni‑C scaffolds as a 

starting point and added compatible joins from the RNA‑seq evidence. Contamination was 

removed from the final set of scaffolds as identified during the NCBI submission process; all 

gaps were also adjusted to a fixed size (100 Ns). 

 

Genome Assembly Validation 

At each phase of the assembly, continuity statistics, e.g., N50 and auN, were calculated 

with caln50 commit #3e1b2be (https://github.com/lh3/calN50) and a custom Python script 

(Table 3). The genome size (625.92 Mb) provided to Canu and used for assembly statistics was 

based on the C-value of 0.64 from Hardie and Hebert 12 as recorded in the Animal Genome Size 

Database 13. Assembly correctness was also assessed at each phase using single-copy orthologs 

from the Actinopterygii set of OrthoDB v10 24 as identified by BUSCO v4.0.6 25 (Table 4). The 

scaffolds were visually inspected using a Hi‑C contact matrix created with PretextView v0.1.4 
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(https://github.com/wtsi-hpag/PretextView) and PretextMap v0.1.4 (https://github.com/wtsi-

hpag/PretextMap) with SAMtools v1.10 19. 

Visual comparisons with other carangoid genomes were created for cursory validation 

and observation of general synteny. Dot plots were generated using Mashmap v2.0 commit 

#ffeef48 26 (-f 'one-to-one' --pi 95 -s 10000) and a comparison of single-copy orthologs was 

created using ChrOrthLink commit #d29b10b after assessment with BUSCO v3.0.6 25 using the 

Vertebrata set from OrthoDB v9 27. The genome assemblies obtained from NCBI for these 

analyses were the following (alphabetical order): Caranx melampygus (bluefin trevally) 11, 

Echeneis naucrates (live suckershark) 28,29, Seriola dumerili (greater amberjack) 28,29, Seriola 

quinqueradiata (yellowtail) 30,31, Seriola rivoliana (longfin yellowtail) 32, Trachinotus ovatus 

(golden pompano) 33,34, and Trachurus trachurus (Atlantic horse mackerel) 35,36. 

 

TECHNICAL VALIDATION 

Sequencing 

Continuous long-read sequencing (PacBio) generated 3.74M reads with a total of 58.25 

Gbp, which is approximately 93x physical coverage of the genome. The mean and N50 read 

lengths were 15,591.278 and 27,441, respectively. The longest read was 129,643bp. The read 

length distribution is plotted in Figure 2. A summary of the results for the sequencing run is 

available in Table 1. This genome represents the second for the Caranx genus and ranks highly 

in terms of N50 among available carangoid genomes 34,36. 

RNA‑seq from the eight tissues (i.e., brain, eye, fin, gill, heart, kidney, liver, and muscle) 

generated 435.99M pairs of reads totaling 108.30Gbp. Across all eight tissues, the mean and N50 
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read lengths were 124.21 and 125, respectively. The combined results from all eight tissues are 

represented in Table 1, while the results from each tissue are made available in Table 2. Omni‑C 

sequencing generated 80.92 Gb of data across 169.1M read pairs. The N50 and mean read length 

were respectively 250 and 239.3. The Omni‑C results are also represented with in Table 1 with 

the PacBio and RNA‑seq data. 

 

PacBio CLR Error Correction 

The correction process reduced the number of reads from 3.74M to 656K and the total 

number of bases from 58.3Gbp to 23.9Gbp for an approximate physical coverage of 38.3x. The 

mean and N50 read lengths were changed from 15,591 and 27,441 to 36,475 and 40,065, 

respectively. The longest read was 126,321 bases. The distribution of corrected read lengths can 

be viewed relative to the raw read lengths in Figure 2. 

 

Genome Assembly, Duplicate Purging, and Scaffolding 

The initial assembly from Canu was comprised of 1.8K contigs with a total assembly size 

of 758Mbp. This was a diploid assembly in the sense that both haplotypes were present and 

intermixed, separated whenever a bubble in the assembly graph prevented a single reasonable 

contig. Duplicate purging to get a haploid representation of the genome (albeit with inevitable 

haplotype switching) and fixing mis-assemblies with evidence from Hi-C data yielded 343 

contigs with a total assembly size of 605Mbp. The mean contig length, N50, NG50, and 

maximum contig length were to 1.8Mbp, 7.7Mbp, 7.3Mbp, and 19.6Mbp, respectively. The L50 

was 23, and the LG50 was 25. The auN was to 8.55M. These values represent modest reductions 
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from the original Canu assembly (as expected), and they can be visualized in the area under the 

N-curve as presented in Figure 3. (Also see Table 3 ) 

Paired-end Illumina reads, such as those produced from Hi-C or RNA-seq libraries can 

provide information to order and orient contigs into scaffolds, but they contain insufficient 

information to utilize for gap-filling procedures. Accordingly, the result on assembly statistics 

should increase length, decrease number of sequences, and leave the number of known bases 

unchanged. This pattern is evident in the assembly statistics from our iterative scaffolding 

procedure (Table 3). It is important to note that SALSA and Rascaf introduce gaps of unknown 

size, and they respectively use fixed runs of Ns of lengths 500 and 17 to represent such gaps. For 

submission to NCBI, these gaps were converted to a fixed length of 100 Ns, and the evidence for 

whether joins were supported by Hi-C data or RNA-seq data was submitted in an accompanying 

file in AGP format (https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification). The NCBI 

submission process also identified minor contaminants in some sequences, which were manually 

removed. The final set of scaffolds had an NG50 of 46.3Mbp and an auN of 42.6M (Fig. 3; Table 

3). All joins are represented in a contact matrix (Fig. 4), which shows the Hi-C evidence for the 

assembly. Some joins are poorly supported by the Hi-C evidence, which is not surprising as 

some joins were made by RNA-seq evidence instead. Without manual curation, it is difficult to 

ascertain whether any individual such join is spurious. 

The assembly correctness, as assessed with single-copy orthologs, was also evaluated at 

the contig and scaffold level (Table 4). The results suggest that the modifications made to the 

primary contig assembly from scaffolding did not significantly impact the correct assembly of 

single-copy orthologs. The final set of scaffolds had 3,546 complete single-copy orthologs 

(97.4% of 3,640 from the OrthoDB10 Actinopterygii set). Of these 85.7% (3,120) were present 
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in the assembly only once, and 11.7% (426) were present more than once. Twelve (0.3%) and 82 

(2.3%) single-copy orthologs were fragmented in and missing from the assembly, respectively. 

 

Comparison of Giant Trevally with Other Carangoid Genomes 

We compared the C. ignobilis genome to published genomes of other carangoids 

spanning the carangoid phylogeny, including the live sharksucker (Echeneis naucrates) 28,29, 

golden pompano (Trachinotus ovatus) 33,34, yellowtail (Seriola quinqueradiata) 30,31, longfin 

yellowtail (Seriola rivoliana) 32, greater amberjack (Seriola dumerili) 37,38, and the more closely-

related species: Atlantic horse mackerel (Trachurus trachurus) 35,36 and bluefin trevally (Caranx 

melampygus) 11. We generated dot plots to visualize genome alignments and look for general 

synteny between the genomes (Fig. 5). Some structural variation can be seen, but additional 

analysis would be required to explore each of such further. We similarly compared the same 

assemblies by visualizing the grouping of single-copy orthologs plotted along the assemblies 

(Fig. 6). Large groupings of orthologs consistently appear together between genomes, though 

specific patterns become difficult to inspect at the genome scale when the contigs/scaffolds get 

small. The longest scaffolds in the C. ignobilis assembly have single-copy orthologs from more 

than on chromosome from other assemblies with chromosome number assigned, and this is 

evident with the nearby E. naucrates. If the relative sizes of the chromosomes from the E. 

naucrates assembly are taken as baseline truth, this calls into question whether some of the C. 

ignobilis RNA-seq scaffolding joins are valid. Karyotype analysis, additional sequencing data 

(e.g., Ultra-long Nanopore (Oxford, England, UK)), and/or more in-depth, one-on-one 

comparisons would help elucidate the structure. Ultimately, our results indicate the utility of this 
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genomic dataset for future comparative studies on genome structure and evolution within 

Carangiformes and marine teleosts more broadly. 

 

DATA RECORDS 

Raw reads have been deposited in the National Center for Biotechnology Information 

(NCBI) Sequence Read Archive (SRA) 39-48 under BioProject PRJNA670456 49, BioSamples 

SAMN16516519-SAMN16516526 and SAMN16629462 50-58. The genome assembly is 

associated with the same BioProject under the “container” BioSample SAMN18021194 59 and 

can be found in GenBank under accession JAFHLA000000000. See Table 5 for a complete list 

of datasets and their mapping to BioSamples. 
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Table 1. Sequencing Information. The 
results from each type of DNA and RNA 
sequencing from Caranx ignobilis. PE=
Paired-end reads. SMRT=Single-Molecule, 
Real-Time sequencing. CLR=Continuous 
Long-reads. 

Company  Illumina Illumina PacBio 

Instrument  Hi-Seq 2500 Hi-Seq 2500 Sequel I 

Mode 
 High 

Output 
Rapid 

Run NA 

Sequencing 
Type 

 PE Omni‑C, PE SMRT, CLR 

Duration 
 125 

cycles 
250 

cycles 
10 

hours 

Specimen  1 1 1 

Tissues 

 Brain, Eye, 
Fin, Gill, 

Heart, Kidney, 
Liver, Muscle 

Blood Heart 

Molecule  RNA DNA DNA 

Millions of 
Read( Pair)s 

 
435.99 169.11 3.74 

Mean Read 
Length 

 
124.2 239.3 15,591.3 

Read N50  125 250 27,441 

Nucleotides 
(Gb) 

 
108.30 80.92 58.25 

 

Table 2. RNA Sequencing Details per Tissue. The 
results of RNA sequencing for each tissue from one 
Caranx ignobilis individual. The eight tissues were 
spread across two lanes and run on an Illumina Hi-
Seq 2500 in Rapid Run mode for 250 cycles to 
generate paired-end reads. Unless otherwise 
specified, lengths of nucleotide sequences are 
measured in base pairs (bp). 

 
 Millions 

of Read 
Pairs 

Mean 
Read 

Length 

Read 
N50 

Nucleotides 
(Gb) 

Brain  45.59 124.17 125 11.32 

Eye  52.02 124.26 125 12.93 

Fin  50.13 124.16 125 12.45 

Gill  55.56 124.22 125 13.80 

Heart  57.87 124.29 125 14.39 

Kidney  58.73 124.16 125 14.58 

Liver  58.25 124.23 125 14.47 

Muscle  57.84 124.16 125 14.36 

All  435.99 124.21 125 108.30 
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Table 3. Continuity Statistics. Continuity statistics for the Caranx ignobilis genome assembly at the contig and 
scaffold level. The final set of scaffolds (far right column) is the same as “Scaffolds (SALSA + Rascaf” except that 
the contaminants were manually removed from the assembly and gaps were unified to 100 Ns. Note that the auNG 
value is the area under the NG-curve and is unitless. Unless otherwise specified, all nucleotide sequences and gaps 
are measured in base pairs (bp). 

 Contigs Contigs 
(purge_dups) 

Contigs 
(purge_dups + 

SALSA) 

Scaffolds 
(SALSA) 

Scaffolds 
(SALSA + 

Rascaf) 
Scaffolds 

Sequences 1,804 329 343 240 209 203 

Known 
Bases 757.523 Mb 605.140 Mb 605.140 Mb 605.140 Mb 605.140 Mb 605.115 

Mean 
Length 0.420 Mb 1.839 Mb 1.764 Mb 2.521 Mb 2.895 Mb 2.981 Mb 

Max. 
Length 23.990 Mb 23.990 Mb 19.607 Mb 32.157 Mb 89.251 Mb 89.251 Mb 

NG50 7.412 Mb 7.412 Mb 7.261 Mb 23.385 Mb 46.318 Mb 46.303 Mb 

NG90 1.097 Mb 0.950 Mb 0.700 Mb 1.386 Mb 1.410 Mb 1.410 Mb 

LG50 24 24 25 12 5 5 

LG90 103 105 114 39 25 25 

auNG 9.090 M 9.051 M 8.549 M 19.716 M 42.606 M 42.600 M 

Sequences 
with Gaps - - - 40 35 35 

Gaps - - - 103 134 133 

Unknown 
Bases - - - 51,500 52,027 13,300 

Mean 
Gap 

Length 
- - - 500 388.261 100 
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Table 4. Summary BUSCO Results. Summary BUSCO results for the Caranx ignobilis genome assembly at the 
various contig and scaffold stages. Each value is the percentage of single-copy orthologs (n=3,640) in the 
Actinopterygii lineage dataset from OrthoDB v10. 

 Contigs Contigs 
(purge_dups) 

Contigs 
(purge_dups + 

SALSA) 

Scaffolds 
(SALSA) 

Scaffolds 
(SALSA + 

Rascaf) 
Scaffolds 

Complete 97.6 97.5 97.6 97.2 97.3 97.4 

Single Copy 85.9 95.9 96.0 95.7 95.7 95.8 

Duplicated 11.7 1.6 1.6 1.5 1.6 1.6 

Fragmented 0.3 0.6 0.5 0.5 0.5 0.5 

Missing 2.1 1.9 1.9 2.3 2.2 2.1 
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Table 5. Database Information for Raw Sequences. All samples were collected from the same Caranx ignobilis 
specimen in April 2019 off the coast of O‘ahu (near Kaneohe, Hawai‘i, USA). They are combined under the 
BioProject PRJNA670456. The genome assembly is deposited in GenBank under accession JAFHLA000000000 
with the “container” BioSample SAMN18021194. 

Specimen Tissue BioSample Number Sequencing Type SRA Accession 
1 Blood SAMN16629462 Dovetail Omni‑C SRR13036356 
1 Brain SAMN16516519 Illumina RNA‑seq SRR13036363 
1 Eye SAMN16516520 Illumina RNA‑seq SRR13036362 
1 Fin SAMN16516521 Illumina RNA‑seq SRR13036361 
1 Gill SAMN16516522 Illumina RNA‑seq SRR13036360 
1 Heart SAMN16516523 Illumina RNA‑seq SRR13036359 
1 Heart SAMN16516523 PacBio CLR WGA SRR13036357 
1 Kidney SAMN16516524 Illumina RNA‑seq SRR13036355 
1 Liver SAMN16516525 Illumina RNA‑seq SRR13036354 
1 Muscle SAMN16516526 Illumina RNA‑seq SRR13036353 
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Figure 1. Giant trevally (Caranx ignobilis) adult and juvenile. Illustration by Elaine Heemstra, courtesy of the 
South African Institute for Aquatic Biodiversity. 
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Figure 2. Frequency of Pacific Biosciences Read Lengths. The change in read length distribution is demonstrated 
as reads are corrected. The dramatic shift from raw to corrected reads is evident. Reads were corrected by consensus 
using the correction phase of Canu v1.8. 
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Figure 3. Area Under the NG-curve (auNG) for each Assembly Step. The NG-curve and the area under it are 
plotted for the contigs and scaffolds. This visually demonstrates increase in continuity from contigs to scaffolds. 
Scaffolding with RNA-seq data – which has minimal effect on its own (data not shown) – further increases the 
scaffold-level continuity. This plot also shows that duplicate purging and fixing mis-assemblies slightly reduced 
contig-level continuity, which is expected. 
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Figure 4. Hi-C Contact Matrix. In the context of scaffolding, Hi-C contact matrices show how correct the 
scaffolds are based on Hi-C alignment evidence. The longest 26 scaffolds are shown, ordered by descending length 
from top-left to bottom-right; grey lines show scaffold boundaries. Off-diagonal marks, especially those that are 
dark and large, are possible evidence of mis-assembly and/or incorrect scaffolding. Regions with sharp edges similar 
to where the grey lines appear, but without the grey lines (e.g., three such locations occur in the top-left square), are 
joins between contigs in that scaffold that lack Hi-C evidence. The lack of Hi-C alignment evidence could suggest 
that these joins are invalid, but evidence for these joins does exist from RNA-seq alignments. Detection of any 
spurious joins would, at a minimum, require manual curation. Such curation would enable additional adjustments 
that would fix minor issues evident from the contact matrix. 
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Figure 5. Dot Plot Comparisons with other Carangiformes (Carangoidei) Genomes. Dot plots show the relative 
continuity of the various segments of two genomes. The purple dots show segments that align in the positive 
orientation, blue in the negative. The x-axis is the Caranx ignobilis genome. The y-axes for each plot are other 
carangoid genomes. Dots off the diagonal indicate structural variation between the genome assemblies. For 
assemblies that did not have duplicates purged to reduce the assembly to pseudohaplotypes (Caranx melampygus 
and Seriola spp.), the extra dots are presumably the alignment to the secondary copy.  
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Figure 6. Single-copy Ortholog Comparisons with other Carangiformes (Carangoidei) Fishes. Single-copy 
orthologs from the Actinopterygii set of OrthoDB v9 were identified with BUSCO v3.0.6 and visualized using 
ChrOrthLink. “Chromosomes” (usually contigs or scaffolds) are ordered based on length. Comparisons are difficult 
to assess when “chromosome” sizes vary greatly, especially at the genome scale. Additional information could be 
gleaned when comparing genomes one-by-one with chromosomes ordered based on similarity. At this scale, 
however, it is clear that groupings of single-copy orthologs cluster together across genomes, suggesting orthology 
not just between these genes, but with general genomic structure within larger regions. The longest scaffolds in the 
Caranx ignobilis assembly have single-copy orthologs from more than one chromosome from other assemblies with 
chromosome number assigned, and this is evident with the Echeneis naucrates assembly. If the relative sizes of the 
chromosomes from the E. naucrates assembly are taken as baseline truth, this calls into question whether some of 
the C. ignobilis RNA-seq scaffolding joins are valid.
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ABSTRACT 

Summary: Simple Sequence Repeats (SSRs) are used to address a variety of research questions 
in a variety of fields (e.g., population genetics, phylogenetics, forensics, etc.), due to their high 
mutability within and between species. Here, we present an innovative algorithm, SA-SSR, 
based on suffix and longest common prefix arrays for efficiently detecting SSRs in large sets of 
sequences. Existing SSR detection applications are hampered by one or more limitations (i.e., 
speed, accuracy, ease-of-use, etc.). Our algorithm addresses these challenges while being the 
most comprehensive and correct SSR detection software available. SA-SSR is 100% accurate 
and detected >1000 more SSRs than the second-best algorithm, while offering greater control to 
the user than any existing software. 
 
Availability and implementation: SA-SSR is freely available at https://github.com/ridgelab/
SA-SSR 
 
Supplementary information: Supplementary data are available at Bioinformatics online and in 
Appendix 6 herein. 
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1. INTRODUCTION 

Simple Sequence Repeats (SSRs), microsatellites, or short tandem re-peats (STRs), are 

tandem repeats of short (often 2–5 bp) nucleotide strings (Madesiset al., 2013). There are 

generally 10–100 such re-peats at each SSR locus resulting in a DNA segment that is amenable 

to rapid molecular characterization. Given their repetitive nature, the lengths of SSR loci tend to 

increase or decrease due to polymerase slippage during DNA replication (Schlotterer and Tautz, 

1992). As a consequence, SSR loci have high mutation rates and frequently generate multiple 

polymorphic alleles. SSR loci are common in both nuclear and organellar genomes, and when 

flanked by unique sequence, PCR primers can be readily designed to amplify simple sequence 

length polymorphisms. SSRs have proven highly useful for a variety of molecular genetics, 

population genetics, and phylogenetics applications because it is simple to genotype them using 

PCR, and because they are highly polymorphic. 

While SSRs have been extensively characterized in many model species, the expense and 

effort traditionally required to develop SSRs has limited their use in non-model species. 

Fortunately, next-generation sequencing has enabled researchers to quickly produce large 

quantities of genomic and/or transcriptomic data for nearly any species. While a high-quality 

genome is still difficult to assemble, there is usually adequate sequence information to identify 

thousands of unique SSR loci with minimal sequencing. Thus, researchers working in non-model 

systems need user friendly and customizable bioinformatics algorithms to identify SSR loci. 

A complete, accurate, characterization of SSRs in non-model systems increases the 

likelihood researchers are able to identify SSRs where flanking genotyping primers can be 

designed. SSR differences can be used to differentiate between related species or provide 

insights into specific phenotypes/adaptations. Finally, since the majority of researchers do not 
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have formal computational training, a straightforward, intuitive application is likely to enable 

traditional bench/field scientists to use SSRs in their research. 

Many tools exist to find SSRs with varying degrees of utility, but few tools have both a 

useful command line interface for scripting and meaningful, parseable output. Identifying SSRs 

in a sequence is challenging because the search is prohibitive in time and memory requirements. 

Most existing tools use either an exhaustive, combinatorial search approach or a heuristic 

approach (Limet al., 2013). Exhaustive searches have time complexity that grows exponentially, 

while heuristic approaches trade comprehensiveness for run time. We developed an algorithm 

that is both efficient and complete. 

Conceptually, finding SSRs in a nucleotide sequence is relatively straightforward,  but  

the size of current datasets makes it a substantial challenge. SSR detection in sequence data is a 

substring operation—a large class of problems common in computer science. Many algorithms 

and data structures have been developed to reduce the  time  and  space  requirements  for  string  

operations. The suffix tree boasts linear time and space requirements for generating its 

representation of the string and can be used to perform many important substring operations in 

O(nlogn) time. After Weiner discovered suffix trees (Weiner, 1973), McCreight (McCreight, 

1976) and Ukkonen (Ukkonen, 1995) each simplified it, paving the way for the development of 

the suffix array (Abouelhodaet al., 2004;Kurtz,1999;Manber and Myers, 1993). Suffix arrays 

have the same properties as suffix trees, but they are as many as five times more memory 

efficient (Kurtz, 1999;Manber and Myers, 1993). 

 

2. ALGORITHM 
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A suffix array is an array of character positions representing a list of all possible suffixes 

of a string, ordered lexicographically, and longest common prefix arrays are arrays of the lengths 

of the longest common prefix of each adjacent suffix in the suffix array. Using suffix and longest 

common prefix arrays, we designed and implemented a novel algorithm for finding SSRs in a 

nucleotide sequence in linear (O(n)) time and space. The algorithm makes no distinction between 

microsatellites or minisatellites—it can find tandem repeats of any length or period size. 

SSRs are identified by calculating three different parameters, k, r, and p from the suffix 

and longest common prefix arrays, where k equals the length of an SSR repeating unit or period 

size, r equals the number of times it repeats after the original occurrence, and p equals the 

position of the first nucleotide of the first period of the SSR (see Supplementary Texts 1 and 2, 

and Supplementary Figure S1 for a more detailed explanation). SSRs are identified by 

calculating k , p and r from the suffix and longest common prefix arrays (Supplementary Fig. S1 

C). Let i equal the index of any entry in the suffix array (except the first position), where SA and 

LCPA are the suffix and longest common prefix arrays, respectively: 

 𝑘 = |𝑆𝐴𝑖 − 𝑆𝐴𝑖−1| (1) 

 𝑟 = ⌊
𝐿𝐶𝑃𝐴𝑖

𝑘𝑖
⌋ (2) 

 𝑝 = 𝑀𝐼𝑁(𝑆𝐴𝑖−1, 𝑆𝐴𝑖) (3) 

If r  > 0, an SSR of length k * (r  + 1) exists at position p in the original sequence, 

otherwise if r  = 0 there is no SSR at position p . The base unit (e.g., AG in the SSR AGAGAG) 

of the SSR starts at position p and ends at position p  + (k  − 1). Thus, by comparing each 

adjacent element in the suffix array we can find SSRs in a sequence. 

 

3. RESULTS 
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Our algorithm requires at most 9n bytes of memory, where n is the length of the entire 

query sequence. For each nucleotide in the sequence, we generously assume one byte in the 

original sequence (using 8-bit characters), four bytes in the suffix array (using 32-bit integers) 

and four bytes in the longest common prefix array (using 32-bit integers). The time complexity 

for building a suffix array and its longest common prefix array is O(n). Our algorithm then 

requires 3 * (n − 1) constant time computations to find SSRs, thus keeping the total time and 

space complexities at O(n). 

We evaluated the performance of our algorithm compared to seven existing applications 

(see Supplementary Table S1 for a list of algorithms) on the Arabidopsis thaliana (chromosome 

4), Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli and Zaire ebolavirus 

genomes (GenBank Accessions: NC_003075.7, GCA_001483305.1, GCA_001014345.1, 

GCA_001432175.2 and NC_002549.1, respectively), comprised of 13,121 sequences totaling 

248,846,830 nucleotides. Sequences ranged in length from 516 to 18,590,000 nucleotides with a 

median size of 4,662 (Supplementary Figures S2–S6 show a distribution of sequence lengths). 

Dozens of applications exist for SSR detection. We selected algorithms for comparison that: (i) 

were capable of processing the Arabidopsis thaliana chromosome (the longest of the sequences), 

(ii) had a non-interactive, Linux, command-line interface, (iii) were freely available for 

immediate download, and (iv) had 10 or more citations per year or were published in the last 

three years. Several additional algorithms met our requirements, but used antiquated shared 

libraries, or had compile/run-time errors. All comparisons were run on a 6-core Intel Haswell 

Westmere (2.67 GHz) processor with 24 GB of memory (1066 MHz DDR3). 

SA-SSR, like other algorithms, calls any detected sequence repeat an SSR. Reported 

numbers and accuracy reflect the assumption that all sequence repeats are SSRs. SA-SSR 
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maximized the number of SSRs identified, while maintaining low memory requirements and 

runtime, and providing higher flexibility to the user to control desired output (results summarized 

in Table 1 with more detailed results in Supplementary Table S2). We counted the total number 

of SSRs identified by SA-SSR and each of the algorithms with period sizes one to seven and 

minimum total length of 16 nucleotides (period sizes and lengths likely to be of most interest in 

common applications). Next, we determined the accuracy of each of the tested algorithms, 

including SA-SSR, by writing a script to scan the entire sequence to verify whether or not a 

reported SSR was present. Most of the tested algorithms, including SA-SSR, were 100% 

accurate. However, compared to other algorithms, SA-SSR, found the highest number of correct 

(38,088 SSRs) and unique SSRs (on average >18,000 SSRs more than the other algorithms). 

MREPS, SSR-Pipeline, and TRF only missed 1,340, 3,047, and 7,423 correct SSRs detected by 

SA-SSR, respectively. However, TRF was only 23% accurate. Results of algorithm comparisons 

and software features are summarized in Supplementary Tables S2–S31. 

Finally, we designed SA-SSR with intuitive features and formatting requirements. Like 

other SSR detection applications, SA-SSR takes FASTA files as input. However, some of the 

other applications, including some of those with high performance, are difficult to use. For 

example, MREPS displays an error message if any characters are not A, C, G, T or N, or if too 

many N's are present. Even if a user has the skills to remove all the characters that are not A, C, 

G or T, this makes the output positions of SSRs incorrect because those characters are not 

accounted for. Additionally, MREPS output is in a relatively un-structured text document that is 

not trivial to parse. As another example, SSR-Pipeline can only look for one period size at a 

time, requiring the user to manually re-run the software repeatedly for each period size of 

interest. Finally, SA-SSR provides greater flexibility to the user. For example, the user can 



www.manaraa.com

 158 

choose whether to perform an exhaustive or faster (still nearly complete) search, change output 

filters to report (or not) overlapping SSRs, or report only user-specified SSRs. 

SA-SSR is freely available at: http://github.com/ridgelab/SA-SSR. 
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Table 1. Summary of results from comparisons of SA-SSR with other SSR detection algorithms. This is a 
combination of results across each of the genomes included in the comparison. For more detailed results see 
Supplementary Tables S2, S4–S31. a MREPS timing includes the pre- and post-processing time for each genome 
necessary to adjust positions to account for removing ‘incorrect symbols’ and Ns. The additional times are an 
average of multiple approaches. b We only considered SSRs with period sizes 1–7 (inclusive) and lengths of at least 
16 nucleotides (nt). The difference between the number of SSRs in range and reported is due exclusively to SSR 
length (less than 16 nt) and period size (greater than 7). c Whenever possible, we salvaged correct SSRs that were 
inside incorrect SSRs reported by other software packages. For example, in Drosophila melanogaster, we recovered 
three for PRoGeRF and 8,408 for TRF. To illustrate, in sequence JXOZ01000043.1, TRF reports a CT repeated 36 
times at position 2,171. While TRF does correctly identify a low-complexity region with many CT repeats, there are 
not 36 perfect repeats in a row. In this case, we salvaged two perfect CT regions, each repeating 8 times. d Detailed 
pairwise comparisons can be found in Supplementary Tables S4–S31. 

       Comparison with SA-SSR 

 

CPU 
Timea 

(mm:ss) 

Real 
Timea 

(mm:ss) 
SSRs         

Reported 
SSRs In 
Rangeb 

Number 
Correctc 

Percent 
Correct 

SSRs 
Unique to 
Softwared 

SSRs 
Unique to       

SA-SSR 
Shared 

SSRs 
GMATo 329:18 329:18 72,713,858 15,284 6,617 43.29 20 34,237 3,851 
MREPS 393:02 393:02 75,552 37,076 37,076 100 71 1,340 36,748 

PRoGeRF 3,194:18 3,194:18 5,457,129 2,278 2,268 99.56 2 35,864 2,224 
QDD 24:17 24:17 53,248 17,418 17,418 100 10 20,759 17,329 

SA-SSR 28,820:12 2,416:32 38,088 38,088 38,088 100 NA NA NA 
SSR-Pipeline 1,411:21 1,411:21 60,344,067 36,398 36,398 100 68 3,047 35,041 

SSRIT 2:12 2:12 13,217 13,217 13,217 100 5 24,951 13,137 
TRF 12:14 12:14 2,035,715 147,284 33,876 23.00 12 7,423 30,665 
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ABSTRACT 

Motivation: One of the main challenges with bioinformatics software is that the size and 
complexity of datasets necessitate trading speed for accuracy, or completeness. To combat this 
problem of computational complexity, a plethora of heuristic algorithms have arisen that report a 
‘good enough’ solution to biological questions. However, in instances such as Simple Sequence 
Repeats (SSRs), a ‘good enough’ solution may not accurately portray results in population 
genetics, phylogenetics and forensics, which require accurate SSRs to calculate intra- and inter-
species interactions. 
 
Results: We present Kmer-SSR, which finds all SSRs faster than most heuristic SSR 
identification algorithms in a parallelized, easy-to-use manner. The exhaustive Kmer-SSR option 
has 100% precision and 100% recall and accurately identifies every SSR of any specified length. 
To identify more biologically pertinent SSRs, we also developed several filters that allow users 
to easily view a subset of SSRs based on user input. Kmer-SSR, coupled with the filter options, 
accurately and intuitively identifies SSRs quickly and in a more user-friendly manner than any 
other SSR identification algorithm. 
 
Availability and implementation: SA-SSR is freely available at https://github.com/ridgelab/
Kmer-SSR 
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1. INTRODUCTION 

Simple sequence repeats (SSRs) are short repetitive regions of DNA where at least one 

base is tandemly repeated many times due to slipped-strand mispairing and errors occurring in 

DNA replication, repair, or recombination (Levinson and Gutman, 1987). For decades, SSRs 

have been studied to determine phenotypic differences caused by increased copy numbers of 

short repetitive sequences (Kashi and King, 2006). Moreover, SSRs account for quantitative 

genetic variation and phenotypic differences without lowering species fitness (Kashi et al., 

1997). SSR concentration varies not only between different species, but also between different 

chromosomes within the same species, and cannot be explained by assessing the nucleotide 

composition of sequences (Katti et al., 2001). Because SSRs reveal characteristic functions of 

DNA replication, recombination and repair, they are important in studying biological systems 

interactions, as well as studying repeat expansion-based diseases with next-generation 

sequencing data (Kashi and King, 2006). 

Many different approaches have been used to identify SSRs. Here, we propose the use of 

k-mers. The term k-mer refers to a subsequence of length ‘k’ derived from a given sequence, 

while k-mer decomposition refers to all possible substrings of length ‘k’ that can be made from a 

sequence. Uses for k-mer decomposition have previously been outlined in instances such as 

genome assembly and machine learning (Chikhi and Medvedev, 2014; Ghandi et al., 2014). 

Although k-mers have been used to identify similar subsequences as in (Han et al., 2007), to our 

knowledge SSR identification has never been attempted through k-mer decomposition. 

 

2. MATERIALS AND METHODS 
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2.1 Overview 

Kmer-SSR utilizes k-mer decomposition to provide an exhaustive or filtered approach to 

finding all SSRs in a given sequence (Figs 1 and 2). Our version of k-mer decomposition works 

by identifying all subsequences of length ‘k’ while tracking the start position of each k-mer. K-

mer lengths are defined by the user as the SSR period length. Kmer-SSR minimizes the usage of 

random access memory (RAM) by performing k-mer decomposition and only storing k-mers that 

are the same as the preceding k-mer (SSR period length). If a k-mer is not identical to a k-mer 

found k bases previously, the previously identified k-mers will be discarded and k-mer 

decomposition will occur for the rest of the sequence. 

 

2.2 Memory Requirements 

We used the following techniques to limit memory requirements: 

1. Identify SSRs from left to right: Kmer-SSR checks each position starting at the 

leftmost position of the sequence for each SSR period size (i.e., k-mer length) given 

by the user. This method allowed us to store only a single potential SSR and 

immediately either discard it if it was not repeated or write it to a file if it was a valid 

SSR. 

2. Identify SSRs with the largest period size first: Since Kmer-SSR does not store 

previously identified SSRs in memory, it is necessary to search for SSRs in a specific 

order, or else risk reporting SSRs fully enclosed within larger SSRs. To avoid this 

issue, we take the period sizes given by the user and search for SSRs from the longest 

period size to the smallest (e.g., if the user wants to search for 2-mers and 7-mers, we 

search for all 7-mer SSRs in the sequences before we search for 2-mer SSRs). When 
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an SSR is discovered, an atomicity check is conducted to determine if the k-mer can 

be broken down to a smaller subsequence. An SSR is considered atomic if no smaller 

SSRs exist inside the first period. For example, ATATATAT would be identified as a 

4-mer (ATAT) repeated twice, but ATAT is not atomic because AT (repeated twice) 

occurs within the first period. Thus, it is ignored because it is an invalid 4-mer and, if 

the user requested searching for 2-mers, it would be discovered again as a 2-mer (AT) 

repeated four times. If the atomicity check fails, the SSR is not reported. When an 

atomic (i.e. valid) SSR is discovered, the iterator moves just past the SSR, minus the 

current period size being searched, to ensure that overlapping SSRs are identified. For 

example, ACAACAACACACACAC has ACA repeated three times starting at 

position 0. Additionally, AC repeats five times starting at position 6. After finding the 

ACA repeat, we would miss the full AC repeat if we skipped to the end of the ACA 

repeat and resumed searching from there. Only by backtracking as described above 

(9–3 = 6), do we find the full AC repeat. Note that each of the nucleotides between 

positions 0 and 5 need not be searched for SSRs because Kmer-SSR has already 

found SSRs with larger period sizes than the current period size. In other words, since 

Kmer-SSR has already found SSRs with larger period sizes, the maximum possible 

overlap with the current SSR (ACA) and an adjacent following SSR is k (which is 

three in this example), removing the need to search for SSRs from the start of a valid 

SSR to k bases from the end of that SSR. 

3. Create a Boolean filter array: To ensure that SSRs are unique and do not end in the 

same positions, we created a Boolean filter array of the same length as the sequence 

being analyzed, which is initiated to false. In C ++, the implementation of this array 
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only requires one bit per position, so the memory requirement is nominal. When an 

SSR is discovered, we first ensure that at least one position in the first or last SSR 

period size on either end of the SSR is false in the Boolean array. If one position is 

false, we assign all values within the array that correspond to all positions in the SSR 

to true. The filter allows us to ignore completely overlapping SSRs because 

overlapping SSRs will be set to ‘true’ at the positions at the ends of the SSR. 

By utilizing the above-mentioned methods, we were able to limit the amount of RAM 

needed to O(n), where n is the sequence length, and the constant value is slightly more than one 

byte (one byte to store each sequence base and one bit allocated in the Boolean filter for each 

base). 

 

2.3 SSR filters 

Next, we implemented a comprehensive filter that allows users to control the output of 

Kmer-SSR based on atomicity, cyclic duplicates, enclosed SSRs, minimum SSR length and 

specific SSR period sizes. Pseudocode for Kmer-SSR is in Figure 2. The following are different 

filters that are optionally applied to the output of Kmer-SSR: 

1. Atomicity check: The atomicity check ensures that the smallest period size for each 

SSR is reported. For instance, if an ATAT repeats four times, it would be reported as 

an AT repeated eight times because AT is the smallest period size within ATAT. 

2. Cyclic duplicates: Many SSRs create equally viable SSRs with slightly different 

positions reported. For instance, in the sequence ATATATATATATATATA, it is 

arguably equally valid to report the AT repeated eight times starting at position zero 

as it would be to report TA repeating eight times starting at position one. To avoid 
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duplicate reporting of cyclic duplicates and ensure the longest SSR is always 

reported, we choose and report only the leftmost SSR. So, in this instance, only the 

AT repeated eight times would be reported. 

3. Enclosed SSRs: Occasionally, SSRs might be completely enclosed within other SSRs. 

For example, in the sequence TAAAATTAAAATTAAAAT, the SSR TAAAAT is 

repeated three times, but within each TAAAAT there is an A that repeats four times. 

In this case, we only report the longest SSR, TAAAAT, repeated three times. 

4. SSR length: We allow the user to input minimum and maximum SSR lengths via 

command line options. By default, SSRs are only reported if they are at least 16 

nucleotides long. 

5. Set specific period sizes: We allow the user to input specific period sizes to be 

checked (e.g., 1, 3, 5 would look for SSRs with period sizes of one, three and five), or 

ranges of period sizes (e.g. 1–7 would look for SSRs with period sizes one through 

seven). By default, Kmer-SSR reports SSRs of period sizes one through seven. SSRs 

outside of the user specified range are not reported. 

6. Number of repeats: We allow the user to input minimum and maximum numbers of 

repeats via command line options. By default, SSRs must repeat at least twice to be 

reported. 

7. Enumerated SSRs: If the user is interested in a very limited set of SSRs, they may 

specify those via a command line option and no other SSRs will be reported. 

8. Sequence length: The user may specify minimum and maximum bounds on the length 

of an input sequence, outside of which the program will not search or report SSRs. By 
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default, if a sequence is less than 100 bases or more than 500 megabases, it will be 

ignored. 

 

3. RESULTS 

We conducted pairwise comparisons of Kmer-SSR against the following SSR 

identification algorithms: GMATo (Wang et al., 2013), MREPS (Kolpakov et al., 2003), 

PRoGeRF (Lopes et al., 2015), QDD (Meglécz et al., 2014), SA-SSR (Pickett et al., 2016), SSR-

Pipeline (Miller et al., 2013), SSRIT (Temnykh et al., 2001) and TRF (Benson, 1999). These 

comparisons were performed on DNA sequences from six different species (whole genome 

assembly unless otherwise noted): Anolis carolinensis chromosome 6 (CM000942.1), 

Chlamydomonas reinhardtii (assembly v5.5) (Merchant et al., 2007), Danio rerio chromosome 

25 (CM002909.1), Dictyostelium doscoideum (GCA_0000044695.1), Physcomitrella patens 

chromosome 1 (assembly v3.3), and Saccharomyces cerevisiae (GCA_001634645.1). Table 1 

displays the computational time of each algorithm and the number of SSRs correctly identified 

for each dataset (CPU Time and Real Time columns). 

Because Kmer-SSR is multithreaded and robust to fasta files with unknown nucleotides, 

the real time for SSR identification using Kmer-SSR is faster than any other algorithm. Although 

MREPS reports a faster real time identification of SSRs, the program does not usually run with 

sequences containing unknown characters. With the addition of the time necessary to make the 

input fasta files usable for MREPS, it underperformed Kmer-SSR in all six datasets (Table 1, 

Real Time column). We found that with the exception of TRF, all algorithms tested were 100% 

accurate in identifying SSRs; however, only Kmer-SSR, MREPS and SSRIT reported all 

possible filtered SSRs within the range specified for each dataset (Table 1, SSRs In Range 
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column). Although SSRIT has a faster CPU time than Kmer-SSR, it does not have the 

multithreading capabilities of Kmer-SSR, nor does it allow for querying of SSRs other than 

period sizes 2–4 without directly editing the algorithm’s source code. 

 

4. DISCUSSION 

SSR identification is important in many biological comparisons. It is important to have 

100% accuracy in SSR identification because primers often depend on the exact SSR sequence 

with conserved flanking sequences (Robinson et al., 2004), and phenotypic variations associated 

with SSRs require an accurate portrayal of a genome. Furthermore, determining the exact SSR 

copy number is important in species identification and aids in the identification of discrete 

families and individuals. Kmer-SSR fills a usability gap in SSR identification. While many SSR 

identification algorithms exist, it is often difficult to install, use and read the output from the 

algorithms available. Two of the main strengths of Kmer-SSR are its usability and the SSR filters 

that are easily accessible to help answer biological questions. Installing Kmer-SSR is at least as 

easy to install as other algorithms. Kmer-SSR was implemented in C ++. It does not require any 

editing of the source code to find SSRs of different lengths or filter overlapping SSRs, and it 

provides a robust documentation for its command line options. Step-by-step instructions for 

installation and implementation of Kmer-SSR are available with the algorithm’s source code at 

http://github.com/ridgelab/Kmer-SSR. 

The filters available in Kmer-SSR help answer primary biological questions. Instead of 

inundating a researcher with duplicate SSRs, Kmer-SSR eliminates overlapping SSRs by only 

reporting the left-most SSR in each sequence when multiple SSRs are equally valid. 

Furthermore, longer SSRs are typically more biologically interesting, so completely enclosed 
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SSRs are not included in the output. Importantly, these filters still allow for overlapping SSRs 

where at least one period size is completely outside of the previously reported SSR. These filters 

set Kmer-SSR apart from all other SSR identification algorithms because of its ease of use as 

well as its utility. 

As we compared other algorithms, a few difficulties arose that made it challenging to 

directly compare the output from each program. We learned that QDD does not allow the 

sequence header line to contain the vertical bar [|] (and possibly other characters that have 

special meaning in a regular expression). Also, analysis of 1-mers in longer sequences, such as 

the lizard genome, exceeded 21 days in SSR-pipeline. MREPS also required pre-splitting of the 

input sequence files because the algorithm does not accept any characters besides A, T, C and G 

in the sequence lines (it will accept a very limited number of well-distributed Ns). SSRIT 

requires directly editing the source code to query period sizes other than lengths two through 

four. Similarly, QDD requires directly editing its source code to retrieve different period lengths 

and different SSR lengths. QDD defaults to 1-mers that must be 1 million bases long and 2-mers 

through 6-mers that must repeat at least 5 times. Furthermore, unlike some other algorithms, the 

output format for Kmer-SSR is easily parsable, and it can be exported directly to an Excel 

spreadsheet or another tab delimited parser. GMATO, ProGeRF, SSRIT and SA-SSR have 

similar output formats (although, ProGeRF and SSRIT do not provide column headers). MREPS 

and TRF are text-based reports with embedded tables. QDD provides a semicolon-separated 

value report with a few fixed columns followed by a variable number of columns thereafter 

depending on the number of SSRs found in a given sequence. SSR-Pipeline provides FASTA 

formatted output where the SSRs are encoded in the header (see Table 2). MREPS, PRoGeRF 

and TRF attempt to identify SSRs through heuristics. Heuristics are a common approach to 
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achieve an adequate solution to a problem that is either too computationally intensive to check 

all possible solutions or does not have a good approach to calculate the exact solution (Clancey, 

1985). Table 2 displays features of each software package per each software package’s 

documentation (Benson, 1999; Kolpakov et al., 2003; Lopes et al., 2015; Meglécz et al., 2014; 

Miller et al., 2013; Pickett et al., 2016; Temnykh et al., 2001; Wang et al., 2013). 

While Kmer-SSR provides a substantially better user experience with more filters and 

options than all other algorithms, Kmer-SSR has several weaknesses. First, since Kmer-SSR is 

an exact algorithm, it is not as fast as the heuristic approach of MREPS when there are only 

canonical nucleotides in a sequence. Second, due to the kmer decomposition approach used in 

Kmer-SSR, it is unable to identify fuzzy repeat regions where only one or two nucleotides differ 

from an exact repeat. Although not necessary for many applications, fuzzy repeats would provide 

Kmer- SSR with increased functionality that is not currently possible with the algorithm’s 

implementation. Third, Kmer-SSR has no web interface. 

Unlike all other algorithms, Kmer-SSR offers the convenience of a completely exhaustive 

search in linear time (though with a larger constant factor than normal). This truly exhaustive 

search is entirely filter- free. As an example, that means it would report an ACG repeated seven 

times at position 1, six times at position 4, five times at position 7, etc. This is likely not 

necessary for most applications. However, with the exhaustive option, we set an upper limit for 

all SSR identifications. Furthermore, since genome complexity is important in primer design and 

predicting recombination events (Murray et al., 1999), the exhaustive option could be used as an 

easy approach to determine the proportion of a sequence that repeats. 
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Table 1. Comparisons of all nine SSR-identification algorithms across six genomes with period sizes of 1-7 
and a minimum SSR length of 16 bases. We ran all comparisons on a 2.3 Ghz Intel Haswell processor. Although 
each algorithm was given the same amount of memory and CPUs, due to hardware variability of the CPU, runtimes 
could vary by up to 20%. Also, MREPS required pre-processing of the fasta files, which typically added anywhere 
from a few seconds to several minutes to the runtime (not depicted in the table), depending on the pre-processing 
approach used. Similarly, we did not include the time required to edit SSRIT and QDD’s source code in order for 
their programs to function over the period sizes in these tests. SSR-Pipeline could not finish searching for 1-mers in 
chromosome 6 of the Anolis carolinensis in 21 days of run time. Accordingly, the chromosome was split into 24 
approximately equal sized chunks (i.e., approximately 3.3 Mb each) and each chunk was searched for 1-mers 
separately by SSR-Pipeline. The required time for each chunk was summed (approximately 5 hours) and used in 
place of 504 hours (21 days). 
The SSRs After Adjustments column reflects the number of SSRs that we did not remove or alter for purposes of 
making the comparison simpler. SSRs that were exact duplicates, duplicates with only the repeat number varying, 
duplicates that varied only by cycle (e.g., ACG versus CGA with the same number of repeats right next to each 
other), entirely surrounded by another SSR, or not atomic (e.g., ATAT repeated 2 times instead of AT repeated 8 
times) were removed. SSRs that shared the same base and overlapped were combined into one SSR (e.g., AT 
repeated 8 times at position 1 and AT repeated 6 times at position 11 would be combined to AT repeated 11 times at 
position 1). 
The SSRs In Range column is the number of SSRs from the previous column that were 16 nt or longer and had a 
period size of 1-7 (inclusive). 
The Number Correct column is the number of SSRs In Range that were actually present in the sequence. 
The Number Correct and Fixed is the Number Correct plus a few incorrect SSRs that we are able to fix (e.g., a 
program might report an AT repeated 30 times, but it only repeated 20 times in the sequence). 
The Percent Correct and Fixed is the percent of SSRs in Range that were correct or fixed. 

                   Comparison with Kmer-SSR 
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GMATo 2:38 2:38 20,623,008 16,369,297 16,871 16,871 16,870 100 0 8,194 10,090 

Kmer-SSR 2:24 0:24 18,284 18,284 18,284 18,284 18,284 100 NA NA NA 

MREPS 0:09 0:09 25,639 25,639 18,284 18,284 18,284 100 0 0 18,284 

PRoGeRF 18:07 18:07 16,841,656 16,840,821 17,763 17,762 17,763 100 0 610 17,674 

QDD 19:11 19:11 60,994 60,994 18,009 18,009 18,009 100 0 732 17,552 

SA-SSR 338:47 33:55 18,166 18,166 18,166 18,166 18,166 100 0 442 17,842 

SSR-Pipeline 611:55 611:55 19,173,282 17,301,120 18,044 18,044 18,044 100 0 913 17,371 

SSRIT 1:29 1:29 87,073 74,121 18,284 18,284 18,284 100 0 0 18,284 

TRF 2:09 2:09 422,851 411,644 42,157 13,872 17,307 41.05 0 1,560 16,724 
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GMATo 3:30 3:30 26,512,280 21,624,294 50,401 50,401 50,139 99 0 23,086 34,416 

Kmer-SSR 3:26 0:19 57,502 57,502 57,502 57,502 57,502 100 NA NA NA 

MREPS 0:14 0:14 94,875 94,875 57,502 57,502 57,502 100 0 0 57,502 

PRoGeRF 37:55 37:55 8,071,102 8,020,213 32,043 31,989 32,004 100 0 25,588 31,914 

QDD 8:51 8:51 216,943 216,943 55,470 55,470 55,470 100 0 3,002 54,500 

SA-SSR 1,324:33 167:48 56,833 56,833 56,833 56,833 56,833 100 0 1,214 56,288 

SSR-Pipeline 632:10 632:10 26,973,434 23,032,838 56,729 56,729 56,729 100 0 1,793 55,709 

SSRIT 2:00 2:00 310,109 252,223 57,502 57,502 57,502 100 0 0 57,502 

TRF 8:52 8:52 1,022,145 990,316 181,973 25,451 45,773 25.15 0 14,546 42,956 

D
a

n
io

 r
er

io
 (

ch
r 

2
5

) 

GMATo 1:12 1:12 9,501,860 7,535,749 22,546 22,546 22,362 99 0 8,463 13,636 

Kmer-SSR 1:10 0:13 22,099 22,099 22,099 22,099 22,099 100 NA NA NA 

MREPS 0:05 0:05 26,862 26,862 22,099 22,099 22,099 100 0 0 22,099 

PRoGeRF 8:14 8:14 7,696,269 7,695,012 21,729 21,668 21,684 100 0 494 21,605 

QDD 7:43 7:43 49,016 49,016 21,805 21,805 21,805 100 0 908 21,191 

SA-SSR 2,075:03 648:00 21,862 21,862 21,862 21,862 21,862 100 0 690 21,409 

SSR-Pipeline 1,958:54 1,958:54 8,948,450 7,954,899 21,857 21,857 21,857 100 0 987 21,112 

SSRIT 0:43 0:43 69,645 58,065 22,099 22,099 22,099 100 0 0 22,099 

TRF 5:03 5:03 293,378 283,764 40,343 11,255 16,911 41.92 0 6,144 15,955 
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D
ic

ty
o

st
el

iu
m

 d
o

sc
o

id
eu

m
 

GMATo 1:02 1:02 8,810,607 7,126,425 82,643 82,643 82,526 100 0 28,714 62,967 

Kmer-SSR 1:12 0:08 91,681 91,681 91,681 91,681 91,681 100 NA NA NA 

MREPS 0:05 0:05 121,835 121,835 91,681 91,681 91,681 100 0 0 91,681 

PRoGeRF 11:42 11:42 4,629,786 4,604,499 60,176 60,174 60,174 100 0 31,707 59,974 

QDD 3:44 3:44 171,686 171,686 88,017 88,017 88,017 100 0 5,295 86,386 

SA-SSR 723:31 236:01 90,700 90,700 90,700 90,700 90,700 100 0 1,635 90,046 

SSR-Pipeline 246:35 246:35 9,292,900 7,397,561 90,810 90,810 90,810 100 0 1,759 89,922 

SSRIT 0:42 0:42 265,894 202,531 91,681 91,681 91,681 100 0 0 91,681 

TRF 17:30 17:30 642,904 602,301 178,902 40,772 75,742 42.34 0 18,962 72,719 

P
h

ys
co

m
it

re
ll

a
 p

a
te

n
s 

(c
h

r 
1
) 

GMATo 0:59 0:59 7,981,869 6,500,395 7,739 7,739 7,736 100 0 3,259 5,528 

Kmer-SSR 0:58 0:10 8,787 8,787 8,787 8,787 8,787 100 NA NA NA 

MREPS 0:04 0:04 12,885 12,885 8,787 8,787 8,787 100 0 0 8,787 

PRoGeRF 7:32 7:32 6,639,989 6,639,933 8,669 8,668 8,668 100 0 131 8,656 

QDD 4:29 4:29 27,774 27,774 8,319 8,319 8,319 100 0 621 8,166 

SA-SSR 642:36 91:59 8,719 8,719 8,719 8,719 8,719 100 0 152 8,635 

SSR-Pipeline 1,498:06 1,498:06 7,763,141 6,874,175 8,720 8,720 8,720 100 0 253 8,534 

SSRIT 0:35 0:35 39,472 35,941 8,787 8,787 8,787 100 0 0 8,787 

TRF 1:53 1:53 223,938 215,818 22,730 6,132 8,192 36.04 0 891 7,896 

S
a

cc
h
a

ry
o

m
yc

es
 c

er
ev

is
ia

e
 

GMATo 0:23 0:23 3,281,592 2,674,303 1,101 1,101 1,101 100 0 588 887 

Kmer-SSR 0:23 0:04 1,475 1,475 1,475 1,475 1,475 100 NA NA NA 

MREPS 0:02 0:02 2,293 2,293 1,475 1,475 1,475 100 0 0 1,475 

PRoGeRF 3:43 3:43 1,065,515 1,065,510 492 492 492 100 0 988 487 

QDD 0:47 0:47 8,672 8,672 1,368 1,368 1,368 100 0 139 1,336 

SA-SSR 338:50 60:55 1,430 1,430 1,430 1,430 1,430 100 0 57 1,418 

SSR-Pipeline 9:32 9:32 3,124,288 2,820,560 1,427 1,427 1,427 100 0 73 1,402 

SSRIT 0:14 0:14 12,276 10,386 1,475 1,475 1,475 100 0 0 1,475 

TRF 0:26 0:26 62,616 61,038 4,634 755 1,242 26.80 0 290 1,185 

C
o

m
b

in
ed

 

GMATo 9:44 9:44 76,711,216 61,830,463 181,301 181,301 180,734 100 0 72,304 127,524 

Kmer-SSR 9:33 1:18 199,828 199,828 199,828 199,828 199,828 100 NA NA NA 

MREPS 0:39 0:39 284,389 284,389 199,828 199,828 199,828 100 0 0 199,828 

PRoGeRF 87:13 87:13 44,944,317 44,865,988 140,872 140,753 140,785 100 0 59,518 140,310 

QDD 44:45 44:45 535,085 535,085 192,988 192,988 192,988 100 0 10,697 189,131 

SA-SSR 5,443:20 1,238:38 197,710 197,710 197,710 197,710 197,710 100 0 4,190 195,638 

SSR-Pipeline 4,957:12 4,957:12 75,275,495 65,381,153 197,587 197,587 197,587 100 0 5,778 194,050 

SSRIT 5:43 5:43 784,469 633,267 199,828 199,828 199,828 100 0 0 199,828 

TRF 35:53 35:53 2,667,832 2,564,881 470,739 98,237 165,167 35.09 0 42,393 157,435 

 
 

                   Comparison with Kmer-SSR 
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Figure 1. Conceptual Representation of Kmer-SSR. Although we implement some filters and tricks to speed up 
Kmer-SSR runtime, each SSR is identified through kmer decomposition, which allows the identification of instances 
when the same SSR period occurs k bases from the previously identified SSR period. 
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Figure 2. Pseudocode for the Kmer-SSR algorithm. The function passesBooleanFilter ensures SSRs are not 
duplicates of previously reported SSRs. The function passesUserFilters (function not shown) completes other user-
specified options, which may include minimum SSR length, minimum and maximum number of periods, finding 
specific SSRs, and sequence length bounds. 

 

Input: P, s  // the list of desired period sizes, a DNA sequence 
P ← sort(P)  // sort largest to smallest 
F   // Boolean array of length(s); all values instantiated as False  
Function searchForSSR(period, seq, index) 
Begin 
 base = getSubSequence(pos, period, seq) // grab the first sequence 
 next = getSubSequence(pos, period, seq) 
 repeats = 0     // the number of times the ssr repeats 
 pos = index     // starting position of the ssr 

 while base == next and pos < (length(seq) – period – 1) do  // while adjacent 

// periods match 
  repeats += 1   // we found another copy, increment the count 
  pos += period 
  next = getSubSequence(pos, period, seq) // grab the next period 
 end while 
return SSR(base, repeats, index) 
End Function 
  
Function passesBooleanFilter (F, ssrStartPos, ssrStopPos)                  
Begin 
   for i ← ssrStartPos to ssrStopPos do //Positions in first period size 
      if F

i 
== False then   //If SSR has never been found at the position 

         return True    //SSR is valid 
      end if 
   end for 
return False     //SSR is not valid 
End Function 
  
Main Program 
for i ← 1 to length(P) do   //For each period size in list 
   for j ← 1 to length(s) do   //For each nucleotide in sequence 
      ssr = searchForSSR(P

i
, s, j)  //Search for next SSR that repeats 

      u = getSSRStartPos(s, ssr)  //Get start position of SSR 
      v = getSSRStopPos(s, ssr)  //Get last position of SSR 
      if passesUserFilers(ssr) and passesBooleanFilter(F, u, v) then 

         print(ssr)    //Print SSR to output file 
         for x ← u to v do   //For each position in SSR  
            F

x 
← True    //Sets Boolean filter to True 

         end for 
         j += (length(ssr) - P

i
 – 1)  //Update position in sequence  

      end if 
   end for 
end for    
End 
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ABSTRACT 

Carbapenem-resistant bacteria have quickly become a worldwide concern in nosocomial 
infections. Of the seven known carbapenemases, four have been shown to be particularly 
problematic: KPC, NDM, IMP, and VIM. To date, many local and species- or carbapenemase-
specific epidemiological studies have been performed, which often focus on the organism itself. 
This report attempts to perform an inclusive (encompass both species and carbapenemase) 
epidemiologic study using publicly available plasmid sequences from NCBI. In this report, the 
gene content of these various plasmids has been characterized, replicon types of the plasmids 
identified, and the global spread and species promiscuity of the plasmids analyzed. Additionally, 
support to several groups targeting plasmid maintenance and transfer mechanisms to slow the 
spread of resistance plasmids is given. 
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INTRODUCTION 

Nosocomial infections have quickly become a significant cause of mortality. In 2002, the 

US Centers for Dis- ease Control and Prevention estimated that the national mortality rate due to 

hospital-acquired infections was 5.8% (Klevens et al. 2007). In 2011, that rate increased to 

10.4% (Magill et al. 2014). While these same reports show that the chance of acquiring an 

infection at the hospital has decreased, the infections are becoming strikingly more lethal. 

One significant reason for this increase in mortality is the acquisition of antibiotic 

resistance in bacterial populations (Read and Woods 2014). To mitigate the havoc wrought by β-

lactamases on the efficacy of antimicrobials, multiple β-lactam derivatives have been pressed 

into service. One of these derivate classes, the carbapenems, is used as a last resort for treating 

extended spectrum β-lactamase infections. Recently, resistance to this class has occurred as well. 

Antibacterial resistance is often conferred to these organisms through extra-chromosomal 

segments of DNA called plasmids (Read and Woods 2014). Plasmids often carry the molecular 

machinery to replicate themselves and allow for the transfer of the plasmid between different 

bacterial strains, and even between many gram-negative bacteria (Logan and Weinstein 2017). 

Additionally, many carbapenemase-carrying plasmids are large; therefore, they often carry a 

toxin/anti- toxin plasmid addiction system (Tsang 2017) or plasmid partitioning system to 

prevent the bacterium from losing the plasmid. Furthermore, evidence has been shown for local 

and global transmission of carbapenemase genes among several bacterial species (Logan and 

Weinstein 2017; Stoesser et al. 2017), leading to a global crisis in the declination of antibiotic 

therapy efficacy. 
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Carbapenemases  

Currently there are about nine diverse types of carbapenemases falling into Ambler 

classes A, B, and D (Yong et al. 2009; Overturf 2010). Each of those nine types have several 

allele variations. We will focus on four clinically relevant types found in Enterobacteriaceae, the 

class A serine-mediated Klebsiella pneumoniae carbapenemase (blaKPC) and three class B 

metallo-β-lactamases (blaMBL): the New Delhi metallo-β-lactamase (MBL) (blaNDM), the Verona 

integron-encoded MBL (blaVIM), and the Imipenem- resistant MBL (blaIMP), and highlight their 

pertinent characteristics. 

 

Klebsiella pneumoniae carbapenemase 

First identified in 2001 (Yigit et al. 2001), blaKPC was not the first carbapenemase, as 

several MBLs that could hydrolyze carbapenem had already been identified in Japan in 1994 

(Paterson and Bonomo 2005). This initial variant (now referred to as KPC-2) provided resistance 

to numerous penicillins, all the cephalosporins, and aztreonam, and was also resistant to the β-

lactamase inhibitors clavulanic acid and tazobactam (Yigit et al. 2001). A recent review indicates 

that there are currently 12 reported variants of the KPC enzyme (Sotgiu et al. 2018). As of 27 

February 2018, the Centers for Disease Control and Prevention report that blaKPC-positive 

infections have been reported from all 50 states and the District of Columbia (Centers for 

Disease Control and Prevention n.d.; https://www.cdc.gov/hai/organisms/cre/trackingcre.html). 

KPC enzymes have also been reported from many other nations and in numerous gram-negative 

species, including Acinetobacter baumanii, Pseudomonas aeruginosa, and nearly all the 

Enterobacteriaceae (Arnold et al. 2011; Perez and Van Duin 2013; Codjoe and Donkor 2018). 
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The ease of blaKPC gene transfer has been augmented by the Tn4401 transposon that flanks the 

KPC-1 gene (Arnold et al. 2011).  

 

New Delhi metallo-β-lactamase 

Originally isolated from India in 2008, there are currently more than 10 reported variants 

of blaNDM (Bedenic ́ et al. 2014). They are present in 34 states (Centers for Disease Control and 

Prevention n.d.; https://www.cdc.gov/hai/organisms/cre/trackingcre.html) and multiple countries 

including the United Kingdom, Pakistan, In- dia, Sweden, and others (Perez and Van Duin 

2013). This type of carbapenemase has shown greater enzymatic activity than the blaVIM and bla 

types for the penicillins, cephalosporins, and a few of the carbapenems (Yong et al. 2009). 

blaNDM has shown a greater potential for spread than blaKPC, as it has rapidly appeared across the 

world in the last 10 years. 

 

Verona integron-encoded metallo-β-lactamase 

blaVIM has 14 reported variants with amino acid content varying up to 10% (Bedenić et 

al. 2014). blaVIM originated from Pseudomonas aeruginosa in the Mediterranean in 1997, but 

quickly spread into Enterobacteriaceae and proceeded to spread globally. Reports indicate that 

blaVIM can hydrolyze all β-lactams except monobactams and remains susceptible to inhibitors 

(Marsik and Nambiar 2011). Like the other carbapenemases, plasmids are the primary 

mechanism for horizontal gene transfer of this carbapenemase. 

 

Imipenem-resistant metallo-β-lactamase 
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blaIMP shares many of the same characteristics as blaVIM, but the amino acid content 

between the two diverges by 70% (Bedenić et al. 2014). blaIMP also represents the most diverse 

type of carbapenemase with 18 variants reported (Bedenić et al. 2014). Isolated in 1991 in Japan, 

it is the earliest carbapenemase of the four, and is resistant to the inhibitor clavulanic acid 

(Watanabe et al. 1991).  

While there are other reports that characterize carbapenemase plasmids, these generally 

describe a single carbapenemase within a species (see Johnson and Woodford 2013; Sheppard et 

al. 2016; Stoesser et al. 2017; Piazza et al. 2019; Wang et al. 2018; Chen et al. 2019; Mansour et 

al. 2019; Mukherjee et al. 2019). This report is the first large-scale attempt to characterize the 

diversity and promiscuity of plasmids carrying one of four carbapenemase families across 

multiple bacterial species. However, the impact of this study is limited due to the regional bias 

introduced by national surveillance and sequencing programs. Additionally, blaOXA-48 

carbapenemase was excluded due to its sequence similarities to other OXA-type β-lactamases 

and because of its reported decreased efficiency in hydrolytic activity towards carbapenems 

(Poirel et al. 2012). We identified these carbapenemase-carrying plasmids from seven clinically- 

relevant gram-negative bacteria (Enterobacter aerogenes (also Klebsiella aerogenes (Tindall et 

al. 2017)), Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas 

aeruginosa, Providencia stuartii, and Serratia marcescens).  

 

MATERIALS AND METHODS  
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A detailed description and the full dataset can be found in the supplementary data, File 

S11. 

 
Sequence acquisition  

In total, 532 complete plasmid sequences were obtained from NCBI nucleotide database 

by a discontiguous megablast nucleotide search (Altschul et al. 1990) of four representative 

carbapenemase genes (blaIMP-4, blaKPC-2, blaNDM-1, blaVIM-1) to allow for variations within the 

carbapenemase family. We employed the same Entrez strategy used by Orlek et al. (2017) in the 

BLAST search to filter for complete plasmids: 

“biomol_genomic[PROP] AND plasmid[filter] NOT complete cds[Title] NOT 
gene[Title] NOT genes[Title] NOT contig[Title] NOT scaffold[Title] NOT whole ge- 
nome map[Title] NOT partial sequence[Title] NOT par- tial plasmid[Title] NOT 
locus[Title] NOT region[Title] NOT fragment[Title] NOT integron[Title] NOT 
transposon[Title] NOT insertion sequence[Title] NOT insertion element[Title] NOT 
phage[Title] NOT operon[Title]” 

 
This BLAST search was done separately for the seven organisms of interest: E. aerogenes, E. 

cloacae, E. coli, K. pneumoniae, P. aeruginosa, P. stuartii, and S. marcescens. GenBank files 

were downloaded for each BLAST alignment that scored >80% identity and query coverage. 

These sequences were retrieved on 5 March 2018. 

 

Plasmid gene composition 

A list of key terms was derived by a random survey of 10% of the acquired GenBank 

files, with cross reference to QuickGO, the European Bioinformatics Institute’s Gene Ontology 

reference database to classify gene products into one of the following categories: antimicrobial 

resistance, with β-lactamases as a subset; plasmid trans- fer genes; toxin/antitoxin systems; DNA 

                                                
1 Supplementary data are available with the article through the journal Web site at https://nrcresearchpress.com/doi/suppl/10.1139/gen-2019-0100 

and in Appendix 7 herein. 
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maintenance, modifying, and repair proteins; mobile genetic elements; hypothetical genes; and 

other.  

 
Incompatibility group/replicon typing and plasmid characterization 

Plasmid incompatibility groups were determined by nucleotide BLAST (Altschul et al. 

1990; Camacho et al. 2009) against a local download of the PlasmidFinder v1.3 

Enterobacteriaceae database containing the origin sequences for numerous replicon types 

(Carattoli et al. 2014) downloaded on 1 March 2018. The incompatibility groups were assigned 

when matches met the following criteria: ≥80% identity, ≥60% subject coverage, and within 1% 

of the percent identity of the highest match. Accordingly, more than one incompatibility group 

could be reported for any given plasmid. Further characterization was accomplished as follows: 

extracting the CDS regions for each plasmid, searching these CDS regions for key terms using 

regular expressions, and combining the results for plasmid groups of interest (e.g., those that 

belong to Enterobacteriaceae, or those that carry blaKPC). Additionally, associated metadata 

were extracted for plasmids that identified a country of origin to elucidate the global prevalence 

of these plasmids. 

 

Nondiscrete plasmid groups 

Ultimately, the plasmid sequences were BLASTed against each other to identify any 

duplicate entries, and the following metadata was identified for any match exceeding 98% 

coverage and identity match: the organism from which the plasmid was extracted, the country of 

origin, and the collection date of the plasmid. The tree was constructed using a custom distance 

metric and Python (https://python.org) code from the CAM package (Miller et al. 2019). The 

custom distance metric is described in detail in the supplementary data (File S1). Briefly, it is the 
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sum of the bases from the query and subject included in the alignment divided by the sum of the 

length of the query and subject sequences. The image of the tree was generated using FigTree 

v1.4.4 (https://github.com/rambaut/figtree). 

This characterization of each plasmid and of groups of plasmids was accomplished using 

custom scripts, made freely available at https://github.com/ridgelab/plasmidCharacterization and 

in the supplementary data (File S1).  

 

Statistical analyses  

Since plasmid length distributions are not normal (left-skewed, Fig. S1), all statistical 

analyses were performed with the Mann–Whitney U-test or the Kruskal–Wallis ranked ANOVA 

where appropriate, for nonparametric distributions. To be conservative due to our large sample 

size, statistical significance was determined when p < 0.0001. 

 

RESULTS   

Plasmid gene composition 

Due to the inherent inconsistencies of GenBank record annotations, our search method 

required discarding 86/532 accessions, leaving a total of 446 accessions in this analysis. The 

criteria for keeping an accession in the analysis was if at least one, and no more than six, 

carbapenemase genes were identified on the plasmid (full dataset available in Table S1). To 

account for poor assembly and annotation due to short-read sequencing technologies, we 

identified from the metadata which technologies were used. Of the 86 GenBank files discarded, 

27 used short-read technologies and 46 used long-read technologies. Of the GenBank files 

retained, 271 GenBank files noted the sequencing technology used, of which 48 used more than 
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one with 40 of these using a short-read/ long-read strategy. Overall, there was an even 

distribution of short- and long-read sequencing technologies (198 short- and 121 long-read 

technologies). Of those 446 plasmids, 198 carry blaKPC, 168 carry blaNDM, 49 carry blaIMP, and 

31 carry blaVIM. When identifying species of origin, 7 plasmids belong to E. aerogenes, 33 to E. 

cloacae, 142 to E. coli, 235 to K. pneumoniae, 18 to P. aeruginosa, 3 to P. stuartii, and 8 to S. 

marcescens. The mean size of all carbapenemase-carrying plasmids was 104,222 bp, with a 

median length of 87,663 bp. The largest plasmid was 500,840 bp and the smallest 1,635 bp. The 

average percent gene content of all plasmids was as follows: antimicrobial-resistance genes, 

8.0%; plasmid transfer genes, 15.8%; DNA modification genes, 14.7%; mobile genetic elements, 

9.3%; hypothetical genes, 33.2%; other/ metabolic genes, 18.9%. The plasmids carried, on 

average, two β-lactamases, with 22.6% of the plasmids carrying three or more, and the most β-

lactamases on a single plasmid was six. The carbapenemase copy number of these plasmids 

ranged from one to three, with 97.98% of the plasmids harboring only one copy. Of those that 

harbored more than one carbapenemase gene, they all belonged to the same type. 

 

Plasmid incompatibility group/replicon typing 

No incompatibility group presented itself as the most abundant; however, the following 

six groups constitute 70.4% of the plasmids: IncA/C2 (45/446, 10.1%), IncFIB (39/ 446, 8.7%), 

IncFII (58/446, 13%), IncN (56/446, 12.6%), IncX3 (54/446, 12.1%), and multi-replicon 

plasmids (62/446, 13.9%) (see Table S2). Notably, 7.62% (34/446) of the plasmids could not be 

accurately typed using this method. Sixty-two plasmids carried more than one replicon, and these 

were significantly larger than those that carried a single replicon (Mann–Whitney U-test P < 

0.0001, Fig. S2). Previous work has shown the propensity for blaNDM to be located on IncX3 
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plasmids, and our work supports this claim with 28% of blaNDM-carrying plasmids on an IncX3 

plasmid. We also identify IncFII as a common replicon for blaNDM plasmids (25%) (Fig. 1; Table 

S3) (Wang et al. 2018). Additionally, we have identified multi-replicon plasmids, IncFIB, and 

IncN to be the common carriers for blaKPC, and IncA/C2 and IncN replicons as the common 

carriers for blaIMP (Table S3). Notably, most of the replicon types for blaVIM-resistance plasmids 

(38%) could not be identified using the PlasmidFinder database. 

While the carbapenemases do not seem to be found more often on plasmids of a specific 

incompatibility group over another, there is a species preference, as would be expected (Fig. 2). 

With species that have more than five plasmids represented, E. cloacae, S. marcescens, and E. 

aerogenes more commonly contain IncFII plasmids (30%, 50%, and 43%, respectively); E. coli 

commonly contains IncX3 plasmids (27%); and K. pneumoniae are predominately carrying 

IncFIB, IncN, and multi-replicon plasmids (15%, 12%, and 18%, respectively). Most plasmids 

from P. aeruginosa could not be typed from the PlasmidFinder database since the database is 

designed for the family Enterobacteriaceae.  

Of the incompatibility groups from multi-replicon plasmids, the most commonly found 

was IncFII, present in 48.4% of the plasmids. The other two most common incompatibility 

groups in multi-replicon plasmids are IncR and IncFIB (35.5% and 29.0%, respectively).  

 

Geographic spread and species promiscuity of plasmids 

Among all 446 plasmids, only 32 countries are represented, with the United States of 

America and China being the predominant countries (54 and 86, respectively). One hundred and 

ninety-four submissions did not list a country of origin for the plasmid. Additionally, of the 446 

plasmids, our intra-BLAST analysis identified 42 indiscrete groups containing 114 plasmids 
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(Fig. 3). The smallest groups contain 2 plasmids (23 groups) and the largest 48. In total, there 

were 332 discrete plasmids. Of the seven species of interest in this study, the greatest 

promiscuity has been seen between E. coli and K. pneumoniae, with the occasional coincident 

plasmid in E. cloacae and one incidence of an indiscrete plasmid shared between K. pneumoniae 

and S. marcescens. Twelve plasmids were of environmental or livestock origin, 139 were from 

clinical isolates, and the remaining 295 did not provide an isolation source. 

Additionally, according to this public data, China is the only country where all four 

carbapenemase types have been observed. In the following countries, three of the four 

carbapenemases were observed (not observed): Australia (blaVIM), Canada (blaIMP), Switzerland 

(blaIMP), Taiwan (blaVIM), and the United States of America (blaIMP). blaNDM was the most 

widespread carbapenemase, present in 25/32 countries. Interestingly, blaIMP was only reported 

from Asian and Oceanic countries (Australia, China, Japan, Taiwan, and Thailand).  

Additionally, in countries that had at least 10 plasmids, we identified the predominant 

incompatibility group in that country (Table 1).  

 

DISCUSSION 

In general, data on carbapenemase-producing plasmids from less common but still 

clinically important organisms such as P. aeruginosa and relevant carbapenemases such as 

blaVIM is severely lacking. Additionally, global epidemiologic studies of carbapenemase-carrying 

plasmids are further complicated by the lack of GenBank metadata found. Differences between 

infection-reporting requirements and research efforts among different countries, and the fact that 

these plasmids are not routinely sequenced, further complicates these analyses.  
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The cladogram showing the nondiscrete plasmid groups (Fig. 3) is quite illuminating, but 

it is also the most biased due to large sequencing projects of local outbreaks. This may be the 

case for the over-representation of plasmids from China, especially the IncX3 group. However, 

the intercontinental nature of these nondiscrete plasmids, particularly the IncFIB group present 

on four separate continents, indicates either that these plasmids are very stable or that they can 

spread at a speed at which they do not accumulate significant mutations. Conversely, the fact that 

common incompatibility groups such as IncFII do not cluster with similar nondiscrete plasmids 

could be explained by them simply being more diverse or that they have not been identified 

during a sequencing project of a hospital CRE outbreak. 

Furthermore, to effectively track and monitor the spread of carbapenem-resistance 

plasmids in local outbreaks, rapid identification is critical. Current clinical practices (blood 

culture, followed by isolation and PCR) have a 48–72 h delay before carbapenemase resistance is 

determined. For the more rapid, nonPCR-based methods using whole blood (such as Knob et al. 

2018), it is important to realize that the plasmids of interest are quite large. With their median 

length over 80 kb, plasmid isolation becomes difficult when necessary for the application, and 

many of the replicon types identified are from low copy number plasmids.  

Also, this report supports rational methods of several groups using targeted approaches to 

slow the spread of carbapenemase plasmids. First, the antitoxin of the plasmid addiction system 

is currently a target (Tsang 2017). Targeting this system could prevent its binding with the toxin, 

resulting in the death of the host harboring the plasmid. However, this would not be a universal 

target since only 52.9% of the plasmids contain toxin/antitoxin systems (Table S1). And 

secondly, 90.4% (403/446) of the plasmids carry transfer genes to pass the plasmid be- tween 

bacteria (Table S1), which is also supported by the evidence shown here of nondiscrete plasmids 
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appearing in multiple species. Preventing pilus formation could dramatically reduce the spread of 

these plasmids. This direction is currently being pursued by several groups employing strategies 

such as bacteriophage, colloidal clays, and antibody therapy (Getino and de la Cruz 2018). 

Targeting both mechanisms simultaneously may dramatically reduce the spread and persistence 

of these plasmids in the hospital.  

Ultimately, this analysis was very difficult due to the nonstandardization of GenBank 

metadata and the under-reporting and publication of carbapenemase-carrying plasmids from 

different countries. This is a severe limitation in the complete comprehension of the carbapenem-

resistance epidemic, and more effort needs to be focused on these under-reported 

carbapenemases and species (VIM and IMP, P. aeruginosa). However, we were able to support 

work done by other groups, by showing the prevalence of diverse targets (toxin/ antitoxin and 

conjugal transfer) among these plasmids. These efforts may ultimately help stem the tide of in- 

creasing global carbapenem resistance. 
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Table 1. Predominant incompatibility group and carbapenemase prevalence in countries with more than 10 
representative plasmids. 

Country 
Incompatibility 
Group 

Percent of 
plasmids (no./Total) 

Percent carbapenemase in predominant 
Incompatibility group 

Australia IncFIB 45.5% (5/11) KPC 80.0% (4/5); IMP 20.0% (1/5) 
Brazil IncN 50.0% (8/16) KPC 100.0% (8/8) 
Canada IncFII 33.3% (5/15) KPC 40.0% (2/5); NDM 60.0% (3/5) 
China IncFII 26.7% (23/86) KPC 82.6% (19/23); NDM 17.4% (4/23) 
United States of America IncFIB 24.1% (13/54) KPC 61.5% (8/13); NDM 38.5% (5/13) 
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Figure 1. Relative abundance of incompatibility groups among plasmids. Predominant incompatibility groups 
from each carbapenemase family: KPC, IncFIB (15.8%), IncN (15.8%), and multi-replicon (17.3%); NDM, IncA/C2 
(15.1%), IncFII (25.3%), IncX3 (28.3%), and multi-replicon (11.4%); IMP, IncA/C2 (22.4%), IncN (32.7%), and 
NA (8/49 16.3%); VIM, IncA/C2 (16.1%), IncN (13.8%), IncR (10.3%), and NA (37.9%). 
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Figure 2. Relative abundance of incompatibility groups among bacterial species. E. cloacae, S. marcescens, and 
E. aerogenes prefer FII plasmids (30.3%, 50%, and 42.9% respectively), E. coli prefer X3 plasmids (26.8%) and 
FIB and multi-replicon plasmids predominate in K. pneumoniae (15.3 and 17.9 respectively). The majority of 
plasmids from P. aeruginosa could not be typed from the PlasmidFinder database (50%). 
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Figure 3. Indiscrete plasmid groups. Cladogram showing the nucleotide relationships between plasmids that have 
>98% query coverage and identity. The geographic distribution of these plasmids in the three largest groups has 
been identified by colored dots. Blue text = KPC carrying plasmid, green = NDM, red = IMP, and black = VIM. 
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ABSTRACT 

Motivation: As phylogenetic data sets increase in size due to high-throughput sequencing, 
standard nodal support values (e.g., bootstrap values) quickly reach full support and thus provide 
minimal value in assessing tree stability within or across topologies. With this increase in loci 
coverage, some approaching full genomic scales, the main limitation in current and future 
phylogenetics has shifted to taxon sampling. However, few strategies remain to assess the 
strength of a given taxon sampling scheme or identifying troublesome and potentially 
undersampled regions of a topology. How stable is a given node to the utilized taxon sampling? 
 
Results: We present TANOS (TAxon jackknife for NOdal Stability), which uses traditional 
resampling without replacement for taxa in genomics-scale datasets to compute nodal stability 
scores for the phylogenetic tree of interest. Resampled trees are compared, and all internal nodes 
are recorded. After tabulating the presence of each internal node in all jackknifed trees, a 
measure of nodal stability is generated and reported. Reported values provide insight into the 
stability of a given node to the included taxon sampling. 
 
Availability and implementation: The source code is freely available on GitHub at 
https://github.com/pickettbd/TANOS. 
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1. INTRODUCTION 

Resampling methods are those techniques that create many subsamples of data from an 

original dataset. In phylogenetics these approaches have been applied to both sequence and 

morphological data matrices as a means to measure nodal “support”, via assessing data 

agreement across a topology (Efron 1979, Lanyon 1985). Bootstrapping, simply explained, is 

subsampling with replacement and in phylogenetics is commonly applied but is limited to 

characters (whether nucleotides or morphological features), jackknifing is subsampling without 

replacement and therefore can be applied to characters or taxa. The failings of both bootstrapping 

and jackknife approaches to nodal support with traditional phylogenetic datasets (i.e., small 

Sanger-based datasets) are documented within the literature (Felsenstein 1985). However, 

jackknifing has the clear philosophical advantage over bootstrap in that it does not skew the 

observed data; specifically, applying additional weight to a given character in the dataset by 

resampling it multiple times. Additionally, jackknifing as an approach to taxon stability has not 

been fully explored, especially in the current day of genomic scale data and phylogenetics. 

Herein we produce a robust approach to assess taxon sampling schemes while also identifying 

troublesome and potentially undersampled regions of a topology that are particularly useful with 

modern and large phylogenetic datasets.  

Tukey (1958) coined the term “jackknife” and specifically used the method to explore 

how a given outcome was affected by subsets of the original observations of the total dataset. In 

this context jackknifing methods are methods of random subsampling without replacement. From 

a statistical standpoint, jackknife methodologies and the theory predicating its usage is reviewed 

by Miller (1974) and subsequently summarized by Efron (1979). Miller argues jackknifing a 

dataset reduces overall bias in that dataset and attempts to prove this formulaically. 
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1.1 Character Jackknife in Phylogeny 

Lanyon (1985) proposed “a technique for investigating variance within a dataset” and 

coined the “jackknife approach” within  phylogenetics. He provides both a biological and 

statistical argument for jackknifing approaches being beneficial when reconstructing trees. The 

biological justification is based around the value of pseudoreplicates in cases of ideal datasets 

containing redundancy. He argues that any given dataset only contains a small subset of data 

from the evolutionary history that has actually taken place between a given taxon and its sister 

species. Apart from this subset of data, the remainder of the data are informative at ancestral 

nodes and represents the evolutionary history of more than just that terminal taxon. Lanyon 

refers to these data as redundant across multiple included taxa and pointed out that conflicting 

data will result in internal inconsistencies across the topology. 

Both Lanyon (1985) and Felsenstein (1985) discuss what jackknife techniques add to 

phylogenetics. Through the use of strict consensus trees, Lanyon (1985) focuses on the utility of 

identifying where all subtrees agree and identifying disagreement. He also argues those internal 

inconsistencies are not a reflection of complex speciation events resulting in multiple new taxa, 

but merely an unresolved region of the tree. It must be pointed out that Lanyon proposed this 

method within a distance-based framework and used it to specifically find inconsistencies in 

distance data being used for phylogenetic estimation. 

Lanyon (1987) further outlines these techniques as they apply to phylogenetics. He states 

“The use of jackknifing and bootstrapping should enable investigators to learn more about their 

data than was previously possible because of the information on the dispersion of sample 

statistics. I hasten to add that this situation does not imply that investigators will be able to 
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conclude more from their data”. He goes on to point out that these methods, as with all statistical 

procedures, do come with limitations and assumptions that need to be taken into account before 

using such tools. Lanyon (1987) argued that the real value in jackknifing is the amount of data 

exploration that these tools allow.  

Simmons and Freudenstein (2011) investigated the seeming inflation of support values 

and what they called “Spurious 99%” bootstrap or jackknife support values. Using both 

contrived and empirical real world examples the authors demonstrated these erroneous examples 

of high support at the nodes. The authors end that article with a list of recommendations based on 

situations with high amounts of missing data, or low overlap in loci across terminals, or 

supermatrix approaches. Recommendation number two is largely ignored but simply stated “JK 

(jackknife) resampling be used rather than BS (bootstrap) resampling.” These authors were 

clearly focused on character jackknifing and not a taxon approach; however, it is clear that 

jackknifing is an underused method in modern phylogenetics. 

 

1.2 Taxon Jackknifing and the Taxon Influence Index 

Wrobel (2008) reviewed methods for identifying uncertainty in phylogeny, specifically 

with those estimated based on molecular data. In this review he contemplated both the character 

jackknife and the taxon jackknife. He posited that the character jackknife may not be as popular 

as the bootstrap despite its theoretical similarity due to the often overall lower values it resulted 

in for nodal support. When giving an overview of taxon jackknife he notes that many argued 

“species” are not independent and so the statistical implications of removing a subset of taxa are 

even less understood than in character jackknifing. While certainly true, it underestimates the 
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power of a taxon jackknife to identify unstable portions of the topology, it also ignores the 

obvious lack of independence in the vast majority of molecular and morphological data as well. 

An alternate use of jackknifing methods has been developed for maximum likelihood 

analyses. Mariaassou et al. (2012) explored the use of taxon resampling in molecular alignments 

and execution in maximum likelihood tree reconstruction. These methods are based on the 

sequential removal of individual terminals and comparison of resulting topologies. They argue 

that based on the changes in topology when a taxon is removed, a metric for evolutionary 

importance can be generated, the Taxon Influence Index (TII). This tool has been used to help 

identify key taxa that have a larger impact on the phylogeny than surrounding species (Denton et 

al. 2017); however, it is not used as a metric of internal nodal stability nor as a way to identify 

potential weaknesses in an overall taxon sampling. Instead of using taxon jackknifing to assess 

the overall stability of a given node to sampling, TII identifies which terminals have the most 

effect on parent nodes. Conceptually, TII is a tool that can be used with a phylogenetic analysis 

to identify influential taxa, these taxa could be considered influential due to being relics, 

representing large diverse clades, or actually reflect flaws in the original sampling. Both of these 

examples provide the theoretical foundation for TANOS and demonstrate utility even on a 

smaller scale.  

 

1.3 Needs in a genomics era 

In this era, the traditional limitations of phylogenetics due to the lack of character 

coverage can be argued has largely gone away. What remains is the influence of taxon sampling 

and the problem of reconstructing relationships between often extremely diverse clades with 

relatively few representatives. Genomic-scale data are more readily available and its usage in 
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phylogenetics is constantly growing, an improved platform to investigate taxon stability is 

needed. Here, we present a new program TANOS, capable of evaluating taxon jackknifes of very 

large molecular datasets based on modern tree reconstruction methods, answering the core 

question, how stable is a given topology to the removal of taxa? 

 

2. MATERIALS AND METHODS 

To calculate how stable each node in a given topology is, additional trees must be 

constructed with taxa removed. These new trees can be compared with the original provided tree, 

and a score can be assigned to each node. The process can be summarized by the following steps: 

(a) subset alignments, (b) generate new trees, and (c) compute stability scores. The first two steps 

are routine, if potentially computationally expensive; they can be completed with basic scripting 

and existing software packages. The third step is unique and required the conception and 

implementation of a new algorithm. The process is most easily understood conceptually and 

visually before getting to the implementation details. 

  

2.1 Conceptual Examples 

The core question is how stable the current topology is to the removal of taxa? 

Accordingly, the same question extends to each internal node of the tree. The answer may vary 

throughout the tree. Regardless of which node is currently being evaluated, the overall stability 

to the removal of taxa is a combination of the stability to the removal of each individual taxon. 

Consider a simple example tree with taxa A-C (internal nodes, L and I, are also labeled for 

convenient reference): 
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To determine the overall stability of node L, the results for the stability of node L to the 

individual removal of each taxon must be combined. Once a taxon is removed from the tree, the 

remaining taxa can be considered as a set. Trees built without that taxon can then be queried to 

see how many trees also contain a node with the same taxa set. For example, if A is removed 

from the tree, the node L effectively has only two taxa, forming the set {B,C}. If trees built 

without A are queried, the percentage of those trees containing this same set as a clade can be 

identified. Likewise, the trees built without B and C can be queried for presence of sets {A,C} 

and {A,B}, respectively. 

 

As this entire tree has only three total taxa, each tree built without the removed taxon is 

guaranteed to have the set being searched for; thus, stability for that given node to the removal of 

A would be 1 (100%), likewise for the removal of B and C. If the stability is averaged for all 

taxa, the final score is 1 ((1+1+1)/3). One could follow the same procedure to evaluate node I, 

but the effort would be similarly wasted as a set containing a single taxon (the result of removing 
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one from a set of two taxa) will necessarily be found in any subsequent trees made with that 

taxon. This simple example tree demonstrates that the score at the root and parents of terminal 

nodes is, by definition, always 1. 

Consider the following more complex expanded example tree for taxa A-H (internal 

nodes, I-O, are also labeled for convenient reference): 

 

By definition, node O (the root) and nodes I, J, and K (parents of only terminal nodes) 

will all receive a score of 1. Thus, nodes L, M, and N remain to be evaluated. Node N will be 

demonstrated here, but the procedure is the same for nodes L and M. Five taxa are in the clade 

under node N: taxa A-E. Consider first the stability of node N to the removal of taxon A; 

removing A leaves the set {B, C, D, E} at node N and set {B, C, D, E, F, G, H} at node O: 
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Trees with taxa B-H (the set remaining from node O, {B, C, D, E, F, G, H}) are 

generated with a predetermined level of replication, six in this example. To determine the 

frequency with which set {B, C, D, E} occurs, a node containing only those taxa B-E is searched 

for in each tree and tallied: 
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Four of these six trees contain a node with the set {B, C, D, E}, the top three and the 

bottom-left. The remaining two trees do not contain the requisite set; thus, the frequency of 

occurrence of set {B, C, D, E} is 0.67 (4/6). For the sake of this example, assume the same 

procedure is followed for the removal of the remaining taxa (B, C, D, and E) from node N and 

frequencies of occurrence were obtained. If the other frequencies were 0.5, 0.33, 0.83, and 0.67, 

they could then be averaged to obtain 0.6 ((0.67+0.5+0.33+0.83+0.67)/5). The same procedure 

can be followed for nodes L and M with the systematic removal of taxa A-C and F-H, 

respectively. 

 
2.1.1 Meta-Methods 

All trees shown in these examples were generated from files in Mermaid format 

(http://mermaid-js.github.io/mermaid) using the associated command-line interface Mermaid-

CLI v8.5.3 (https://github.com/mermaid-js/mermaid-cli), which can generate diagrams and 

charts from text in a similar manner to Markdown (https://daringfireball.net/projects/markdown). 

The command to generate a vector-based image is structured like the following: 

mmdc -b transparent -i input.mmd -o output.pdf 

 

2.2 Detailed Methods 

Before nodal stability scores can be calculated, the tree must be jackknifed, which is a 

computationally expensive process. The first step is to prepare input matrices (i.e., the 

alignments) for building the sampled trees, which is a simple task conceptually and 

computationally. The second task is to generate the N ⋅ R trees, where N is the number of taxa in 

the original tree and R is the desired level of replication (in our case, 144 ⋅ 50 = 7,200). 

Assigning nodal stability scores to every node using TANOS is computationally tractable. The 

implementation details will be provided after the preparatory steps are described. 
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2.2.1 Subsetting Alignments 

Creating subset copies of the original alignment file (the input to the software used to 

create the tree) will vary depending upon the original file format and desired output file format. 

The sample Insect and related Arthropod alignment file we downloaded from Misof et. al (2014) 

was in PHYLIP format. Our script to parse an alignment in PHYLIP format and create new 

subsets in FASTA format is available with the TANOS code on GitHub. It will create N new 

files, each named after the taxon that has been removed to have N-1 taxa in each alignment, 

where N is the number of taxa in the original alignment. PHYLIP format is trickier to parse than 

other formats as it is designed to be more human readable than machine readable. For record-

centric formats (e.g., FASTA), the following pseudocode describes the process: 

# parse the input file 

name_to_sequence_map = {} 

input_file = open("some_name.txt ", 'w') 

for record in input_file: 

 name_to_sequence_map[ record.name ] = record.sequence 

input_file.close() 

  

# loop through each of the taxa, creating an output file for each 

for name_to_exclude in name_to_sequence_map.keys(): 

 # write the output alignment without the taxon name_to_exclude 

 output_file = open(name_to_exclude + ".fa ", 'w') 

 for name in name_to_sequence_map.keys(): 

        if name != name_to_exclude: 

              sequence = name_to_sequence_map[ name ] 

              output_file.write('>' + name + '\n ' + sequence + '\n 

') 

 output_file.close() 

 

For PHYLIP format, the pseudocode looks like the following: 

# parse the input file 

input_file = open("some_name.phy", 'r') 

  

# process first line 

num_taxa = input_file.getFirstLine().num_taxa 

names = array[num_taxa] 

sequences = array[num_taxa] 
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# process first section 

section = input_file.getFirstAlignmentSection() 

for i in range(num_taxa): 

 line = section.getNextLine() 

 names[i] = line.name 

 sequences[i] = line.sequence 

  

# process remaining sections 

for section in input_file.getRemainingAlignmentSections(): 

 for i in range(num_taxa): 

     line = section.getNextLine() 

        names[i] += line.name 

        sequences[i] += line.sequence 

input_file.close() 

  

# loop through each of the taxa, creating an output file for each 

for i in range(num_taxa): 

 name_to_exclude = names[i] 

 # write the output alignment without the taxon name_to_exclude 

 output_file = open(name_to_exclude + ".fa ", 'w') 

 for j in range(num_taxa): 

        name = names[j] 

           if name != name_to_exclude: 

                  sequence = sequences[j] 

                  output_file.write('>' + name + '\n ' + sequence 

+ '\n ') 

 output_file.close() 

 

Of course, instead of subsetting the alignment, one could generate entirely new alignments. This 

could further mitigate the influence of any given taxon on the resulting trees, at the cost of 

increasing computational requirements. 

 

 2.2.2 Generating Trees 

The primary tree was built with IQ-TREE v1.6.12 (Nguyen et al. 2015), and model 

selection (Kalyaanamoorthy et al 2017) resulted in GTR+F+I+G4. This same model was used as 

input to IQ-TREE for each of the 7,200 jackknife trees to avoid the extra computation of model 

selection for every tree. Of course, IQ-TREE could be substituted for any other software package 

preferred by someone seeking to perform a similar analysis. The command to perform model 

selection is the following: 
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iqtree -nt ${THREADS} \ 

 -mem ${MEMORY}G \ 

 -s ${INPUT_ALIGNMENT} \ 

 -pre ${OUTPUT_PREFIX} \ 

 -m TESTONLY 

  

The command to generate the primary tree and subsequent trees was structured like the 

following: 

iqtree -nt ${THREADS} \ 

 -mem ${MEMORY}G \ 

 -s ${INPUT_ALIGNMENT} \ 

 -pre ${OUTPUT_PREFIX} \ 

 -m ${MODEL} 

 
In our case, all jobs were provided 16GB of RAM and 24 threads; each job finished in 

less than four days. Generating a single tree is a simple computational problem and can be 

finished in a day. However, generating thousands of trees, each requiring resources and a few 

days of computation, requires access to a compute cluster. 

Job management was done with a pipelining software and is available with the TANOS 

code on GitHub. It relies on the checkpoint file created by IQ-TREE, which is how IQ-TREE 

keeps track of its own progress across multiple runs if it is killed early. In effect, a job is 

submitted if either no checkpoint file exists, or the file reports the analysis was not yet 

completed. When all jobs are terminated, rerunning the script will attempt any job without a 

checkpoint file, this is repeated until no new jobs are started and all analyses have a generated 

checkpoint file. At this point, all trees are successfully created. 

 

2.2.3 Calculating Nodal Stability 

Once the jackknife trees are generated, TANOS is able to calculate stability scores for 

each node in the primary tree. The software is implemented in Python v3.6+ (https://python.org) 

and is available on GitHub (https://github.com/pickettbd/TANOS) and the Python Package Index 
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(https://pypi.org/project/tanos). As input, TANOS requires the primary tree, the jackknife trees, 

and a text file providing a mapping of taxon names to file paths with trees built without that 

particular taxon. As output, it writes to file the tree with nodal stability scores. In our primary test 

case, it was able to calculate the scores for a tree with 144 taxa, which included evaluating the 

7,200 trees with 143 taxa each, in a few minutes using a single thread. 

The score is given individually to each node and is bounded by [0,1], where 0 and 1 

respectively denote that no and all jackknife trees contain the same node. The score is the 

average frequency of occurrence of the node in the jackknife trees, counting the node as present 

if a node exists with the same taxa minus the taxon removed for that jackknife. The score for a 

given node can be described formulaically: 

1

𝑛
∑

1

𝑟
∑ 𝑓(𝑁𝑖, 𝐽𝑖𝑗)

𝑟

𝑗=1

𝑛

𝑖=1

 

Where N is the set of taxa of length n under the node in question from the primary tree 

with Ni denoting the subset of N without i, J is a set of jackknife trees with Ji denoting a set 

containing r replicates of trees made without taxon i and Jij denoting the j-th replicate tree made 

without taxon i, and f(Ni, Jij) is a function yielding 1 if and only if Ni exists in Jij, 0 otherwise. 

Pseudocode for visiting each node in a primary tree and assigning a score is demonstrated here: 

# parse the primary tree 

main_tree = Tree("primary.nwk ") 

  

# parse the taxa_to_trees mappings file and other tree files 

taxa_to_trees = {} 

mappings_file = open("mappings.tsv ", 'r') 

for record in mappings_file: 

 if not record.taxon in taxa_to_trees: 

        taxa_to_trees[ record.taxon ] = [] 

 taxa_to_trees[ record.taxon ].append( Tree(record.path) ) 

mappings_file.close() 
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# calculate score for each node 

for node in main_tree.internal_nodes(): 

 if main_tree.isRoot(node) or node.hasNoGrandchildren(): 

        node.score = 1 

 else: 

        score = 0 

        taxa_set = node.getAllLeavesBelowMe() 

        for taxon in taxa_set: 

              count = 0 

              jackknife_taxa_set = taxa_set – set(taxon) 

              for tree in taxa_to_trees[ taxon ]: 

                     if tree.containsClade(jackknife_taxa_set): 

                           count++ 

              score += count / length(taxa_to_trees) 

        score /= length(taxa_set) 

        node.score = score 

  

# write output tree with node scores 

output_file = open("output.nwk "), 'w') 

main_tree.writeTreeWithScores(output_file) 

output_file.close() 

 

3. RESULTS 

3.1 Computation 

TANOS generates a single annotated tree as an output. The output tree is written in 

Newick format (https://evolution.genetics.washington.edu/phylip/newicktree.html), and multiple 

modifications to the Newick tree are possible via command-line options. By default, the score is 

placed in a comment for each node. Instead of placing the score in a comment, the score can be 

output in place of the branch length or label for a given node. For convenience, other output 

formats are supported with command-line options: compact or pretty-printed JSON 

(https://www.json.org) and Mermaid format (http://mermaid-js.github.io/mermaid). Functions 

for outputting a tree in ASCII art are built into the Tree class, making it relatively simple for 

someone to extend TANOS to output this format as well. Modifying the code that outputs JSON 

format to output customized JSON or XML (https://www.w3.org/TR/xml) would be relatively 
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straightforward, e.g., if a favorite tree imaging software accepted phyloXML (Han and Zmasek 

2009) TANOS could be modified to output in this format. 

 

3.2 Case study in higher level classification of Insects 

The sample dataset, Misof et al. (2014), contained 144 hexapod taxa and analyzed 1,478 

protein-coding genes; to date this remains the most comprehensive phylogeny and widely used 

insect classification. Published topologies were overall highly-supported at ordinal and higher 

taxonomic levels (Fig. 1, Misof et al. 2014). Misof et al. (2014) report 92% of nodes with a 

Bootstrap value of >98. In phylogenetics, standard Bootstrap values are generated from a random 

resampling of the data. TANOS values are generated from a systematic, non-random resampling 

of taxa. Thus, a direct comparison between Bootstrap and TANOS is difficult. Nonetheless, it is 

possible to compare well supported and less supported nodes between the approaches over the 

Misof et al. (2014) topology, therefore learning additional information about the topology that is 

not possible with a character bootstrap. Calculated TANOS values show less stability overall, 

with 74.6% of ordinal or higher taxonomic nodes >0.98, and 82.6% of nodes >0.75 (Figure 1). 

This disagreement was the clearest in two areas of the topology, the Polyneoptera and the sister 

groups to Holometabola.  

The overall weakest TANOS values were found along the backbone for Polyneoptera. 

Seven of the eight nodes depicting relationships between Polyneoptera orders were recovered 

with TANOS scores of <50%. These nodes are specifically sensitive to the removal of a single 

taxon from the alignment. Further, the polyneopteran clade was shown to be quite variable given 

even minor changes to the included taxon sampling.  
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Some deep nodes were also shown to be less robust than the bootstrap support values 

would suggest. Specifically, nodes “104” and “105” (Misof et al. 2014, Fig 1) were again both 

recovered with >98% BS but were recovered with TANOS values ~0.46 demonstrating that the 

taxon sampling is lacking in these areas leading to instability at evolutionarily important deep 

nodes. These nodes are of specific importance because they depict the sister group to 

Holometabola (arguably one of the most successful lineages of life on Earth).  

 

4. DISCUSSION 

4.1 Case Study 

Recently, molecular phylogenetics has grown from single molecular marker datasets to 

multiple targeted gene regions from Sanger technology to full transcriptome, genome, and/or 

targeted enrichment probe sets for 100s of genes that result in alignments of millions of base 

pairs (e.g., Cloutier et al. 2019, Misof et al. 2014, Prum et al. 2015). As this transition to 

genomic datasets has occurred, there has been much less of a focus on taxon sampling breadth, 

likely due to the obvious increase in resources required to sequence and analyze genomic scale 

datasets.  

Nodal support as a means of assessing phylogenetic relationships has long been 

controversial and bootstrap values have been specifically criticized since their first usage in 

phylogenetics (Sanderson 1995, Soltis & Soltis 2003). Genomic level phylogenies have further 

exposed problems with nodal support, such as consistent maximal bootstraps (e.g., Brower 

2019). We propose TANOS as a tool for the genomics era that can assess nodal stability in 

relation to taxon sampling rather than “support” at the node based on data agreement. This 

important distinction allows the researcher to access how stable the nodes are across a topology 



www.manaraa.com

 220 

to the taxa sampled. Specifically, this tool identifies weak areas that might be very sensitive to 

even minor changes in taxon sampling.  

Using TANOS, several well resolved and highly supported nodes from Misof et al. 

(2014) were shown to be less robust than traditional support metrics might have suggested. This 

is not demonstrating a methodological flaw in phylogenetic reconstruction, but clearly identifies 

the weakest nodes and weakest portions of the overall topology with respect to the taxon 

sampling. One of the goals of this tool is to direct future research by highlighting which clades 

may benefit from increased taxon sampling, directly impacting the accuracy and predictive 

power of a given phylogeny. Thus, allowing for more robust investigation and discussion of the 

many avenues a well-supported phylogeny allows. 

 

4.2 General implications 

The steady decline in usage of the jackknifing methods (whether character or taxon 

based) in phylogenetics (Felsenstein 1985, Lanyon 1985) over the last two decades is not 

necessarily due to theoretical flaws in the statistic (e.g., compared to the Bootstrap), but instead, 

driven by lower values as well as the lack of tools to implement with large datasets and more 

modern reconstruction methods. Many of the major issues given by Wrobel (2008) in an attempt 

to explain the disparity between usage of jackknifing and bootstrapping are in fact larger issues 

present across most phylogenetic analyses. He argued that taxa are not independent due to 

clusters formed during phylogenetic reconstruction, violating a basic statistical assumption. 

Molecular data are also not independent and therefore should not be subjected to these 

resampling techniques. Obviously, that has not prevented thousands of research papers doing so 

over the last few decades. Wrobel (2008) was also in agreement with both Farris et al. (1996) 
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and Oxelman et al. (1999) that these tools are exploratory and more directed approaches can be 

used to identify weaknesses in the data or taxon sampling. Wrobel also pointed out that 

jackknifing methods often give overall lower support values and is likely the reason the jackknife 

statistic was less popular among researchers. In a time when it has been demonstrated that larger 

and larger datasets inflate bootstrap values (Brower 2019), methods generating overall lower 

support or stability values might provide resolution in those cases. Zuo et al. (2010) argued that 

researchers were often restricted to bootstrapping instead of jackknifing due to limitations in 

sampling space. With the consistent growth of phylogenetic datasets (both molecular and 

morphological), this criticism may no longer apply.  

The taxon jackknifing methods discussed by Mariadass et al. (2012) and Denton et al. 

(2017) demonstrate that there is a place for these techniques in the phylogenomics era; however, 

we argue there is still a missing piece. In combining the traditional jackknife methods of nodal 

stability along with the adaptations of Mariadess et al. to apply the idea to maximum likelihood 

allows for a resurgence of these original methods to be used alongside other measures of support. 

Nodal support and stability metrics are important when using phylogenies in every way. 

It is obviously preferred when using a tree to make classification or systematics changes, asking 

evolutionary questions, mapping characters, reconstructing ancestral distributions, or any of the 

other diverse tasks researchers are currently using phylogenies for, that those nodes are “well-

supported”. That being said, we should be cautious of artificially inflated support values. Using 

multiple methods, both support and stability, is now more computationally possible than ever 

before. With character dataset size on the order of genomes and transcriptomes our assessment of 

stability and support needs to shift from robustness in changes to character sampling and instead 
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focus on taxon sampling. Utilizing taxon jackknifing is an informative method of assessing the 

effect of the included taxon sampling on a given phylogenetic hypothesis. 
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Figure 1. ML topology adapted from Misof et al. (2014) with originally reported bootstrap values (above nodes). 
In addition, computed TANOS values are provided (0-1, below nodes). 
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ABSTRACT 

Advancements in DNA sequencing technologies and genome informatics over the last 
several decades have swiftly progressed the study of genomes across the spectrum of life. The 
field is moving at a rapid pace, with changes to the technology causing the landscape of the field 
to alter significantly every few years. Keeping up with sequencing technology and its vast array 
of applications is a monumental challenge, especially for a single individual. In-depth reviews of 
specific topics, such as DNA sequencing platforms, graph-based assembly algorithms, and 
applications to various disciplines, are prevalent; yet, these reviews are often beyond the scope 
and interest of the average scientist wishing to utilize genomic data in their work. Nevertheless, 
many genomic analyses require genome assembly, which is a complicated and evolving process. 
This review and commentary aim to provide the necessary background on sequencing 
technologies, genome assembly methods, supplementary data types, and project planning 
considerations. Suggestions for new genome assembly projects are provided alongside 
bioinformatics best-practices and other recommendations. Additional reviews and resources are 
provided for interested readers. Our intention is to provide a simplified, yet thorough, primer for 
genome assembly to decrease the considerable barrier to entry for individuals and lab groups. 
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INTRODUCTION 

Thirty years have passed since the Human Genome Project (HGP) began and twenty 

years since the first draft of the human genome was published (International Human Genome 

Sequencing Consortium 2001; Venter et al. 2001). The resulting progress in all related fields of 

research has unquestionably been remarkable, even if the research and medical communities’ 

abilities to harness the promised power of the genome got off to a slower start than some 

anticipated (Nature Editors 2010). Detailed accounts of the HGP, including descriptions and 

examples of its impact, are well-described elsewhere (Lander 2011; Mardis 2011); one 

significant indicator of the impact that the availability of a reference sequence had is that it 

spawned entirely new fields. Researchers in these fields had to grapple with new challenges 

inherent to using data on a larger scale (Stein 2010), and, with time, genetic research 

methodologies expanded beyond single- or multi-gene studies to genome-wide analyses.  

In the wake of  the HGP, several model or evolutionarily-interesting organisms genomes 

were published (Mouse Genome Sequencing Consortium 2002; Rat Genome Sequencing Project 

Consortium 2004; Lindblad-Toh et al. 2005; The Chimpanzee Sequencing and Analysis 

Consortium 2005; Mikkelsen et al. 2007; Green et al. 2010), and they were a boon to both their 

own fields and our understanding of the human genome. Human microbiome function and 

diversity were analyzed (Gill et al. 2006; Grice et al. 2009), and common variants were identified 

for common diseases using genome-wide association studies (The Wellcome Trust Case Control 

Consortium 2007; Peter et al. 2012). Such analyses were made possible by the accessibility of 

the high-quality, continuously-updated human reference genome and the advent of massively-

parallel sequencing (MPS) technologies; the combination of which has rapidly reduced the cost 

to sequence new human genomes (Fig. 1). 



www.manaraa.com

 230 

As more individual genomes from human and other model organisms were sequenced, 

the power of the reference sequences in addressing previously-unanswerable questions inspired 

those who study non-model organisms, or who had other niche interests, to sequence genomic 

DNA from many diverse organisms. Indeed, a large and continuing increase in the number of 

genomes submitted to NCBI began around 2009 (Fig. 2). Nevertheless, budgets, sequencing 

technologies, library preparations, bioinformatics methods, and quality control procedures have 

often limited the quality of the genomes. For example, human contamination and incorrect 

assembly of genes are significant problems (Denton et al. 2014; Breitwieser et al. 2019). 

Subsequently, while improvements in assembly algorithms, available computational power, 

average read length, etc. have generally improved assembly statistics over time, high-quality 

assembly remains a difficult task with a high barrier to entry. 

As the affordability of sequencing genomes at scale continues to improve, more 

individuals and groups will seek to sequence the genomes of new organisms and redo the draft 

genomes of those previously attempted. The future utility of these genomes will depend to a 

great degree on their quality and accessibility in public databases, such as those in the 

International Nucleotide Sequence Database Collaboration (INSDC). To help protect the quality 

and utility of future genomes submitted to INSDC databases and reduce the barrier to entry to 

genome assembly, we present this report as a resource for individuals and labs seeking to begin a 

genome assembly project. Sequencing technologies and assembly methods will be briefly 

reviewed, and additional resources will be provided based on specific use-cases or interests. This 

report will focus principally on vertebrate genome assembly, though many principles remain the 

same for other groups – with special considerations being required for plant genomes that are 

complicated by introgression, high ploidy, etc. Practical lessons learned from dozens of genome 
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assemblies will be addressed in the discussion with the intent of answering common questions 

and avoiding unnecessary frustration. 

REVIEW OF LITERATURE 

The principal objective of genome assembly is to correctly and completely reconstruct 

the genetic sequence of a sample. In practice, the genetic sequences refer to the nuclear genome, 

possibly with the mitochondrial genome, from a multi-cellular sample; although, an assembly 

project could conceivably be focused on a targeted region of the genome and/or samples of 

mixed origin. Usually, a single organism is sequenced to represent a population or species, and 

the sample is often extracted from a single tissue (e.g., blood). This could cause issues for 

representing a population or species if the individual organism has significant genetic anomalies 

relative to other individuals, but the reduced complexity in the assembly process resulting from 

working with DNA from a single organism makes this worthwhile for now. Similarly, mosaicism 

could cause issues for accurate representation and possibly for the actual assembly process itself. 

These risks are generally expected in the assembly community, and a project requiring a truly 

representative sequence would be considered highly specialized. Indeed, a truly representative 

genome for humans has not yet been realized. Population-specific variants have been identified 

as part of several important projects (e.g., The International HapMap Project (The International 

HapMap Consortium 2010) and The 1000 Genomes Project (The 1000 Genomes Project 

Consortium 2015)), but work on a truly representative pangenome has begun only recently 

(Chaisson et al. 2020; Li et al. 2020). 

In an ideal world, one could isolate individual chromosomes from individual cells and 

sequence each end-to-end, quickly, with zero error. This theoretical ideal is unrealized because 

(a) it is difficult to get enough DNA from a single cell, (b) it is difficult to isolate whole 
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chromosomes in an automated fashion, (c) it is difficult to keep high molecular weight (HMW) 

DNA (i.e., whole chromosomes) intact, (d) current sequencing technology is unable to read 

stretches of DNA at chromosome length, and (e) current sequencing technology is unable to read 

DNA with perfect accuracy. Even if one could handle each of these limitations, assigning sets of 

chromosomes to the correct parent and/or ancestral genome complicates the process when 

dealing with nonhaploid assemblies. Due to these limitations, most genome assemblies have 

been pseudodiploid representations where identical regions were collapsed into a single 

sequence, and the variable regions either remained dually represented or were partially dropped. 

Recent advances in sequencing technology and associated computational methods have begun to 

enable partial pseudohaplotype separation during or after assembly (Guan et al. 2020; Cheng et 

al. 2021) or genuine diploid assembly (Garg et al. 2020). Nevertheless, the aforementioned 

limitations (a-e) do pose significant hurdles, such that even the HGP – despite its significant 

resources – has not truly been completed because several gaps still remain in each chromosome. 

To this end, the Telomere-to-Telomere (T2T) Consortium is seeking to sequence every 

chromosome from end-to-end for a human complete hydatidiform mole (CHM; Logsdon et al. 

2020b; Miga et al. 2020). The complete genome is expected to be published in late 2021, but this 

monumental effort has required the time, minds, and resources of hundreds of people from a 

dozen institutions. Without such an investment, the average lab or individual can expect any new 

assembly to fall far short of a T2T assembly until technology improves, software is created, and 

expert manual curation is automated. In the meantime, reasonably high-quality genomes can be 

produced by non-experts, and these imperfect genome assemblies are still incredibly useful. To 

better understand the utility and limitations of current assembly approaches, consider how 

genome sequencing and assembly has progressed over time. 
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A (Very) Brief History 

Initial approaches to assembly proceeded in a step-wise fashion (i.e., primer walking) in 

which a primer was designed based on a known sequence and the next portion of DNA could not 

be determined until a primer could be designed based on the previous portion (Sanger 1975). 

This was computationally trivial and could be done by hand, but it was extremely time intensive. 

Genome assembly at this time was effectively done manually by adding newly synthesized 

sequence to the end of previously determined sequence; it was no more complicated than “copy-

and-paste”. Shotgun sequencing (Staden 1979) – breaking DNA into many smaller pieces to be 

sequenced individually – paved the way for higher throughputs, but required significant 

computational efforts because assembly could no longer be done by hand (Simpson and Pop 

2015). In this light, the term “assembly” can be somewhat confusing. In a general sense, 

“assembling” a genome refers to the overarching process of reconstructing genomic sequences 

correctly and completely. With the advent of shotgun sequencing, “assembly” sometimes holds a 

narrower definition (i.e., “computational assembly”) in which smaller sequences are merged at 

areas of overlap to form longer, continuous sequences called contigs. Other steps in the overall 

assembly process are given distinct names (e.g., gap-filling and scaffolding). For the duration of 

this report, the verb “assembly” will refer exclusively to “computational assembly”, and 

“genome assembly” will refer to the overarching process. 

Recent advances in shotgun sequencing chemistry and technology, together with 

advances in algorithms and computational power, have radically reduced the cost and effort 

required to generate a genome assembly and subsequently ushered in the next generation of 

genome sequencing (i.e., next- or second-generation sequencing) and approach to genome 
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assembly. The so-called second- or next-generation sequencing (SGS/NGS) approach uses short 

reads (e.g., Illumina), usually paired-end (PE), as a source of low-error sequence data which is 

then used in combination with longer range sequence or other data (e.g., generated by mate pair 

(MP) libraries, long reads, physical maps, linkage maps, etc.) to fill the gaps between contigs 

(computationally-assembled reads), correct misassemblies, and order and orient contigs into 

scaffolds. The details of NGS are described in detail in the subsequent section.  

 

Short Read Sequencing and Assembly 

NGS technologies use a variety of approaches to sequence reads (segments of DNA) in a 

massively parallel, high-throughput manner. Read lengths vary by platform, but they are <50-

600 nt (usually 100-250 nt), compared with Sanger-based sequences in the range 400-900 nt 

(Pettersson et al. 2009; Liu et al. 2012; Loman et al. 2012; Quail et al. 2012; El-Metwally et al. 

2013; Fierst 2015). Most errors from NGS platforms are single-base substitutions, with a low 

error rate at ~1%. This is higher than Sanger based-sequencing at approximately 0.1%, though 

Illumina (San Diego, California, USA) error rates do closely resemble Sanger-based sequencing 

with an error rate of <0.1% (Pettersson et al. 2009; Liu et al. 2012; Quail et al. 2012; Fox et al. 

2014; Fierst 2015). Additionally, short read sequencing platforms are subject to various biases, 

e.g., change in error rate based on position in the read (Dohm et al. 2008; Fierst 2015) and failure 

to sequence regions with high guanosine/cytosine (GC) content. While the read length and error 

properties are not as desirable as traditional Sanger-based sequencing, the improvements in 

throughput have reduced the cost of sequencing per megabase by four orders of magnitude 

(Sanger and Coulson 1975; Sanger et al. 1977; Liu et al. 2012; Fierst 2015). 
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Provided that sequencing was performed to sufficient coverage of the genome, the reads 

can be assembled de novo into contiguous sequences (contigs) using computer algorithms. Such 

algorithms are complicated; indeed, the assembly problem requires exploring an exponential 

number of possibilities to guarantee the optimal solution (Räihä and Ukkonen 1981; Nagarajan 

and Pop 2009; Kingsford et al. 2010). Furthermore, data storage, computational resources, and 

bioinformatics expertise are non-trivial considerations for any prospective sequencing and 

assembly project.  The most common class of algorithms for short read assembly is based on de 

Bruijn graphs. In short, the sequenced reads are broken into overlapping k-mers (i.e., k-length 

subsections of the read overlapping by one base pair (bp)), which form vertices in the graph. 

Edges connect those k-mers that overlap, enabling the algorithms to “walk” through the graph to 

output contigs. Differences between assembly software packages lie in graph traversal, statistics, 

bubble resolution, error detection, etc. The fundamental , at least in theory, is that the original 

sequence is reconstructed because the reads (and the k-mers they are decomposed into) overlap. 

Assembly fails to correctly reconstruct the real sequence when it places reads in the 

incorrect order (i.e., misassembly) or when it cannot determine the sequence at all (i.e., gaps). 

Gaps can be caused by insufficient coverage and inherent systematic sequencing biases or by 

repeats that are longer than the read length (Mulyukov and Pevzner 2002; Nagarajan and Pop 

2009). Misassemblies and gaps occur frequently in most genome sequencing and assembly 

projects, resulting in fragmented assemblies with short contig N50 (the length of the contig 

where 50% of the contigs are longer (International Human Genome Sequencing Consortium 

2001)). While a fragmented assembly of relatively low quality (e.g., N50 of <1 mb) is sufficient 

for some applications, a more contiguous, reliable assembly would always benefit these 

applications – indeed, many applications require it. Thus, short read sequencing alone is 
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insufficient for genome assembly, despite its high throughput and low cost (Alkan et al. 2011; 

El-Metwally et al. 2013; Mak et al. 2016). 

Several methods exist to overcome the limitations of short read sequencing for genome 

assembly. Sanger-based sequencing can be used in a targeted fashion to fill gaps (Schatz et al. 

2010). Some companies, such as Oxford Nanopore Technologies (ONT; Oxford, England, UK) 

and Pacific Biosciences (PacBio; Mountain View, California, USA) have developed single-

molecule approaches that generate long reads, up to 10-30 kb (Karlsson et al. 2015; Rhoads and 

Au 2015; Jiao et al. 2017). Longer reads provided more unique sequence and were expected to 

be a significant boon to assembly by spanning repeats; however, some repeats are still be too 

long to bridge by reads of this length (Jiao et al. 2017). Originally, such reads were used 

primarily as a source of long-range information for scaffolding and gap-filling, but assembly 

algorithms have since been developed to try to harness the relatively high read-length in the 

computational assembly step itself. The principal difficulty with these longer read technologies 

was the relatively high error rate of 10-15% (Rhoads and Au 2015; Jiao et al. 2017), coupled 

with a much different error profile than Illumina reads. Several genome projects took a combined 

approach and used short reads to mitigate errors in the long reads, but as of the mid-2010s, the 

cost of long-read sequencing was still prohibitive for most projects (Quail et al. 2012; Rhoads 

and Au 2015). These long-read sequencing technologies did eventually usher in a third 

generation, but reference-guided assembly, scaffolding with short reads, and pseudo-long reads 

will be addressed first as they are more timeline-appropriate topics. 

 

Reference-guided Assembly 

To aid in the overall genome assembly process, one potentially helpful source of data is 

the genome of another organism with shared evolutionary history, the more closely related, the 
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better. Reads, contigs, and/or scaffolds can be aligned to the related reference genome, guiding 

further joining, ordering, and orienting of contigs and scaffolds. This approach is sometimes 

called reference-guided and has been employed several times (Schneeberger et al. 2011; Hirsch 

et al. 2014; Yao et al. 2015; Golicz et al. 2016). Various software packages have been developed 

to complete these tasks (e.g., Bao et al. (2014) and Silva et al. (2013)), often with varying 

purposes, such as using more than one related genome (Kolmogorov et al. 2014; Bosi et al. 

2015), not requiring a tree specifying the relationships (Bosi et al. 2015), or scaffolding contigs 

created from ancient, degraded DNA (Rajaraman et al. 2013). Of course, this method relies 

heavily on assumptions about and hypotheses of (possibly incorrect) shared evolutionary history, 

which could lead to an incorrect assembly. Another similar method, also relying on presumed 

homology, uses protein sequences for comparison, instead of the nucleotide sequences (Huang et 

al. 2013; Zhu et al. 2016). 

 

Scaffolding with Mate Pair Libraries 

After assembling reads into contigs, the next major step was typically ordering and 

orienting the contigs into scaffolds (two or more contigs joined together in the correct orientation 

and separated by a run of ambiguous or unknown nucleotides (Ns)). This technique, often 

referred to as scaffolding, usually relies on information that is longer in range than the read 

length used for assembly. It would then use some kind of mapping information to associate 

contigs together when one end of the longer-range information source mapped to one contig and 

the other mapped to a second contig. In the era of short read-based genome sequencing and 

assembly, a common approach to scaffolding was mate pair (MP) libraries. A MP library 

produces results similar to sequencing with a paired-end (PE) library, but with a few key 

differences. PE and MP libraries produces reads in different orientations (Glenn 2011). 
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Additionally, PE libraries typically have short inserts (<500 bp), while MP libraries can have 

much longer insert sizes (e.g., 20 or 25 kb) (van Heesch et al. 2013). Thus, the benefit of MP 

libraries is that they provide a source of long-range information to assist in ordering and 

orienting contigs.   

Many sequencing projects have included MP libraries in their sequencing projects. The 

best results are obtained when using multiple MP libraries with varying insert sizes. Ideally, a 

project will utilize at least one library with medium length (e.g., 5, 8, or 15 kb) and one with 

large length (e.g., 20 or 25 kb) inserts; however, using more than one of each was a common 

approach (Schatz et al. 2010; Gnerre et al. 2011; van Heesch et al. 2013). While MP libraries do 

provide a source of fairly long-range information (say 25 kb compared to read length of 150 bp), 

the reads are themselves still short and some may not align uniquely in the genome – making 

these scaffolding decisions ambiguous. 

Incorporating information generated using MP technology into an assembly is 

computationally intractable (Huson et al. 2002), requiring additional algorithms than what the 

typical assembler could initially do. Some assemblers have included scaffolding modules directly 

into their assembly process (e.g., (Simpson et al. 2009; Gnerre et al. 2011; Luo et al. 2012; 

Simpson et al. 2012; Nurk et al. 2013; Jackman et al. 2017)), but beginning with Bambus (Pop et 

al. 2004), stand-alone programs were developed, supporting a more modular approach to 

assembly and scaffolding (e.g., (Assefa et al. 2009; Simpson et al. 2009; Dayarian et al. 2010; 

Boetzer et al. 2011; Gao et al. 2011; Koren et al. 2011; Salmela et al. 2011; Gritsenko et al. 

2012; Donmez and Brudno 2013)). Naturally, some are for specific use cases, such as 

metagenome scaffolding (Koren et al. 2011). Hunt, et al. provide a helpful review of scaffolding 

methods and software through 2014 (Hunt et al. 2014). Several additional scaffolders were 
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subsequently released (Kajitani et al. 2014; Lindsay et al. 2014; Sahlin et al. 2014; Bodily et al. 

2015; Farrant et al. 2015; Mandric and Zelikovsky 2015; Rahman and Pachter 2016; Luo et al. 

2017). 

MP technology improved the contiguity of SGS genome assemblies, and scaffolding 

software and algorithms using MP data continued to improve. Yet, some regions of the genome 

were still unresolvable because some repeats remain too long to be determined, even with long 

insert size libraries (Alkan et al. 2011; van Heesch et al. 2013). Since MP sequences are just PE 

sequences with a different library preparation, the reads share the same biases as those generated 

by standard PE sequencing. Furthermore, generating many different libraries with varying insert 

sizes requires additional DNA and is expensive and time consuming. Ultimately, other sources of 

long-range data alongside or replacing MP data is required to generate high-quality genomes 

with near-chromosome size pseudomolecules. Development of scaffolding programs has 

continued, but most have shifted focus to utilizing other sources of long-range information for 

the scaffolding of assemblies based on long-reads. 

 

Scaffolding with RNA-seq Libraries 

RNA-sequencing (RNA-seq) uses HTS capabilities (typically Illumina PE) to sequence 

cDNA created with reverse transcriptase from RNA. Note that amplification-free methods are 

possible on TGS platforms (Garalde et al. 2018), and they can sequence entire transcripts end-to-

end. PacBio IsoSeq is a very popular choice for this technique and is a better choice than 

Illumina-based RNA-seq for most situations, provided the project has sufficient budget. Before 

long-reads became widely used for DNA or RNA, short reads were the standard. Commonly, 

mRNA is targeted for RNA-seq; a common application of which is differential gene expression 

studies. Although a few years old, the review by Wang et al. (2009) is a helpful review of the 
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purpose and technology of RNA-seq. From a genome assembly standpoint, RNA-seq is 

indispensable as an annotation tool (Yandell and Ence 2012). Considering that PE reads may 

appear on different exons, RNA-seq data also provides a source of long-range information – 

possibly enabling the merging of contigs together. 

A few software tools have been written for this purpose, with somewhat varying usage 

possibilities.  The RNAPATH module of ERANGE (Mortazavi et al. 2008) was created to 

demonstrate using RNA-seq data as long-range data for scaffolding and did so on the genome of 

a Caenorhabditis nematode, nearly doubling supercontig N50 (Mortazavi et al. 2010). Using an 

algorithm relying on BLAT (Kent 2002) for local alignments, L_RNA_scaffolder demonstrated 

similar results on human, pearl oyster, and zebrafish genomes (Xue et al. 2013).  First, however, 

L_RNA_scaffolder requires the user to generate a de novo transcriptome assembly. TGnet also 

relies on transcript assemblies, but additionally requires manual inspection with their visualizer 

(Riba-grognuz et al. 2011). Algorithmically similar to RNAPATH, AGOUTI will update the 

annotations for the genome it is scaffolding (Zhang et al. 2016). While convenient for updating 

an old genome assembly and associated annotations, this is a limitation for new genome 

assembly projects that do not have annotations and/or prefer to annotate after the assembly is 

complete. Rascaf appears to improve upon these other methods by using a new algorithmic 

approach: an exon block graph to represent gene and contig relationships (Song et al. 2016). 

Rascaf does not depend on pre-existing annotations. Furthermore, it avoids expensive de novo 

transcript assembly by tools such as Trinity (Grabherr et al. 2011; Haas et al. 2013) by directly 

aligning the reads to the assembly. 

Scaffolding a genome assembly (including possibly updating any pre-existing 

annotations) with RNA-seq data was a great idea, especially considering a many genome 
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assembly projects would have already been doing quality RNA-seq anyway for annotation. Yet, 

it was insufficient as a sole source of long-range information because it could join only contigs 

that would be separated by an intron. Naturally, many contigs do not meet this criterion. As other 

sources of long-range information for scaffolding have become widely available, RNA-seq has 

fallen out of favor for scaffolding – short-read RNA-seq is still a reasonable choice for 

annotation purposes. Scaffolding with RNA-seq is best used for updating short-read-based draft 

assemblies; when used with long-read-based assemblies, it is prone to introducing incorrect 

scaffolding joins. Spurious joins resulting from non-unique mapping of reads due to the 

similarity of genes are not worth the benefit of the correct joins for long-read-based genome 

assembly projects. 

 

Synthetic Long Reads 

One method for generating increasing read length relies on short read sequencing to 

create so-called read clouds or synthetic long reads (SLRs). The underlying sequencing 

technology is classic SGS. The real difference comes in the library preparation, in which the 

sample is separated into discrete reactions that occur simultaneously. After each pool is 

barcoded, the entire sample is sequenced. The barcoding enables recognition of which reads 

belong to the same subsection of the genome, enabling assembly of each subsection 

(subassembly) before using these "long reads" for the main assembly. The most notable 

commercially available read cloud option was offered by 10X Genomics (10XG). Their library 

preparation employed GemCode™ technology and could be completed in an extremely high 

throughput manner for minimal cost (Goodwin et al. 2016; Crepeau et al. 2017). 10XG referred 

to their reads as "linked-reads", differentiating them from the SLRs generated by Illumina's 

TruSeq-SLR™ (TSLR) (Voskoboynik et al. 2013; McCoy et al. 2014; 10X Genomics 2016). A 
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similar, lower-throughput technology that pools the genome into only 9,126 (962) pools is 

contiguity-preserving transposition sequencing (CPT-seq) (Amini et al. 2014). CPT-seq reads 

(Adey et al. 2014), TSLR (Kuleshov et al. 2015; Pinoli 2015; Sharon et al. 2015; Kuleshov et al. 

2016; Tsai et al. 2016), and 10XG linked-reads (Mostovoy et al. 2016; Crepeau et al. 2017; 

Jackman et al. 2017; Weisenfeld et al. 2017; Yeo et al. 2017; Hulse-Kemp et al. 2018) have all 

been used to assemble, polish, and/or scaffold genome assemblies. In 2017, Illumina 

discontinued support for TSLR (Van Oene 2017), and 10XG did the same for their linked-reads 

in 2020 (10X Genomics 2020). Neither CPT-seq nor its updated single-tube protocol CPTv2-seq 

(Zhang et al. 2017) have been widely adopted, likely due to issues with throughput and out-of-

the-box compatibility with Illumina sequencing primers (Meier et al. 2020). 

Nevertheless, four new read cloud technologies have emerged: Complete Genomics’ 

(CG) single tube long fragment reads (stLFRs) (Wang et al. 2019), Droplet Barcode Sequencing 

(DBS) (Redin et al. 2017), Haplotagging (Meier et al. 2020), and Universal Sequencing 

Technology’s (UST) Transposase Enzyme Linked Long-read Sequencing (TELL-Seq™).DBS 

and Haplotagging are both open protocols with relatively low costs. Haplotagging in particular is 

inexpensive at <$3 per sample for haplotyping. As commercial products, both stLFR and TELL-

Seq are very new. When considering a project, especially when haplotyping many samples is 

required, both are worth considering if one wishes to avoid doing the lab work in-house. TELL-

seq specifically can theoretically do anything 10XG linked-reads could do. For certain 

applications for genome assembly, read cloud technologies are a reasonable choice, but most 

projects – especially if being tackled by a novice – should stick to true long reads because of the 

problems associated with read cloud assemblies. 
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One drawback with read cloud approaches is that they produce shorter "long reads" than 

true long reads – precluding them from resolving even more tandem repeats than the long read 

platforms can (Kuleshov et al. 2016). Of course, the benefit is the extremely low cost when 

compared with true long read technologies. Supplemented with additional long-range 

information, such as optical mapping or chromosome interaction maps, read cloud data was 

hypothesized to be sufficient for high-quality assembly (examples and discussion of this in later 

sections). Since true long reads also need longer-range data (e.g., optical mapping) to resolve 

some genomic features, read cloud technologies were an attractive option when compared with 

PacBio or ONT sequencing for many assembly projects. While some very impressive assemblies 

were created, at least in part, with read cloud approaches (primarily 10XG linked-reads), the 

typical project will see low- to mid-quality assemblies as a result. 

One contributing factor to this is that few software packages have been developed for 

assembling and scaffolding genomes using read clouds. fragscaff (Adey et al. 2014) was initially 

developed for CPT-seq, but has also been used with read clouds from another platform (10XG) 

to re-scaffold the sugar pine genome (Crepeau et al. 2017). Architect (Kuleshov et al. 2016) was 

built to scaffold metagenomes and pooled sequences. It employs an interesting algorithmic 

approach to reduce the expense of subassembly: using a de Bruijn graph approach (Pevzner et al. 

2001) for each pool / container and an Overlap-Layout-Consensus (OLC) approach (Myers et al. 

2000) to join the subassemblies. ARCS/LINKS (Yeo et al. 2017) boasts improved performance 

over both fragscaff and Architect with the ability to scale to large data sets (the other two cannot 

realistically be used for more than 250,000 sequences). It was the first software expressly 

developed for 10XG read cloud assembly, excluding 10XG's in-house, push-button assembler, 

Supernova (Weisenfeld et al. 2017). While not an assembler itself, LRez is the most recent read 
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cloud software, released as a C++ API and toolkit for the now discontinued 10XG linked-reads, 

but it promises effectiveness with at least Haplotagging and UST’s TELL-seq (Morisse et al. 

2021a). As long as read cloud technologies exist, genome assembly with such reads is likely to 

continue, as is bioinformatics development for needed tools. Despite the likelihood of working 

with read cloud technologies becoming increasingly easier, the reads are still far shorter than true 

long reads, which are unarguably a better choice for high-quality genome assembly. 

 

Long Read Sequencing and Assembly 

The "golden goose" of genome sequencing would be to sequence molecules end-to-end 

with low error. Certain single-molecule technologies get significantly closer to such read length, 

though none have successfully come close to tens or hundreds of megabases (the length of 

chromosomes). Examples of such "third-generation" sequencing (TGS) platforms are PacBio 

SMRT™ (Single-Molecule, Real-Time) and ONT MinION™. While ONT sequencing works by 

measuring electric signals that change as a single DNA molecule is passing through a 

nanochannel, PacBio SMRT sequencing works by putting a single DNA molecule in a tiny well 

called a zero-mode waveguide (ZMW) and observing fluorescence as tagged nucleotides are 

incorporated by a polymerase. When TGS platforms were gaining popularity (~2015-2017), 

PacBio was generating reads in the 20-30 kb range (Karlsson et al. 2015), and ONT could 

reliably generate reads >10 kb (Urban et al. 2015), though some reported reads >100 kb 

(Goodwin et al. 2015; Madoui et al. 2015; Urban et al. 2015). The error rate for PacBio was 

more desirable than ONT (could be >30% (Goodwin et al. 2015; Madoui et al. 2015)), but both 

commonly had error rates of 10-15% (Rhoads and Au 2015; Jiao et al. 2017). Despite the error 

rates, long reads had been shown to be sufficient for genome assembly without additional data 
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types, especially in bacteria (Chin et al. 2013; Brown et al. 2014; Parker et al. 2014; Terabayashi 

et al. 2014; Berlin et al. 2015; Koren and Phillippy 2015; Badouin et al. 2017; Jansen et al. 

2017). 

One important aspect to understand of PacBio and Nanopore sequencing is the error 

profile. Where Illumina sequencing has an error type of systematically-biased single nucleotide 

substitutions at a rate of  <0.1% (Fox et al. 2014), these long-read technologies’ 10-15% errors 

were comprised of random insertions and deletions (indels). The two companies’ products have 

since diverged enough that a separate discussion of each is warranted, but only after a discussion 

of the effect that “noisy” (i.e., relatively erroneous), long-reads have computational assembly. If 

noisy reads were dropped into a traditional assembler, especially a de Bruijn graph assembler, 

the errors would wreak havoc by creating excessive tangles in the graph. In practice, this would 

yield to an assembly with many contigs and low N50. To avoid this, the noisy reads need to be 

corrected. Correction can happen in one or both of two ways: (a) self-correction by calling 

consensus on all-vs-all alignments of the reads or (b) hybrid-correction using highly-accurate, 

short-read data. Hybrid-correction can be further broken down into alignment-based methods and 

assembly-based methods. Alignment-based methods work by calling consensus on alignments of 

all short reads to all long reads. Assembly-based methods work by assembling the short reads 

into a de Bruijn graph and correcting the long reads either by alignment to the contigs or by 

direct graph traversal. These processes are extremely expensive from a computational standpoint, 

often taking more CPU (Central Processing Unit) hours than the assembly of the corrected reads. 

(Zhang et al. 2020) 

 

Oxford Nanopore Technologies Reads 
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ONT’s long-reads commonly remain between 10-100 kb but have a much-improved 

accuracy of 87-98% for most reads (a small percentage of reads have relatively low accuracy at 

around 69%) (Logsdon et al. 2020a). Additionally, 91% of homopolymers ≥5 bp in length are 

accurately captured in the raw reads. Both of these error rates are lower than the error rates for  

PacBio’s raw reads, although PacBio does not have a small percentage of reads at very low 

accuracy like ONT does. Where ONT data really shine for genome assembly are with a special 

library preparation now termed “ultra-long”. By definition, these reads are mostly >100 kb and 

share an error profile very similar to the regular long reads. A subset of ultra-long reads, called 

“whales”, exceed 1 mb, with the current record exceeding 2 mb (Jain et al. 2018; Logsdon et al. 

2020a; Miga et al. 2020). Such reads are four orders of magnitude longer than modern short 

reads. Understandably, this length is an immense help for assembly and gap filling; in fact, they 

have been instrumental in the T2T Consortium’s efforts on the CHM genome (Logsdon et al. 

2020b; Miga et al. 2020). 

ONT’s chemistry and hardware are under active development. Their first machine was 

the MinION, which has a single flow cell and can be run attached to a laptop from anywhere on 

earth. While this has some incredible applications, it suffers from low throughput. ONT has since 

released the GridION and PromethION as more high-throughput options, but they are still 

limited by the speed that the nanopore’s molecular motor can process a DNA molecule. In 

essence, the GridION is made of MinIONs combined into blocks, and the PromethION is, in 

turn, a collection of GridIONs. Ultra-long read libraries currently take two or more weeks to 

prepare and run, though future developments to decrease this time requirement are likely 

(Logsdon et al. 2020a). 
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Pacific Biosciences Reads 

PacBio’s primary instrument was the RSII (RS2), but it has subsequently upgraded 

through the Sequel and Sequel II (2) to the Sequel IIe (2e). Chemistry and throughput have 

improved dramatically to the point where a sequencing run with one SMRT Cell can generate 

8M reads in the time it once took to produce 1M. PacBio has branched its long-read offerings 

into two main categories: continuous long reads (CLRs) and High-Fidelity (HiFi) reads. 

 

Continuous Long Reads (CLRs) 

CLR reads are PacBio’s original sequencing technology. The error rates are marginally 

better than they once were (10-15%) at 8-15%. Unlike Nanopore reads, which can have a small 

percentage of reads with >30% error, PacBio CLRs all fit in the 8-15% range. Of the 

homopolymers 5 bp or longer, 85% are correctly recovered in the raw reads (compared to >90% 

for Nanopore reads). Like ONT long-reads, CLR reads have been used extensively in genome 

assemblies and have proven extremely useful in creating moderate- to high-quality assemblies. 

Because the error rates of CLR reads (and ONT reads) are so high, large and/or complex 

genomes require expensive high sequencing depth and/or a hybrid approach to correction, which 

is a significant downside to using such long reads in a genome assembly project. As such, some 

individuals have decided to use these long reads as a tool for only gap filling, localized 

reassembly, and/or scaffolding (Bashir et al. 2012; English et al. 2012; Koren et al. 2012; 

Boetzer and Pirovano 2014; Koren and Phillippy 2015; Rhoads and Au 2015; Warren et al. 2015; 

Zimin et al. 2017); however, the relative benefit of this approach is minimal compared to using 

the long reads directly in creation of the original assembly graph. 

 

High-Fidelity (HiFi) Reads 
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Where PacBio really shines for genome assembly is with its HiFi reads. HiFi reads are 

generated in the exact same manner as with CLR reads, except that the sequence is circularized 

to enable the polymerase to re-sequence the same molecule multiple times. Similar to how SLRs 

require a subassembly step for each barcoded set before the main assembly, each read output of a 

ZMW must be split and evaluated to form a single consensus read. This process of 

circularization, sequencing, and consensus calling to generate HiFi reads is called Circular 

Consensus Sequencing (CCS) and is sometimes used interchangeably with the term “HiFi”. HiFi 

read lengths are shorter than CLR reads because much of the sequencing time is being used to re-

sequence the same molecule. Due to this and size selection during library prep, HiFi read lengths 

typically have a very tight distribution, whereas CLR read length distributions usually have a 

long right tail. Initially, HiFi reads were 10-15 kb, but recent results are showing median read 

lengths above 15 kb with maximum read lengths approaching 30 kb (Hon et al. 2020). 

Despite the reduction in read length compared to traditional CLR reads, the increase in 

accuracy caused by consensus makes HiFi reads advantageous. The process of repeatedly 

sequencing the same molecule provides sufficient read depth to correct the random indel errors. 

Most importantly, the localities of the sequences are guaranteed; in other words, the multiple 

subreads (the sections extracted from the repeatedly-sequenced read after removal of primers and 

indexes) are always from the same distinct DNA molecule. As such, there is no chance of 

collapsing haplotypes, removing segmental duplications, removing a different gene in the same 

gene family, etc. through the consensus process. Accuracy varies between HiFi reads based on 

the length of the original DNA molecule and movie time (i.e., how long the sequencing reaction 

was allowed to proceed), but the majority has an accuracy at or above Q20 (i.e., 99.9% accurate) 

– the same quality as Illumina short reads and, as such, diminish the need for NGS reads directly 
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in assembly. Relatively few HiFi-based genomes have been fully published to date, but those that 

are show extreme promise for this datatype, especially when combined with other datatypes. 

Overall, HiFi reads are accurate and long enough to completely resolve human centromeres into 

one or a handful of contigs. Moreover, when HiFi reads are combined with other data types (as 

discussed later), the entire chromosome can be resolved into a single contig from telomere to 

telomere through the entire centromere (Logsdon et al. 2020b; Miga et al. 2020).  

 

Long-Read Assembly Software 

Assembly software has necessarily evolved rapidly over the last few years as 

“traditional” assemblers built for short reads were unable to handle the length and high error of 

long, noisy reads without modification. Understandably, a graph algorithm that expects 

effectively perfect reads (e.g., a 100 bp read at 99.9% accuracy has 0-1 errors) will not perform 

well with the messy tangles produced from noisy reads that are ~100 times more erroneous and 

at ~10-100 times longer. As was the case for short read assemblers like ABySS (Simpson et al. 

2009; Jackman et al. 2017), ALLPATHS (Butler et al. 2008; Ribeiro et al. 2012), the Celera 

Assembler (Myers et al. 2000), SOAPdevovo (Li et al. 2010), and Velvet (Zerbino and Birney 

2008), long-read assemblers all compete with each other and have differences in their 

performance, options, algorithms for bubble popping, etc. The assemblers that were created or 

modified to work with noisy, long-reads either use only long reads (typically pre-corrected (Fu et 

al. 2019; Morisse et al. 2020; Zhang et al. 2020)) or incorporate both long and short reads into 

the assembly graph. MaSuRCA (Zimin et al. 2013) can incorporate both types of reads, and 

Canu (Koren et al. 2017), PacBio’s HGAP/Falcon (Chin et al. 2013; Chin et al. 2016), miniasm 

(Li 2016), Raven (Vaser and Šikić 2021), wtdbg2 (Ruan and Li 2019; — 2020), and others use 
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only long reads. Commonly, these programs have slightly different parameters for PacBio CLRs 

and ONT reads. 

Since these long-read assemblers were created to handle noisy long-reads, they required 

updating – or new assemblers needed to be written – to handle HiFi data. Some assemblers 

folded them into the existing programs (e.g., Falcon (Wenger et al. 2019) and HiCanu (Nurk et 

al. 2020)), and others were entirely new or created off of forks of previous assemblers (e.g., 

hifiasm (Cheng et al. 2021) and Peregrine (Chin and Khalak 2019)). For the average person 

intending to use these softwares, the precise details of how they differ algorithmically are 

nonessential. Often, people will try assembly with more than one software and choose the one 

that looked the best. Many of these programs – especially for HiFi reads – are under active 

development, have limited validation, and/or have not yet been peer-reviewed. Accordingly, it is 

difficult to make a strong recommendation for one software over another, even for specific 

situations. Based on an observation of the community and reading assembly papers and 

preprints, my subjective recommendation would be to use Canu, miniasm, or wtdbg2 for CLR or 

ONT reads and HiCanu or hifiasm for HiFi reads. 

 

Diploid Assembly 

Some long-read assemblers are also beginning to address the diploid assembly problem. 

Two approaches are currently being explored: phasing and trio-binning. In some cases, a 

combination of both is employed, though the latter is still extremely new. Falcon_unzip (Chin et 

al. 2016) paved the way for phasing by extracting phased assemblies from the Falcon assembly 

graph. Similarly, hifiasm outputs a primary (i.e., the best set of paths through the graph to get a 

haploid representation of the genome) and an alternate assembly (i.e., everything leftover after 
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extracting the primary assembly). These are effectively a secondary program from the main 

assembler that will process the assembly graph, and similar standalone programs have been 

written, namely purge_haplotigs (Roach et al. 2018) and purge_dups (Guan et al. 2020). While 

some alternate assemblies can be fairly high in quality, most, by definition, lack the sequence 

that is shared between both haplotypes. The “haplotype 1” assembly (when generated) is the 

same as the primary assembly. The “haplotype 2” assembly (when generated) is a mixture of the 

primary and alternate assemblies; more specifically, it contains the parts from the primary 

assembly that are shared between haplotypes and the entire alternate assembly. Figure 1 from 

Cheng et al. (2021) provides a helpful illustration of the relationship between primary, alternate, 

and haplotype 1 and 2 assemblies. Additionally, “haplotype” in this case is more aptly termed a 

“pseudohaplotype” because there is frequent occurrence of haplotype switching. While this 

haplotype switching is unavoidable without additional information, methods to address this issue 

are beginning to be employed. 

By contrast, trio binning (Koren et al. 2018)makes use of parental information (i.e., for 

sexually reproducing organisms, trio = mother, father, and child) to sort the reads into bins: those 

that come from one parent and those that come from the other. Typically, a third bin is also 

produced when the read could not confidently be placed in a specific bin. Binning is based on 

sequence similarity and could theoretically be accomplished with traditional read mapping; 

though, a k-mer-based method is usually employed. Trio binning is not always possible because 

it requires DNA from both parents of the subject and additional funds for their sequencing; 

although, the cost of sequencing for the parents can be relatively low because short-read 

sequencing can be used. Noisy long-reads do not work very well for trio binning if using a k-mer 
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approach, but HiFi reads would work well. Canu/HiCanu and hifiasm (and possibly others) have 

options for using trio binning information.  

Another application of the trio binning concept is to trio bin data that will be used post-

assembly for polishing and/or scaffolding, though this idea has not yet been implemented 

anywhere to the authors’ knowledge. However, additional data types have been incorporated into 

assembly software to improve assembly and phasing. One example of this technique is dipasm 

(Garg et al. 2020), which uses chromosome conformation data (commercially available as Hi-C) 

with HiFi read assemblies. Currently, at least one group is exploring the incorporation of ultra-

long ONT reads into a HiFi read-based assembly graph to fill gaps, but this technique and other 

combinations represent the bleeding edge of the discipline. The use of Hi-C and other sources of 

long-range information to polish or scaffold assemblies as separate steps will be discussed in 

subsequent sections. 

 

Polishing Genome Assemblies 

“Polishing” typically refers to the correction of errors in an assembly after the assembly 

has been produced. Presumably, the assembly software has already attempted to resolve bubbles 

and address prospective misassemblies. Polishing software seeks to fix sequence errors (i.e., 

point mutations and indels), break misassemblies, and/or fill gaps. Generally speaking, polishing 

falls into two categories based on the type of information used for polishing: short and long 

reads. Fixing point mutations and indels in a genome assembly became particularly necessary 

during the pre-HiFi period of long-read genome assembling because the reads were noisy, 

resulting in errors in the contigs. In principle, polishing occurs by mapping reads (short or long) 
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to the contigs, followed by processing the mapping information to make decisions and outputting 

new polished contigs. 

The first widely-used short-read polishing software was Pilon (Walker et al. 2014). Pilon 

performs all types of polishing, but was, unfortunately, developed for microbial genomes and is 

unable to handle large genomes efficiently as the general rule is to expect 1 GB of RAM 

(Random Access Memory) for every 1 mb of sequence. While for microbial and bacterial 

genomes this generally is not an issue, it quickly becomes a problem for vertebrates and 

especially plants. For example, if a genome is 1 gb in size, Pilon would require approximately 1 

TB of RAM. The most popular replacement/substitute for Pilon is RaCon (Vaser et al. 2017), 

which is extremely efficient and has undergone intense optimization, including options to run on 

GPUs. RaCon is a general-purpose consensus module, meaning it cannot fill gaps or explicitly 

detect misassemblies, but it does work with both short (including MP) and long reads. RaCon 

could be used for noisy read correction before assembly as well. Similarly, CONSENT (Morisse 

et al. 2021b) can be used for pre-assembly read correction or post-assembly contig polishing. 

However, CONSENT works only with long reads. 

The other long-read polishers widely in-use are technology-specific. The main polisher 

for ONT data is called Nanopolish (Loman et al. 2015; Quick et al. 2016; Simpson et al. 2017). 

PacBio created their own polishing algorithms called Quiver (Chin et al. 2013; originally part of 

HGAP, now deprecated) and Arrow (Laird Smith et al. 2016), now part of GCpp 

(https://github.com/PacificBiosciences/gcpp) and the basis of the consensus algorithm for CCS. 

Both of these technology-specific polishers also act as variant callers; variant detection is part of 

the error-correction process. Another way to polish is to align reads to the assembly, call and 

filter variants, then change the assembly based on the variant information using an aligner and 
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tools like SAMtools (Li et al. 2009), BCFtools (Li 2011), and FreeBayes (Garrison and Marth 

2012). 

 

Scaffolding Genome Assemblies 

Scaffolding is the process by which contigs are ordered and oriented into scaffolds with 

gaps between the contigs. This process requires information beyond the DNA reads used in the 

assembly. For the additional data to be informative, it must be longer-range than the original 

DNA reads. “Longer-range” need not necessarily refer to the read length of the additional data 

type, if said data type is even comprised of reads. As an example of scaffolding with longer-

range information, one early use of both PacBio CLRs and ONT long reads was scaffolding 

short-read assemblies (Bashir et al. 2012; English et al. 2012; Koren et al. 2012; Boetzer and 

Pirovano 2014; Koren and Phillippy 2015; Rhoads and Au 2015; Warren et al. 2015; Zimin et al. 

2017). Scaffolding draft assemblies with short DNA MP reads and RNA-seq reads were 

discussed in previous sections. The reason short MP reads or RNA-seq reads (usually 100-250 

bp) can scaffold an assembly built from short DNA reads (also usually 100-250 bp) is because 

the important factor in length is the associating information, not the read length. 

For short-read PE and MP libraries, the distance between reads (i.e., the insert size) 

defines how long-range the associative information will be. PE libraries have an insert size 0-500 

bp, making them a poor choice for scaffolding. MP libraries frequently have an insert size 

between 5 and 25 kb, making them moderately informative, especially compared to the 100-250 

bp length of the reads used in assembly. Biologically, if a “left” read comes from position x on 

chromosome 1, the “right” read will be read_length + insert_size bases downstream at position x 

+ read_length + insert_size on chromosome 1 (note that insert sizes are approximate). In silico, 
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if the region from x to x + 2(read_length) + insert_size is contained in a single contig, the read-

pair has no helpful information. If the two reads align to different contigs with less than 

insert_size combined bases downstream of the left read and upstream of the right read, those two 

contigs can be joined together and the gap size can be estimated. However, now that long reads 

are consistently longer than MP insert sizes, MP libraries have fallen out of favor for genome 

scaffolding purposes. 

Unlike short DNA PE and MP reads, scaffold gap lengths cannot easily be determined 

using the insert size between short RNA-seq reads. While the distance on the mRNA molecule is 

known, the insert size is not likely to also be the genomic distance between the reads when 

spanning exon/intron boundaries. Other sources of long-range information (e.g., linkage maps 

and physical maps) also make estimating distance difficult, though it is possible with some of 

them. 

 

Linkage Maps 

Linkage maps provide the observed recombination frequencies between loci in the 

genome. Among other applications, they are useful for ordering, orienting, and correcting 

scaffolds in de novo genome assembly. Fierst (2015) provides an excellent review of linkage 

maps and their utility in genome assembly through 2015 – in short, linkage maps provide long-

range information. However, at least two problems limit the feasibility of linkage maps for some 

genome assembly projects. First, you need an F2 mapping population (technically it can be done 

in some cases with only an F1), which is not trivial when not impossible, not to mention 

potentially quite expensive. Second, the ordering of markers is a computationally difficult task as 

the number of possible combinations grows exponentially as the number of markers increases. 

While some software has been developed to assist in this task, custom scripting is still a common 
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requirement for certain tasks and no software integrates completely with de novo assembly. 

Ultimately, Fierst concludes that any project that can manage a linkage map, should create one, 

but also points out that "undertaking a mapping project is a significant investment of resources". 

Since then, others have used linkage maps to assist in genome assembly, e.g., Brassica rapa 

(Markelz et al. 2017), Arabidopsis thaliana (Zapata et al. 2016), Nelumbo nucifera (Gui et al. 

2018), and the domestic cat (which required genotyping 453 cats!) (Li et al. 2016). 

 

Physical Maps 

Physical maps provide information about the physical distance between locations of a 

marker or sequence on a given molecule; thus, a complete genome sequence is technically a 

physical map with single base-pair distance (O'Rourke 2014). In practice, the actual distance 

between loci varies by choice of marker and methods, typically providing information on 

megabase scales. Physical maps have often been a key component of large genome projects as 

they can provide long-range information to order and orient scaffolds and, in some cases, 

determine the size of gaps (Aston et al. 1999). The longer the reads (i.e., distance from end to 

end) and higher the resolution (i.e., smaller average distance between loci), the more useful the 

physical map will be for assisting in scaffolding a genome assembly. While optical maps, a 

specific type of physical map, provide information that can enable an estimation of distance 

between the markers, physical maps generated through chromosome conformation capture (3C) 

provide only information that will help determine the relative distance between pairs of markers. 

 

Optical Maps 

Optical maps are high-resolution restriction maps in which the location of the restriction 

enzyme sequence is determined using optics and fluorescence. Optical maps have played an 
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important role in validating and scaffolding genome assemblies from early assembly projects 

(Gardner et al. 1998; Aston et al. 1999; Jing et al. 1999; Lin et al. 1999). They are also useful for 

structural variant detection and analysis (Teague et al. 2010; Lam et al. 2012; Mak et al. 2016; 

Jaratlerdsiri et al. 2017). Early development and use of optical mapping were done by Dr. David 

Schwartz and his lab, paving the way towards more accessible, high-throughput methods 

(Dimalanta et al. 2004; Wu et al. 2009; Zhou et al. 2009). Until high-throughput methods were 

produced, only large and well-funded projects (e.g., rice (Zhou et al. 2007)), or projects with 

small genomes (Latreille et al. 2007), could realistically afford the time and money required to 

use optical mapping to scaffold and correct misassemblies. OpGen eventually produced the 

Argus™ system, making these techniques commercially available to more assembly projects 

(Giongo et al. 2010; Neto et al. 2011; Chen et al. 2012; Dong et al. 2012; Ganapathy et al. 2014). 

This technique effectively required fixing linearized DNA on a slide. This method improved 

throughput, but still required much time, and the utility was hampered by high error rates and the 

inherent difficulty in accurately measuring DNA length (Baday et al. 2012). Furthermore, optical 

map resolution was still constrained by the diffraction limit and common use of only a single 

restriction enzyme (Neely et al. 2010; Baday et al. 2012). 

Improvements in nanoscopy, nanofluidics, and nickase chemistries (Dimalanta et al. 

2004; Xiao et al. 2007; Das et al. 2010; Neely et al. 2011; Michaeli and Ebenstein 2012; Levy-

Sakin and Ebenstein 2013) eventually led to BioNano Genomics (BNG; San Diego, California, 

USA) and its commercially available Irys™ and Saphyr™ systems, which feed each DNA 

molecule through a nanochannel in a very high-throughput manner. BNG refers to their 

technique as next-generation mapping (NGM). BNG NGM has higher resolution and higher 

throughput than the Argus system, commonly <5kb, with some reporting resolution inside SGS 
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read length (Baday et al. 2012; Howe and Wood 2015). With less error, lower cost, and higher 

throughput, NGM has proven to be a useful tool for scaffolding genome assemblies; in fact, 

several assembly projects demonstrated its utility in the first few years of its availability (Hastie 

et al. 2013; O’Bleness et al. 2014; Bickhart et al. 2016; Staňková et al. 2016; Yang et al. 2016; 

Daccord et al. 2017; Jiao et al. 2017; Weisenfeld et al. 2017; Gui et al. 2018; Nowoshilow et al. 

2018). 

Although very different, Hi-C (see the Chromosome Conformation Capture section) and 

NGM competed as a source of long-range information for scaffolding; circa 2017, they were 

approximately equal in terms of improving assembly statistics (Jiao et al. 2017; Yuan et al. 

2017). Both the goat (Bickhart et al. 2016) and Arabidopsis thaliana (Jiao et al. 2017) genomes 

were assembled utilizing both technologies. Interestingly, relatively few publications had 

demonstrated the use of NGM for vertebrate genome assembly; though, it was speculated that 

this resulted from low public exposure to the technology (Howe and Wood 2015). Presently, Hi-

C has far outstripped NGM for use in scaffolding. The explanation for this is likely the 

substantial cost difference: NGM requires purchasing a BNG Saphyr and appropriate reagents, 

while Hi-C requires only a library prep kit. See the review by Sedlazeck et al. (2018) for 

additional discussion on NGM and other mapping technologies. 

 

Chromosome Conformation Capture (3C) 

A strong background to 3C and its variants is provided in a review by Lajoie et al. 

(2015). Capturing chromosome conformation is useful for genome assembly projects because the 

information can help scaffold and phase assemblies. Hi-C, an all-vs-all variant of (3C) (Dekker 

et al. 2002), is one of these approaches. Unlike other C-techniques, a priori target selection is not 
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required (Lieberman-Aiden et al. 2009; Hakim and Misteli 2012). The Hi-C protocol (Belton et 

al. 2012) enables massively parallel sequencing (PE) on purified ligation products to generate 

unbiased, genome-wide chromatin interactions (Lieberman-Aiden et al. 2009). Since, read count 

is effectively proportional to distance (Lieberman-Aiden et al. 2009), one can “triangulate” 

(Lajoie et al. 2015) which sequences belong on the same chromosome and in which order they 

should be placed. The key idea is that the closer a locus is to another, the stronger the interaction 

and the subsequent signal. A strong signal does not guarantee two loci are on the same molecule; 

however, signal patterns between various loci can provide the necessary information to 

determine which loci are on the same molecule and which order they are in. This method has not 

yet been effective in providing accurate estimates of distance between loci, but it does provide 

megabase scale long-range information for scaffolding genome assemblies. 

This approach to genome scaffolding has been demonstrated on human, mouse, and fruit 

fly data sets with the software package LACHESIS (Burton et al. 2013). Other early examples 

included a goat genome that also had help from BNG NGM (Bickhart et al. 2016) and a barley 

genome (Mascher et al. 2017). A related approach, Chicago™, is essentially Hi-C from 

reconstituted DNA instead of from a fresh sample. The durian fruit genome was a good early 

example of scaffolding with both Chicago and Hi-C (Teh et al. 2017). Both are commercially 

available via Dovetail Genomics (Scotts Valley, California, USA), which includes 

bioinformatics support with their software HiRise (Putnam et al. 2016). 

Two other companies sell kits and services for Hi-C libraries: Arima Genomics (San 

Diego, California, USA) and Phase Genomics (Seattle, Washington, USA). Each is different in 

price and time required to prepare the libraries, but they do effectively the same thing as 

Dovetail’s Hi-C product. One important consideration for Hi-C is the number of restriction 
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enzymes (REs) used. As with all physical maps, resolution is important, and resolution can be 

increased with commercially-available Hi-C products by ordering one with more REs. Two REs 

provide markedly more resolution than one RE, though the benefit flattens out as more REs are 

added. In this sense, DNase Hi-C (Ramani et al. 2016) is a significant improvement because it 

relies on a general purpose endonuclease instead of REs; the resulting resolution distribution is 

objectively superior to Hi-C with REs. The primary downside has historically been the large time 

requirement for completing the protocol, but Dovetail offers a much-improved (and expensive) 

version that it terms Omni-C. Of the two primary software packages meant for scaffolding with 

Omni-C, only SALSA (Ghurye et al. 2017; Ghurye et al. 2019) can handle DNase-based Hi-C 

(Dudchenko et al. 2017). 

 

Other Physical Maps 

A few other methods for generating physical maps exist. Older genome assembly projects 

generated physical maps by cloning into a vector and then probing the pieces cut by restriction 

enzymes (O'Rourke 2014). One other approach worth mentioning is RadMap, which is based on 

RAD sequencing. RadMap has been reported to outperform BNG NGM and Hi-C on highly 

fragmented (N50 <54 kb) human and Arabidopsis genome assemblies (Dou et al. 2017) and yet, 

does not require specialized instruments, which is a significant benefit similar to Hi-C. However, 

RadMap remains unvalidated because no other assembly has been published using the same 

technique in the five years since Dou et al. (2017) published the method.  

 

Manual Inspection & Curation 

Despite the enormous improvements made in sequencing, assembly, scaffolding, 

incorporation of multiple data types, etc., the algorithms are not perfect; indeed, no automated 
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process has produced anything resembling an error-free genome. Whenever possible, manual 

inspection of the assembly and any annotations is helpful. Unfortunately, if also understandably, 

curation techniques are difficult skills to transfer between people. Competent, professional 

curation is expensive and hard to come by. Genome browsers like the UCSC Genome Browser 

(Kent et al. 2002) or gEVAL (Chow et al. 2016) are helpful for inspecting regions of interest (at 

any resolution) and picking up on macro-level issues. When Hi-C data is used for scaffolding, 

the Hi-C contact matrix can be plotted and visualized with tools like Juicebox (Robinson et al. 

2018), PretextMap/PretextView (High Performance Assembly Group - Wellcome Sanger 

Institute 2019; — 2020), and HiGlass (Kerpedjiev et al. 2018). Inspection of the Hi-C evidence 

for scaffold joins can help the curator fix misoriented or translocated contigs, detect 

misassemblies, etc. Details on how to effectively use a Hi-C contact matrix, use a genome 

browser, and perform curation tasks are well-beyond the scope of this manuscript, but 

instructions and tutorials are available for most of the listed softwares online. The codification of 

and availability of training for curation techniques is in its infancy; yet, Howe et al. (2021) 

provide an excellent start by describing in a helpful review their expertise in curation born from 

work on hundreds of assemblies and other experience. 

 

Interoperability & Composite Softwares 

Generally speaking, genome assembly is a modular process comprised of one or more of 

the following steps: read correction, assembly, polishing, scaffolding, and curation. One can 

generally switch the software for any given step without changing anything in the rest of the 

pipeline. This is advantageous because it allows individual steps to be replaced easily as new 

algorithms are designed or new sequencing types are produced. Unsurprisingly and 

understandably, modularity is compromised by inconsistent outputs between software packages 
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and a general lack of standardization. Developers should, at a minimum, provide an option to 

include information about how final outputs were obtained, e.g., scaffolders should provide not 

only the output FASTA file of scaffolds, but also an AGP (or similar) file showing how and with 

what evidence the contigs are arranged into the new scaffold sequences. This extra information 

enables subsequent re-use and evaluation by other software during quality control checks and 

subsequent steps. 

As a practical example, consider the Hi-C scaffolder SALSA (Ghurye et al. 2017; Ghurye 

et al. 2019). If provided with contig-level FASTA file and a BAM file of Hi-C read alignments 

to the contigs, it will output scaffolds (FASTA) and an AGP file showing how the scaffolds are 

composed of contigs and the evidence supporting these joins. If SALSA is also provided with 

unitig tiling details (from the assembler), it can use the information to better make scaffolding 

decisions. If the chosen assembler produces the unitig tiling information and does so in the 

requested format, the scaffold-level assembly will improve. If a different assembler is used that 

does not produce the information, the scaffolds will not be as good (ignoring the fact that all 

assemblers have slightly different algorithms so the resulting contigs and scaffolds will 

inevitably be different anyway). In this case, the process is indeed modular, but the “modules” 

for assembly are not truly interoperable. For this reason, it is essential that all computational 

steps in a genome assembly project are careful considered during the project planning phase (i.e., 

before ordering sequencing). 

Due to issues with interoperability, convenience, or precedence, many software packages 

are composites that do more than one thing. In their defense, the lines between assembly, 

polishing (including error correction, breaking misassemblies, local re-assembly, and gap 

filling), and scaffolding are not as cut-and-dry as have been described. If anything, this provides 
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further support for maximizing interoperability by providing options to output intermediate and 

supporting information. Similarly, it is a good reason to allow parts of a composite program to be 

skipped. Canu (Koren et al. 2017) is an excellent example of this; in addition to assembly, it has 

the ability to correct raw reads by consensus from all-vs-all read alignments (i.e., it is a 

composite software package). With the appropriate options and pre-corrected reads provided, the 

correction step can be skipped, enabling the use of an alternate correction module (e.g., RaCon 

(Vaser et al. 2017) or CONSENT (Morisse et al. 2021b)). 

 

++itr (Iterate, Iterate, Iterate) 

As the aforementioned lines between genome assembly steps (i.e., correction, polishing, 

etc.) are blurry, one would do well to not view genome assembly as a simple linear progression 

from reads to contigs to scaffolds to chromosomes. Iteration is a critical component. This is 

certainly true within steps, such as in polishing, where more than one round of polishing is 

common (i.e., contigs to polished contigs to more-polished contigs). Similarly, some scaffolding 

might be viewed as an iterative flip-flop between contigs and scaffolds, where contigs are joined 

into scaffolds and, after evaluation, are again separated and possibly recombined in different 

ways. A person or group working on a genome assembly project should expect to experiment 

with different software packages and create multiple iterations of the assembly. Genomics has 

come a long way in the last decade, but many questions are still unanswered. Even those 

questions that appear to have an answer, may be valid for only human genomes or particular 

clade. Rigorous evaluation of every intermediate assemblies will help guide the project. 

 

Assessing Genome Assemblies 



www.manaraa.com

 264 

How can one determine whether more polishing rounds are necessary? Which assembler 

outputs the better assembly? Are these scaffold joins valid? Is this variant real? Confidence in 

genome assemblies is essential for gaining any biological understanding from them in 

subsequent studies, and that confidence begins with careful quality control and assembly 

assessment. As a general rule, one should follow established and/or recommended quality control 

procedures at every step in the sequencing and assembly process.  

Traditionally, assemblies were assessed on a single metric: N50, the length of the contig 

in which 50% or more of the assembly is contained in contigs of equal length or longer (this 

metric is not the median). N50 is a stand-in measure for contiguity, the continuousness of 

contigs. Like an average, it is helpful, but it does not provide the full picture like a more-fully 

described distribution would. Even with one or more plots of contiguity, the length is only one 

aspect of the quality of a genome. Furthermore, “bigger” is not necessarily “better”. Distributions 

of fragment lengths matching informed expectations are the best. In the end, assembly 

assessment falls into three categories: contiguity, completeness, and correctness. For those who 

are already familiar with measures of contiguity, PacBio has a helpful blog post (Pacific 

Biosciences 2020) exploring completeness and correctness as additional measures of assembly 

quality; however, short summaries of each category are herein described. 

 

Contiguity 

Contiguity is all about length, and it can be measured at the read, contig, or scaffold level. 

As was mentioned, N50 is a popular measure of contiguity. N50 is only one of several Nx 

statistics, where x refers to a percentage of the assembly size. N50 and N90 are frequently 

reported in prose or tables, but N1-100 can easily be calculated and plotted to show the entire 
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spectrum. A more representative metric than N50 is the area under the N-curve (auN; Li 2020a), 

and the field would be benefited by a shift towards reporting the auN alongside N50. A popular 

variant of Nx statistics is NGx statistics, where the “G” refers to the genome size instead of the 

assembly size. Like Nx statistics, NGx statistics can be easily calculated and plotted to show the 

distribution and area under the NG-curve (auNG). One related metric worth mentioning is Lx 

(and LGx), which describes the number of sequences (reads, contigs, or scaffolds, depending on 

the situation) needed to reach the corresponding Nx (and NGx). N(G)x and L(G)x statistics have 

an inverse relationship with each other: good assemblies will have high N(G)x and low L(G)x. 

Of course, optimizing (i.e., seeking to maximize N(G)x and minimize L(G)x) contiguity 

statistics does not always produce the best outcome. Consider the following simplified example: 

if a genome has 10 chromosomes of length 10 mb each, the genome size is 100 mb. Half of the 

genome size (for the NG50) is 50 mb. If the assembly were perfectly contiguous (end-to-end for 

each chromosome), the N50 would be 10 mb. For a real-life (i.e., imperfect) assembly, a value 

<10 mb is expected. A value >10 mb would indicate the invalid joining of contigs/scaffolds 

because the chromosomes are not joined end-to-end in real life. For this particular example, the 

same statements are true for the NG10, NG20, and so on through the NG90 and NG100. The 

more information you have about the cellular biology of a genome, the better you will be able to 

assess assembly quality.  

 

Completeness 

While contiguity is important, if the assembly size is only 40% of the genome size, then 

the assembly is not very high-quality overall, even if the existing portion is both contiguous and 

correct. While there are valid reasons that support getting <95+% of the genome represented in 
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an assembly, the assembly team must consider the biology of the particular genome and the 

details of the sequencing experiments. Otherwise, low percentages are indicative of problems. 

Another common way to measure completeness is with single-copy orthologs that are highly-

conserved across evolutionary clades. BUSCO (Simão et al. 2015) will scan an assembly for 

single-copy orthologs defined in OrthoDB (Kriventseva et al. 2019) and characterize the 

abundance and completeness of each ortholog. Three summary values are provided: the number 

of  orthologs that are complete (C), fragmented (F), and missing (M) in/from the assembly. C is 

further broken into two categories: single-copy (S) and duplicated (D). The sum of S and D is C, 

and the sum of C, F, and M is the total number of orthologs analyzed. While the organism being 

assembled may have genuine variation, a high value of C and low values of F and M are 

expected. Similarly, duplications could have occurred, but a low value of D and high value of S 

are expected. These BUSCO scores are also often represented as percentages of the number of 

orthologs in OrthoDB for the selected clade. 

 

Correctness 

Correctness is difficult to assess when the “right” answer is unknown. In the simplified 

situation where a gold-standard reference exists, comparing alignments of the two assemblies 

can provide helpful information about how correct the assembly is. Naturally, this works only if 

a sufficiently high-quality reference is available. Further, if the goal is to complete a “perfect” 

T2T assembly, no reference is available for any species, including human. That specific case 

aside, how can a person tell if a SNP is a mutation or an error? Or if the SV is a scaffolding 

artefact or real biological rearrangement? If a reference is unavailable, each variant may have to 

be handled on a case-by-case basis, but SNP or indel errors, once detected, can be automatically 
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modified via polishing, possibly in a targeted fashion. Larger SV errors may have to be fixed 

manually with a text-editor or pseudo-manually with hand-made BED files and tools like 

BEDTools (Quinlan and Hall 2010). With a reference, it is important to mask repeats and other 

low-quality regions. PacBio has proposed a method for doing this and generally assessing 

concordance with a reference (Kingan et al. 2020). 

Automating methods to determine, characterize, and report errors in genome assemblies 

is an active field of research. Of necessity, clever methods have been devised for individual 

genome projects to assess a perceived or anticipated problem. Only approximations of 

correctness are currently available unless significant resources are invested, such as comparing a 

newly-assembled genome to BACs (Vollger et al. 2020) or immortalizing a cell-line to 

systematically characterize and determine how to sort individual chromosomes. A k-mer analysis 

with Merqury (Rhie et al. 2020; Walenz et al. 2020) or Yak (Li 2020b; Cheng et al. 2021) can 

identify potentially erroneous k-mers that can subsequently be removed or polished. Merqury 

can also generate k-mer spectra plots, which can help visualize the frequency of erroneous k-

mers and k-mers not present in the reads.  

 

Annotating Genome Assemblies 

Even the best genome assemblies are relatively useless without high-quality annotation. 

Annotation typically focuses on protein-coding genes, referring to identifying the location, 

ideally including exon-intron boundaries, UTRs, splice variants, etc. Furthermore, identifying the 

gene name, gene family, homologs in related species, function of the translated protein product, 

etc. are essential elements. Often genes are identified based on extra sequence information (e.g., 

RNA-seq), homology searches (e.g., Dunne and Kelly 2017), and/or ab initio gene predictors, 

which may involve machine learning techniques. Annotation information is stored in a variety of 
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file formats, depending on the exact situation. Predominantly, GFF (gmod.org/wiki/GFF3) is 

used, but BED format is common for use with a genome browser, such as the UCSC Genome 

Browser (Kent et al. 2002). Databases are another common method for storing annotation 

information. Naturally, other types of annotations are possible, but are not typically common 

(Yandell and Ence 2012) and are stored in a variety of formats. 

Genome annotation software is typically an amalgamation of various softwares, compiled 

into a pipeline with wrapper scripts (Holt and Yandell 2011; Hoff et al. 2016), though some are 

completely automated, as in the NCBI Eukaryotic Genome Annotation Pipeline for NCBI 

genome assembly submissions (Thibaud-Nissen et al. 2013). Understanding how and when to 

adjust default settings for each step of the process is non-trivial and specifics will vary with each 

genome assembly project. In their present state, running annotation pipelines require 

bioinformatics expertise and an intimate understanding of sequencing technologies, 

bioinformatics algorithms, and the organism of interest. Ultimately, the choice of which pipeline 

to use will vary based on the specific situation; in some cases, organism or group-specific 

pipelines have been developed (Proux-Wéra et al. 2012; Campbell et al. 2014). Yandell and Ence 

(2012) provide a helpful review about eukaryotic genome annotation that is geared towards 

beginners. Ekblom and Wolf (2014) provide a helpful guide to assembly and annotation written 

to conservation geneticists that assumes limited background in HTS and bioinformatics. A 

helpful set of suggestions for submitting genome assemblies to NCBI is provided by Pirovano et 

al. (2015). Mudge and Harrow (2016) review structural and functional annotation and provide 

helpful definitions and background information; the information included in this review is 

critical for understanding the inherent limitations of annotation. The MAKER annotation 

pipeline (Holt and Yandell 2011; Yandell and Ence 2012; Campbell et al. 2014) has been the 
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foremost annotation pipeline for many years, but caveat emptor: installation is very cumbersome 

and difficult, even for  some experienced system administrators. Liftoff (Shumate and Salzberg 

2020) has gained traction recently for transferring annotations (presumably from a high-quality, 

trustworthy source genome) to a new genome or assembly version. Similarly, the Comparative 

Annotation Toolkit (CAT; Fiddes et al. 2018) is promising as a method for comparing 

annotations between genomes. 

 

COMMENTARY & GUIDANCE 

Entering the realm of genome assembly is extremely daunting. The technologies and 

methodologies have evolved so rapidly that the methods from most papers are well-behind the 

then new “standard”. This has been particularly true since the advent of TGS as the competition 

to become the de facto best long-read platform has been fierce. The pace of research has been so 

breakneck that sifting through the sheer number of published (and preprint) genome assemblies 

alone is unpractical. Consequently, some of the lessons we learned from teaching ourselves 

genome assembly over the last few years were effectively irrelevant one year later. Nevertheless, 

these lessons (often anecdotal) could prove useful to the assembly newcomer – we certainly wish 

such a resource were available when we started. Accordingly, we present a series of lessons-

learned, case studies, and general commentaries about genome assembly. 

 

Assembly with Long, Noisy Reads 

HiFi reads provide a distinct advantage in genome assembly, but not every project has the 

funds for PacBio data or access to the right sequencing machines. Further, some may have “old” 

CLRs that they have not yet had the chance to turn into a genome assembly – or perhaps did not 
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realize that HiFi reads would likely have been a better choice. Others may simply be interested in 

using ONT data for a variety of valid reasons. The following contain some helpful guidelines for 

managing genome assembly when the reads are both long and noisy. 

 

Read Correction 

Searching for a read correction software is overwhelming due to the sheer number of 

options. One question we faced was whether we should do self-correction or use a hybrid 

approach with short reads. We also wondered whether there was a cumulative benefit to trying 

both self-correction and then hybrid-correcting the already self-corrected reads. The right answer 

depends somewhat on the circumstances, but we generally found that hybrid correction is the 

least effective approach. One concern with hybrid correction is the aggressive collapsing of 

haplotypes and real duplication, which can occur when short reads map equally well to more 

than one location in the genome. Even ignoring issues such as low-complexity DNA regions, 

sequencing biases, and the non-random nature of nucleotide sequences, non-unique mappings are 

expected from short reads with greater probability than from a read with more bases. We 

recommend using self-correction only, though this is based on an important assumption; namely, 

we assume you have high sequencing depth. Due to the initial high cost of PacBio sequencing, 

hybrid correction was a cost-saving option because low-coverage CLRs (e.g., 12x) could be 

corrected using high-coverage short reads (e.g., 100x), and the reads would map back to a 

reference genome with accuracy similar to high-coverage (i.e., 50-100x), self-corrected CLRs. 

Budget providing, we recommend obtaining higher depths for the long reads and skipping the 

hybrid correction. 

For completeness, we also tried “dual” correction, which is simply performing hybrid 

correction on already self-corrected reads. The three tested strategies (Fig. 3) were compared on 
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a single ~1 gb fish genome, and our results suggested that dual correction was the best option 

(Fig. 4). However, subsequent experiments with other genomes yielded inconsistent results. 

Hybrid correction was consistently worse than self-correction in terms of contiguity. We 

hypothesize that this is due to the unavoidable collapsing of real variation between alleles and 

other genomic regions. We also found that self-corrected reads generated more-contiguous 

assemblies than dual-corrected reads in each other case. Between these results and the general 

concern over the deleterious effects of hybrid correction, we recommend using a self-correction 

strategy. Current options for this would be with consensus modules in the assembler itself (e.g., 

Canu) or stand-alone consensus software (e.g., RaCon or CONSENT). 

 

Short Read Correction 

The Illumina reads that were used in the aforementioned Albula glossodonta correction 

strategies experiments were first corrected. We generally have not seen others correct Illumina 

reads (or at least not report that they did), and we have stopped doing so ourselves as the 

correction process is time-consuming (computationally), and the algorithm we liked best, Quake 

(Kelley et al. 2010), is implemented in old software that is cumbersome to install. That said, 

Quake did make corrections in our read sets, though the q-value cutoff had to be manually 

determined, which makes the approach difficult to replicate. We also corrected RNA-seq reads 

from Illumina with Rcorrector (Song and Florea 2015), but have similarly stopped using it 

because in every case (at least four different fish species) zero changes were made to the reads. 

With near-perfect accuracy for Illumina reads (>99.9%), this is not surprising as we expect zero 

errors in any given Illumina read. We do, however,  recommend running FASTQC (Babraham 

Bioinformatics Group 2015) or other similar quality-control software to ensure nothing is 
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anomalous about your short reads. Additionally, be sure to remove sequencing 

adapters/indexes/etc. (e.g., with CutAdapt (Martin 2011)) if they were not already removed from 

the sequence dataset. 

 

Noisy Read Correction vs. Polishing 

When we first heard of polishing from others who had used Pilon, we were extremely 

skeptical as it was described as a method to correct SNPs and indels in the assembly without any 

correction in advance. What we came to learn was that they did do correction in advance, they 

simply did not realize that that their assembler of choice (Canu) did it for them. Unfortunately, 

we did not realize this until we later tried it ourselves, and our limited viewpoint of the purpose 

of polishing persisted for longer than we care to admit. We reasoned that correction in advance 

made more sense than correction after-the-fact because it would make the assembly graph less 

complex. Further, RaCon and CONSENT did not yet exist (though PacBio’s long-read consensus 

module did), and the high RAM requirement of Pilon was off-putting. 

With time, we came to realize that correction and polishing serve very different purposes, 

even if part of their function is similar. Whether you have HiFi reads (i.e., reads for which you 

should not run a correction step) or CLRs or ONT long-reads that have been corrected, polishing 

should at least be attempted post-assembly when data is available. With ONT long-reads or 

CLRs, polishing with GCpp (Arrow) or Nanopolish to utilize the long reads is common. 

Polishing with short reads (e.g., with RaCon or Pilon) is also popular. Many have used both data 

types for polishing in an iterative fashion, starting with the long reads. Usually, one or two 

rounds of polishing is done for each data type. We have not done enough evaluation of these 

polishing strategies to provide meaningful counsel except that (a) a polishing strategy should be 

utilized and (b) the resulting assemblies should be evaluated. 
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Genome Size Determination 

To sequence a genome adequately, an appropriate sequencing depth must be selected. 

The depth will depend on sequencing type and may change as chemistries/error rates/ etc. 

improve; your sequencing provider (i.e., sequencing center) or sequencing producer (i.e., PacBio, 

ONT, etc.) can provide up-to-date recommendations. Assuming the desired depth has been 

determined, it can be utilized alongside the genome size to order the appropriate amount of 

sequencing. The simplest way to determine genome size for vertebrates is from the Animal 

Genome Size Database (Gregory 2021). Ideally, your species of interest is listed with a C-value. 

If a C-value is not listed for your species of interest, it can be estimated based on listed related 

organisms; however, a C-value estimated in this way is not guaranteed to be correct, especially if 

there is variation of the C-value in the clade. Provided that the C-value has been determined and 

assuming a GC-content of 50%, the C-value can be converted into a haploid genome size with 

the simple formula: S = 0.978C, where C is the C-value and S is the genome size in gigabases 

(Doležel et al. 2003). 

If the genome size is not in the database, it can also be estimated experimentally with 

flow cytometry (Hare and Johnston 2012) or Feulgen microspectrophotometry (Leuchtenberger 

1954; Hardie et al. 2002). If you have accurate reads (e.g., Illumina short reads), the size can also 

be estimated based on a k-mer analysis. Even if you have a good genome size estimate from an 

experiment or the Animal Genome Size Database, it is good practice to corroborate the size 

estimate by performing an in silico k-mer analysis. The k-mer analysis requires the following 

steps: (1) generate a k-mer coverage histogram, (2) calculate the area under the curve, and (3) 

identify the peak. The genome size can then be determined according to the following equation: 
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a / p = s, where a is the area under the curve, p is the number of times the k‑mers occur (the x-

value) at the peak, and s is the genome size. While the k-mer analysis can be done semi-

manually, we recommend the much simpler approach: GenomeScope (Vurture et al. 2017; 

Ranallo-Benavidez et al. 2020). The input for genome scope is a “histogram” file, which is a 

two-column, space-separated text file containing the coverage or copy number in the first column 

and frequency in the second column, which can be generated using one of many programs (e.g., 

Jellyfish (Marcais and Kingsford 2011) or KMC (Kokot et al. 2017)). Note that in the 

GenomeScope profile, the value of “len” is the genome size. Also note that k-mer-based 

estimates of genome size can be inaccurate when the genome is unusually homozygous, the 

sequencing error rate is high, or the coverage is too low.  

 

Tips for Select Software Packages 

While specifics on how to run software, manage jobs in a cluster environment, etc. are 

outside the scope of this report, some software packages are particularly complex, and, as such, 

general recommendations are provided herein. Specifically, we provide experiential viewpoints 

about three software packages: (Hi)Canu (Koren et al. 2017; Nurk et al. 2020), MAKER (Holt 

and Yandell 2011; Campbell et al. 2014), and purge_dups (Guan et al. 2020). 

 

(Hi)Canu 

Canu, which is the same program used for HiCanu for HiFi reads, is an assembler that 

can also correct noisy reads. Canu is well-written, well-documented, and well-maintained. We 

mention it here only because it is a unique piece of software when running on a cluster. 

Specifically, Canu is capable of submitting itself to the cluster, including managing the resources 



www.manaraa.com

 275 

it requests for different jobs. The main Canu program assesses the cluster environment and starts 

an initial set of jobs while also submitting itself as an “executive” job as a dependency of these 

other jobs. This executive job assesses Canu’s overall progress and submits new jobs, as needed, 

to tackle subsequent steps or redo failed steps. Then, it once again submits itself as an executive 

job as a dependency and the cycle continues. Notably, the initial Canu command need not be 

submitted as a job because it can be run quickly (i.e., <5 seconds) on an interactive node. The 

cluster we use is managed by SLURM (https://slurm.schedmd.com), but Canu works with other 

workload managers as well. 

 

MAKER 

MAKER is an annotation pipeline written primarily in Perl (https://www.perl.org). While 

MAKER combines a remarkable number of software packages together to accomplish a very 

complex and very difficult task, and despite a fair amount of guidance available in “annotation 

school” (Holt and Yandell 2018) and the help emails (https://groups.google.com/g/maker-devel), 

MAKER is notoriously difficult to run. We do not blame this on MAKER; it is a product of the 

enormity of the task of annotation and the age of the software. Unfortunately, many projects that 

use MAKER are vague about how they accomplished it. For example, little more than “and we 

annotated with MAKER” is sometimes stated in manuscripts. Other times, the entire annotation 

process is described as if it were all by hand, even though it was obvious that MAKER was used. 

You can save yourself extensive frustration by recognizing that MAKER is a tool to accomplish 

many diverse annotation tasks and is not a “push-button” solution that simply outputs reliable 

and usable annotations. Additionally, an extensive understanding of annotation is required; as 

such, it may be beneficial find a collaborator with annotation experience. For additional 

information about our overall annotation process (primarily using MAKER), including the exact 
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settings and commands run, see our Caranx melampygus genome paper supplement (Pickett et 

al. 2021). We do not claim that this is how you should annotate your assembly; it is simply a 

reference. 

Again, another important thing to discuss about MAKER is that it is prodigiously 

difficult to install. Part of the issue is that it has so many dependencies, some of which are 

beginning to get rather old, especially some of the Perl modules. Another part of the issue is that 

it is difficult to manage more than one Perl installation on the same system, especially if custom 

modules need to be universally available (i.e., available to more than just one user). Things are 

even more difficult if the user attempting the install does not have or does not wish to use root 

privileges. While we did eventually manage a successful installation ourselves, our cluster’s 

operating system was upgraded a few weeks later, breaking dependencies and the installation. 

Despite careful notes and following the exact same steps, we failed to re-install it. With 

extensive help from our system administrators, and after several months of work, we managed to 

install it a second time. We strongly encourage others to plan accordingly or determine another 

method of annotation. Please, note that at least one update to MAKER has been released since 

we had this experience (v3.01.02-beta); it is possible that the issue is helped in the update. It is 

also possible that our system was configured in an unusual way that interfered with the process. 

 

purge_dups 

purge_dups can be run on a contig-level genome assembly to purge duplicate contigs and 

generate a primary and alternate assembly. It is an excellent program, and we highly recommend 

it. We do provide a gentle forewarning, however. On the GitHub repository (https://github.com/

dfguan/purge_dups), formal releases have been fairly far and few between considering the jump 

in version numbers. We used v1.0.1 because it was the most recent release, despite many 
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commits having been made afterward. We encountered a bug in the program that would silently 

replace entire contigs with Ns in certain circumstances. Gratefully, it had already been fixed in a 

numbered version, but that and many other versions were not formally tagged or listed in the 

releases. We have had success with v1.2.5, also labeled the “Chinese New Year release”. We 

advise checking the list of commits, which have previously been named according to version 

number. If a new version number appears there, but not in the tags or releases, it may be worth 

skipping straight to it instead of using the formal release. Use your own judgement based on the 

content of the commit messages.  

 

Scaffolding Scaffolds 

We strongly recommend scaffolding with Hi-C data, as previously described. However, it 

is also possible to combine more than one data type for scaffolding. If you have the ability to 

generate BNG NGM data, this is also an excellent data source for scaffolding. The specifics for 

how combining data types works will vary between software packages, but a few principles will 

help. First, scaffold with data types based on the length of the long-range information they 

provide. For example, if you were to scaffold with Hi-C data, BNG NGM data, and read clouds 

(e.g., if you had old 10XG data or tried new TELL-seq), you would start with the shortest-range 

data (read clouds) then scaffold those scaffolds with the BNG NGM (longer-range data), and 

scaffold that set of scaffolds with the Hi-C data (longest-range data). Take care to avoid naming 

collisions as many software packages will name new scaffolds after a simple naming scheme 

(e.g., scaffold_1, scaffold_2, …, scaffold_N) and can complicate the situation (and may even 

create errors) if newly-created scaffolds from a “higher” level of scaffolding have the same name 

as one of the scaffolds from a previous round of scaffolding. 
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Moreover, when using more than one data source for scaffolding, we recommend keeping 

track of how to convert the contig-level assembly into the final scaffold-level assembly. If your 

scaffolders outputs an AGP file (or information sufficient to create one from it), you can 

programmatically propagate the information through each file to create a master AGP file with 

evidence for each type of join. This will be helpful when it comes time to submit to the assembly 

to NCBI. You can submit the contig-level assembly and the AGP file describing the joins. Note 

that any changes made during polishing to scaffolds would need to be retroactively applied to the 

contig-level assembly and/or master AGP file. Currently, this requires custom scripting as no 

software has been published to handle this. 

 

Recommendations for New Projects 

As of the time of this writing (Spring 2021), we recommend PacBio HiFi reads as the 

basis for the assembly. As a side note, some sequencing centers may ask you if you want the raw 

reads or just the HiFi reads, alternately, they may not even ask and just provide the HiFi reads. 

We encourage you to get and store the raw reads in addition to the HiFi reads as certain 

circumstances may benefit from using the underlying CLRs (e.g., if PacBio publishes an update 

to their consensus algorithm). Unless your project requires an assembly of every haplotype in the 

specimen, we recommend planning on generating a single haploid representation of the genome. 

Speak with your sequencing provider or PacBio about the necessary sequencing depth for your 

organism. We also recommend generating Hi-C data for scaffolding. If you intend to perform 

annotation or hope that NCBI will include your assembly in RefSeq and annotate it for you, we 

advise doing some form of RNA-seq (PacBio Iso-Seq being strongly recommended). While any 

assembler should work fine (e.g., Falcon, HiCanu, Hifiasm, and Peregrine), we recommend 
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Hifiasm. If your assembler outputs separate primary and alternate assemblies, use the primary 

assembly for the next step. Use purge_dups to split the assembly into primary and alternate 

assemblies. If your assembler already did this, combine the two alternate assemblies into a single 

file and use the primary assembly from purge_dups as your primary assembly. While you can 

polish at this stage, we advise waiting to polish until you have scaffolds. We do not recommend 

polishing with short reads. Scaffold with Hi-C data using SALSA and polish with GCpp 

(Arrow). For a more in-depth process, including code, and for up-to-date suggestions, see what 

the VGP (Vertebrate Genomes Project) is currently doing as recorded in their GitHub repository 

(https://github.com/VGP/vgp-assembly). This is an excellent resource, especially if you also 

wish to use other sources of information, such as linked-reads for polishing or BNG NGM for 

scaffolding. We also recommend generating short reads for genome size estimation and quality 

control steps. 

 

Bioinformatics Best-practices for Genome Assembly 

Any experienced bioinformatician knows how easy it is to forget what you did one 

week/month/year ago. Just as any wet-lab scientist should take careful notes of their 

experiments, bioinformaticians should do the same thing. Genome assembly, in particular, has so 

many moving parts and can have many iterations. So, take careful notes, use descriptive 

directory and file names, write down the version number and options used for each run of a 

program, and think twice, type once (measure twice, cut once). Be sure to record the justification 

(and sources, if appropriate) for decisions you make. Your future self will thank your present-day 

self when it comes time to justify your methods, publish a paper, or replicate the analysis on a 

different sample/species/project/etc. 
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On a related note, our experience is that sequencing details and sample information are 

easily lost or forgotten. Proper project planning and management will help avoid issues, but often 

a bioinformatician joins a project at analysis time, not having been able to provide input 

previously. In such cases, the prudent bioinformatician will relentlessly pursue key pieces of 

information at the beginning of a project. If necessary, bioinformaticians may refuse to perform 

any more of the analysis (in this case, genome assembly) until you acquire the requisite 

information. For sequencing data sets, you will need the following set of details at minimum: (a) 

sample collection details, (b) sample storage and transfer details (i.e., shipped on dry ice, stored 

at -80°C), (c) library preparation protocol, including kit names and numbers, methods for 

quantifying (and values of) concentrations and other quality control procedures, PCR times and 

temperatures (if using PCR), images of any gels, sequencing adapters, unique molecular 

identifiers (i.e., barcodes), etc., (d) sequencing machine (e.g., Illumina Hi-Seq 2500), (e) number 

of cycles (if Illumina; movie length for PacBio; run time for ONT), and (f) date of the 

sequencing run. For sample collection, you will need the following details: (a) species of the 

sample, (b) number of individuals, (c) tissue(s) collected, (d) collection date(s), (e) how long the 

sample was “left out” before being preserved, (f) longitude and latitude (when collected), (g) 

description of the collection site (i.e., collection medium (was it sandy, muddy, grassy, etc.), 

collection locality (e.g., near a reef (front or back), water depth, height up a tree, etc.), broad 

environment (e.g., ocean, tropical, rain forest, glacier, etc.)), (h) one or more of strain, isolate, 

cultivar, and ecotype (if none of these four, makeup a unique identifier and assign it to isolate), 

and (i) any other detail needed to create an NCBI BioSample for the sample(s). Do not rely on 

core facilities, sequencing centers, web-lab technicians, collaborators, principal investigators, or 



www.manaraa.com

 281 

anyone else to record, recall, or otherwise estimate these details. Again, it is your responsibility 

to ensure you have all the details recorded and backed up yourself. 

Finally, data security is a critical task for bioinformaticians. Keep backups of all project-

related documents on the cloud and/or other external drive from your primary workstation. If at 

all possible, automate this process. Similarly, keep backups of all original data and final results, 

which may be on some kind of cluster or cloud computing resource. Specific details will vary 

between institutions, but a common concept in high-performance computing (HPC) is a 

“scratch” space. Scratch spaces are typically faster storage drives (which makes computing more 

efficient) and are not backed up. In most situations, it is not practical to keep backups of all work 

and intermediate files; however, some method to keep two or more copies of raw data files (e.g., 

FASTQ files from a sequencing machine) and results (e.g., corrected reads, final contig- and 

scaffold-level assemblies, etc.) on separate drives, ideally in different physical locations, must be 

employed. Again, if possible, automate the backup process (copying one copy to another 

location). When raw data or final results are generated, copy them to the non-scratch drive. HPC 

centers can experience critical drive failures and can result in enormous losses of time, money, 

and other resources if a good data backup policy was not employed. 

 

CONCLUSIONS & FUTURE DIRECTIONS 

Every genome sequencing project is unique. Decisions about library preparations, 

sequencing technologies, read depth, read correction, assembly strategy, polishing, sources of 

long-range information for scaffolding, annotation pipelines, etc. will vary depending on the 

unique characteristics of the organism in question, the intended purpose of the whole genome 

sequence, and the available funding. Moreover, as the field and sequencing technologies 
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continue to rapidly advance, the ideal technology (or, more likely, combination of technologies) 

will change. As the changes occur, the field would  be greatly benefited by formal experiments 

designed to test the various sequencing technologies (and combinations of technologies) for their 

utility in various aspects of genome assembly projects. Of the several critical questions that 

remain unanswered about current and emerging options, we prioritize the following questions: 

How well will ONT ultra-long reads perform for gap-filling in HiFi assemblies? What is the best 

way to incorporate these two data types together – specifically, can they be incorporated into a 

hybrid graph and what is the best way to do this? How can we share graph information between 

runs of different graph-based software packages? How can we combine multiple sources of 

evidence during the scaffolding process in an automated fashion, in particular, how can we 

combine optical mapping data (e.g., BNG NGM) and Hi-C? How can we enable non-specialists 

to correctly handle segmental duplications (SDs), telomeres, higher-order repeats (HORs), and 

centromeres? How much money and time does it realistically take to train someone to do 

genome assembly, assuming only a general understanding of genome biology with basic 

scripting and HPC skills? Answers to these and other questions will instruct future assembly and 

annotation projects and enable scientists to trust empirically tested sequencing and assembly 

strategies. 
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Table 1. Reviews of sequencing, assembly, and related topics. 

Reference Description 
(Pettersson et al. 2009) Review of sequencing technologies. 

(Schatz et al. 2010) 
Describes how genomes can be assembled with NGS sequences if 
Sanger is used to fill gaps. Great section on NGS technologies. 
Great section on assembly. 

(Earl et al. 2011) Assemblathon 1 – Comparison of sequence assembly software. 
(Quail et al. 2012) Comparison of Ion Torrent, PacBio, and Illumina. 
(Bradnam et al. 2013) Assemblathon 2 – Comparison of sequence assembly software. 

(Ekblom and Wolf 2014) 
A review / field guide on sequencing, assembly, and annotation 
written for those with backgrounds in conservation genetics. 
Assumes the reader has limited background understanding. 

(Fierst 2015) Review on using linkage maps with assembly, but it has a helpful 
section on NGS and de novo assembly. 

(Simpson and Pop 2015) Review of assembly algorithms (not software performance). 
(Heather and Chain 2016) A brief history of DNA sequencing. 

(Shendure et al. 2017) Review of sequencing technologies and its current and predicted 
impact. Commemorates 40 years of DNA sequencing. 

(Sedlazeck et al. 2018) Review of long-range sequencing and mapping technologies and 
their applications. 

(van Dijk et al. 2018) Review of the third “revolution” in DNA sequencing with a 
discussion on the relative qualities of each technology. 

(Logsdon et al. 2020a) 

Review of long-read genome sequencing and its applications. 
Exceptional sections on the technologies and the practical 
implications of their respective use in de novo assembly. If you 
read any one of these, read this one. 

(Howe et al. 2021) Review of manual curation and its effects on assembly quality. 

(Li 2021) 

Blog post providing definitions to key terms in assembly, 
specifically referring to phased assembly; phased assembly 
without a reference is possible only because of trios and/or 
accurate long-reads (HiFi). 
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Figure 1. Cost of Genome Sequencing. The estimated cost of sequencing over time based on data reported by the 
U.S. National Human Genome Research Institute (NHGRI; https://www.genome.gov). The cost per genome is based 
on a 3 Gbp (haploid) genome. The advent of Massively Parallel Sequencing (MPS) platforms (e.g., Roche/454 
systems and Illumina/Solexa systems) in the mid- to late-2000’s enabled the precipitous decline in raw sequencing 
cost (Mardis 2011). 
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Figure 2. Genome Statistics Available on NCBI. The number of sequences and bases of the genomes available as 
NCBI GenBank and WGS submissions (https://www.ncbi.nlm.nih.gov/genbank/statistics). These statistics serve as a 
proxy for the number of genomes being sequenced over time. 
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Figure 3. Flow chart showing the self-, hybrid-, and dual-correction strategies on an Albula glossodonta 
genome. Software choices are labeled above the connecting lines. 
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Figure 4. Comparison of self-, hybrid-, and dual-correction strategies on an Albula glossodonta genome. Plots 
of the contig-level NGx and LGx after Canu-based assembly for PacBio CLRs that were self-corrected (blue), 
hybrid-corrected (red), and dual-corrected (green). Note that the short reads were (probably unnecessarily) corrected 
before being used. Subsequent experiments with other genomes yielded inconsistent results, except that short-read 
only (i.e., “hybrid” correction) was the worst in terms of contiguity. 
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APPENDIX 1 

Chapter 1 – Supplementary File 1 

 
This is Supplementary File 1 from “Lingering Taxonomic Challenges Hinder 

Conservation and Management of Global Bonefishes”. The following is a tree in Newick format, 

with bootstrap support values provided when greater than 90. No branch lengths are specified. 

For more information, see the main manuscript and Wallace (2014), from which this tree was 

taken. 

 

((('Albula pacifica','Albula nemoptera'):92,((('Albula argentea','Albula virgata'):100,'Albula 
oligolepis'):99,('Albula koreana',(('Albula gilberti',('Albula sp. cf. vulpes','Albula 
esuncula')):92,('Albula goreensis',('Albula vulpes','Albula glossodonta')))))):100,('Anguilla 
rostrata','Pterothrissus gissu'):100); 
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APPENDIX 2 

Chapter 2 – Additional File 1 

 

SUPPLEMENTARY BIOINFORMATICS METHODS 

An overview of the methods used in this study was provided in the main manuscript. 

Where appropriate, additional details, such as the code for custom scripts and the commands 

used to run software, are provided here. 

 

S.1 – Tissue Collection and Preservation 

Not applicable. 

 

S.2 – Sequencing 

Not applicable. 

 

S.3 – Read Error Correction 

S.3.1 – Illumina DNA 

An estimate of the number of k-mers present in the reads is required to run BFCounter. 

This number is really just a simple math problem based on the number of reads, the length of the 

reads, and k-mer size according to this equation: 

𝑇 = 𝑛(𝑙 − 𝑘 + 1) 

Where n is the number of reads, l is the read length, and k is the k-mer size, and T is the 

total number of k-mers (not necessarily unique or distinct) present in the reads. Of course, this 
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assumes a uniform read length. If the reads are paired-end, n is still the number of reads, not the 

number of pairs of reads. Since ntCard v1.0.1 (Hamid et al. 2017) was used to quickly get a 

picture for the k-mer coverage histogram, its reported value F0 was used instead of the equation 

as it is an estimate for T. ntCard was run according to the following command: 

ntcard \ 

    -k 19\ 

    -t ${THREADS} \ 

    -p ${OUTPUT_FILE_BASE_NAME} \ 

    ${INPUT_FASTQ_FILES[@]} 

 
To generate q‑mer counts BFCounter v0.2 (Melsted and Pritchard 2011) was used to count and 

dump the q-mers according to the following commands: 

BFCounter count\ 

    -k 19\ 

-n ${TOTAL_NUMBER_OF_KMERS} \ 

-s ${RANDOM_SEED} \ 

-t ${THREADS} \ 

-o ${COUNTS_FILE_NAME} \ 

--quake \ 

--quality-scale=33 \ 

${INPUT_FASTQ_FILES[@]} 

 

BFCounter dump\ 

    -k 19\ 

-i ${COUNTS_FILE_NAME} \ 

-o ${OUTPUT_FILE_NAME} \ 

--quake 

 
Quake v0.3.5 (Kelley et al. 2010) was run in two stages where the first identifies a q-mer 

cutoff and the second corrects the reads based on that cutoff. The suggested q‑mer cutoff was 

2.33, which was subsequently used by the correction phase of Quake. The two steps were 

executed according to the following commands: 

cov_model.py \ 

${BFCOUNTER_DUMP_FILE} 

 



www.manaraa.com

 321 

correct \ 

    -k 19 -q 33 \ 

-m ${QMER_COUNTS_FILE} \ 

-o ${OUTPUT_FILE_NAME} \ 

-f ${INPUT_FASTQ_FILES[@]} \ 

-p ${THREADS} \ 

-c ${CUTOFF} \ 

-u --headers --log 

 
Quake was developed quite some time ago, and the installation process was made 

difficult as dependencies were updated and function calls were broken. Multiple solutions likely 

exist to remedy the problem, but we found success by installing Quake with R v3.4.0 

(https://www.r-project.org) with package VGAM v0.7-8 (https://CRAN.R-project.org/package=

VGAM) (Yee and Wild 1996). 

 
S.3.2 – Illumina RNA 

Since no corrections were made by Rcorrector v1.0.2 (Song and Florea 2015) and the 

command is fairly straightforward, little additional detail is necessary. Recall that BFCounter 

was used instead of the built-in Jellyfish to generate the counts. Also note that this process was 

run separately for each tissue. The commands used are the following: 
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BFCounter count\ 

    -k 19\ 

-n ${TOTAL_NUMBER_OF_KMERS} \ 

-s ${RANDOM_SEED} \ 

-t ${THREADS} \ 

-o ${COUNTS_FILE_NAME} \ 

--quality-scale=33 \ 

${INPUT_FASTQ_FILES[@]} 

 

BFCounter dump\ 

    -k 19\ 

-i ${COUNTS_FILE_NAME} \ 

-o ${DUMP_FILE_NAME} \ 

 

rcorrector \ 

    -k 19 \ 

-c ${DUMP_FILE_NAME} \ 

-od ${OUTPUT_DIR_NAME} \ 

-p ${INPUT_FASTQ_FILES[@]} \ 

-t ${THREADS} 

 
S.3.3 – PacBio CLRs 

First the process to correct the PacBio CLRs will be described. Next, the experiments 

with other correction strategies will be briefly described. 

 

S.3.3.1 – Dual Correction Strategy 

Typically, a “hybrid” correction strategy is defined as one in which more than one data 

type (i.e., PacBio CLRs and Illumina short reads) are employed. This differs from a “self” 

correction strategy in which only the PacBio CLRs are used to correct themselves. We employed 

a strategy that is “hybrid”, but that is not fully described by the word “hybrid”. We have referred 

to this strategy as “dual” correction. First, “self” correction is completed. Second, “hybrid” 

correction is done on the already self-corrected reads. The self-corrected reads were generated 

using Canu v1.6 (Koren et al. 2017) with the following command: 
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canu -correct \ 

    -s ${SETTINGS_FILE} \ 

-d ${OUTPUT_DIR_NAME} \ 

-p ${OUTPUT_PREFIX} \ 

-pacbio-raw \ 

${INPUT_PACBIO_READS[@]} 

 
The relevant lines of the setting file are included here: 

genomeSize=932813000 

ovsMethod=sequential 

gridEngine=slurm 

 

The self-corrected reads were provided to CoLoRMap downloaded April 2018 

(Haghshenas et al. 2016) as the “uncorrected” input reads. Please note that you will need to 

combine and interleave all Illumina short reads into a single file. All PacBio reads will also need 

to be in a single file, and the headers will need to be unique up to the first space, so some 

modification to the headers may be necessary. CoLoRMap is really a pipeline with a very basic 

wrapper script. In practice, it makes more sense to run each step in the wrapper script as separate 

jobs to avoid re-computing if a failure (e.g., too much RAM or time) occurs in a downstream 

step. If nothing else, a simple addition of logical checks can be added to the wrapper script to 

ensure subsequent steps aren’t run if the previous step failed. If run without any such 

modifications, the commands to run CoLoRMap are the following: 

runCorr.sh \ 

    ${INPUT_SELF_CORRECTED_PACBIO_READS} \ 

${INPUT_ILLUMINA_READS} \ 

${OUTPUT_CORRECTED_PACBIO_READS_DIR} \ 

${OUTPUT_CORRECTED_PACBIO_READS_PREFIX} \ 

${THREADS} 

 

runOEA.sh \ 

    ${INPUT_COLORMAP_CORRECTED_READS} \ 

${INPUT_ILLUMINA_READS} \ 

${OUTPUT_CORRECTED_PACBIO_READS_DIR} \ 

${OUTPUT_CORRECTED_PACBIO_READS_PREFIX} \ 

${THREADS} 
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Once the correction and overlap error extension assembly phases are completed, the now “dual” 

corrected reads are ready for assembly. 

 

S.3.3.2 – Correction Experiments 

We explored the effects on assembly continuity of several correction strategies before 

settling on the chosen strategy.  Ignoring failed strategies due to software failures, three 

strategies were employed: (a) “self” correction (only PacBio CLRs, (b) “hybrid” correction 

(using only Illumina reads to correct the PacBio CLRs), and (c) “dual” correction (using Illumina 

reads to correct already self-corrected PacBio CLRs). These correction strategies are described 

visually in the following flow chart: 

 
The table and two plots show the NGx and LGx plots where x is a number between 0 and 

100 representing the percentage of the genome size. NGx and LGx statistics are similar to the Nx 

and Lx statistics except they are scaled to the genome size instead of the assembly size. In 

theory, assemblies improve by maximizing and minimizing the areas under the NG and LG 

curves, respectively. Plainly, the “dual” correction strategy is superior in terms of continuity. 
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S.4 – Genome Size Estimation 

ntCard v1.0.1 (Hamid et al. 2017) was used to estimate the k-mer coverage histogram 

using the following command: 

ntcard \ 

    -k 19 \ 

    -t ${THREADS} \ 

    -p ${OUTPUT_FILE_BASE_NAME} \ 

    ${INPUT_FASTQ_FILES[@]} 

 
 The equation described in the main manuscript was used to determine the genome size from the 

ntCard output, implemented as a simple AWK program. First, the k-mer coverage histogram 

must be processed to match the output format of Jellyfish’s histo command (Marcais and 

Kingsford 2011). 
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tail -n +3 ${NTCARD_OUTPUT_FILE} \ 

  | tr -d "f" \ 

  > ${HISTO_FILE} 

 

awk -f ${AWK_SCRIPT} ${HISTO_FILE} 

 

Where the AWK program referred to as ${AWK_SCRIPT} is the following: 

BEGIN { 

 x = 0; # x at max y 

 y = 0; # max y 

 s = 0; # genome size 

} 

{ 

 if ($2 >= y) { 

  y = $2; 

  x = NR; 

 } 

 s += $1 * $2 

} 

END { 

 print "peak: " x "," y "; sum: " s "; size: " s / x; 

} 

 
S.5 – Genome Assembly, Polishing, and Scaffolding 

The individual steps of genome assembly, polishing, and scaffolding will each be 

described separately. Calculation of assembly summary statistics will also be described. 

 

S.5.1 – Genome Assembly 

The assembly was created with Canu v1.6 (Koren et al. 2017) using the already reads 

from the “dual” correction strategy using the following command: 

canu -trim-assemble \ 

 -s ${SETTINGS_FILE} \ 

 -d ${OUTPUT_DIR_NAME} \ 

 -p ${OUTPUT_PREFIX} \ 

 -pacbio-corrected \ 

 ${INPUT_DUAL_CORRECTED_PACBIO_READS_FILE} 

 
S.5.2 – Polishing 
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Before polishing the contigs, the corrected Illumina WGS reads required slight 

modification of the headers because spaces were not allowed. The exact modifications required 

to make sequence headers match RaCon’s expectations may vary, but the following AWK 

program worked in our case: 

BEGIN { 

 FS = " "; 

} 

{ 

 if (NR % 4 == ) { 

  print $1 "-" substr($2, 1, 1); 

 } else { 

  print $0; 

 } 

} 

 
RaCon also required mapping these short reads to the contigs before it would run. The 

alignments were performed with BWA v0.7.17-r1998 (Li 2013) and converted from SAM format 

to BAM format using SAMtools v1.6 (Li et al. 2009): 

bwa index \ 

 -p ${CONTIGS_INDEX_PREFIX} \ 

 ${CONTIGS_FASTQ_FILE} 

 

bwa mem \ 

 -t ${THREADS} \ 

 -p ${CONTIGS_INDEX_PREFIX} \ 

 ${ILLUMINA_SHORT_READS_FILE} \ 

 > ${ALIGNMENT_SAM_FILE} 

 

samtools view \ 

 -buS ${ALIGNMENT_SAM_FILE} \ 

 | samtools sort \ 

  -@ ${THREADS} \ 

  > ${ALIGNMENT_BAM_FILE} 

 

Polishing with the corrected Illumina WGS reads using RaCon v1.3.1 (Vaser et al. 2017) was 

accomplished using the following command: 
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racon \ 

 --include-unpolished \ 

 --threads ${THREADS} \ 

 ${ILLUMINA_SHORT_READS_FILE} \ 

 ${ILLUMINA2CONTIGS_ALIGNMENTS_BAM} \ 

 ${CONTIGS_FILE} \ 

 > ${POLISHED_CONTIGS_FILE} 

 
This process of alignment and polishing was repeated for a second round with the polished 

output contigs from the first round acting as “unpolished” contigs for the second round. 

 

S.5.3 – Scaffolding 

The polished contigs were scaffolded in a stepwise fashion using two types of long-range 

information: Hi-C and RNA-seq reads. 

 

S.5.3.1 – Hi-C Scaffolding 

The Hi-C data alignments were performed following the Arima Genomics (San Diego, 

California, USA; https://arimagenomics.com) Mapping Pipeline (https://github.com/

ArimaGenomics/mapping_pipeline), which relied on bwa v0.7.17-r1998 (Li 2013), Picard 

v2.19.2 (Broad Institute 2019), and SAMtools v1.6 (Li et al. 2009).  As the pipeline is reasonably 

well-documented, it will be only summarized here: 

1. The assembly (polished contigs) is indexed using SAMtools faidx.  

2. The assembly is indexed with bwa index and the Hi-C reads are mapped to the 

assembly with bwa mem. 

3. The alignments are converted from SAM to BAM format with SAMtools view. 

4. The 5’ ends are filtered using SAMtools view and the Arima Genomics Perl 

(https://www.perl.org) script filter_five_end.pl. 
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5. Paired-end reads are combined into a single file with the Arima Genomics Perl script 

two_read_bam_combiner.pl and sorted with SAMtools sort. These reads will be 

treated as single-end hereafter. 

6. Read groups are added to the BAM file using Picard AddOrReplaceReadGroups. 

7. Merge technical replicates. This step was skipped because no such replicates existed. 

8. Duplicates in the BAM file were marked using Picard MarkDuplicates. 

9. Merge biological replicates. This step was skipped because no such replicates existed. 

10. The final BAM file was indexed with SAMtools index. 

11. Stats were reported with the Arima Genomics Perl script get_stats.pl. 

Scaffolding was performed on the polished contigs using the final BAM file from the 

Arima Genomics Mapping Pipeline with SALSA downloaded 29 May 2019 (Ghurye et al. 2017; 

Ghurye et al. 2019). First, some pre-processing was required with BEDTools v2.28.0 (Quinlan 

and Hall 2010) to convert the final BAM file from the mapping pipeline to BED format; this was 

then sorted. The BEDTools, sorting, and SALSA commands are listed here (note that the 

${RESTRICTION_ENZYME_SEQ} was GATC): 

bedtools bamtobed \ 

 -i ${FINAL_ARIMA_BAM_FILE} \ 

 > ${HIC_BED_FILE} 

 

sort -k 4 \ 

 ${HIC_BED_FILE} \ 

 > ${SORTED_HIC_BED_FILE} 

 

run_pipeline.py \ 

 -a ${POLISHED_CONTIGS_FILE} \ 

 -l ${POLISHED_CONTIGS_FAIDX_FILE} \ 

 -b ${SORTED_HIC_BED_FILE} \ 

 -e ${RESTRICTION_ENZYME_SEQ} \ 

 -s ${GENOME_SIZE} \ 

 -m yes \ 

 -o ${OUTPUT_SALSA_DIR} 
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Note that all newly-created gaps from SALSA will all be assigned a length of 500 

nucleotides (i.e., 500 Ns in a row). Assuming these are gaps of unknown size, these will ideally 

be changed to 100 nucleotides for any submissions to GenBank. If you have multiple sources of 

evidence for gaps (e.g., Hi-C and RNA-seq), you will want to keep track of which gaps were 

supported by each type of evidence. 

 

S.5.3.2 – RNA-seq Scaffolding 

The RNA-seq data were aligned using HiSat v0.1.6-beta (Kim et al. 2015), and the 

alignments were converted from SAM to BAM format and sorted using SAMtools v1.6 (Li et al. 

2009). First, the assembly (scaffolds from Hi-C) was indexed with HiSat. For each tissue (i.e., 

heart, gill, and liver), HiSat aligned reads to the assembly, SAMtools sorted and compressed the 

output alignments, and Rascaf downloaded June 2018 (Song et al. 2016) computed how 

scaffolding could be done. The actual scaffolding was done with Rascaf in a single step after all 

steps had been completed for each tissue. The process is described in the following script: 

hisat-build \ 

 ${HISAT_IDX_PREFIX} \ 

 ${HIC_SCAFFOLDS} 

 

 

for TISSUE in {gill,heart,liver} 

do 

 RNASEQ_READS_LEFT=${TISSUE}_L.fq.gz 

 RNASEQ_READS_RIGHT=${TISSUE}_R.fq.gz 

 ALIGNMENT_SAM=${TISSUE}_aln.sam 

 

 hisat \ 

  -p ${THREADS} \ 

  --phred33 -q -t \ 

  -x ${HISAT_IDX_PREFIX} \ 

  -1 ${RNASEQ_READS_LEFT} \ 

  -2 ${RNASEQ_READS_RIGHT} \ 

  -S ${ALIGNMENT_SAM} 
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 samtools view \ 

  -buh ${ALIGNMENT_SAM} \ 

  | samtools sort \ 

   -@ ${THREADS} \ 

   -m ${MEMORY}M \ 

   -O BAM \ 

   -o ${ALIGNMENT_BAM} 

 

 rascaf \ 

  -breakN 1 \ 

  -b ${ALIGNMENT_BAM} \ 

  -f ${HIC_SCAFFOLDS} \ 

  -o ${TISSUE}.out 

done 

 

rascaf-join \ 

 -r gill.out \ 

 -r heart.out \ 

 -r liver.out \ 

 -o ${OUTPUT_FILE_PREFIX} 

 
Note that the -breakN 1 option breaks all scaffolds at gaps of any size (1 or more Ns) 

while it determines which sequences it can join. Broken gaps are then restored to their original 

length and location when additional gaps are added based on the RNA-seq read pairs. If the 

RNA-seq evidence disagrees with any pre-existing gaps, it will remove them. Also note that 

newly-created gaps from Rascaf will all be assigned a length of 17 nucleotides (i.e., 17 Ns in a 

row). For submission to GenBank, these will ideally be changed to 100 nucleotides. If you have 

multiple sources of evidence (e.g., Hi-C and RNA-seq), you will want to keep track of which 

gaps were supported by each type of evidence. 

 

S.5.4 – Assembly Statistics 

Assembly continuity statistics, e.g., N50 and auN (Li 2020), were calculated with caln50 

downloaded April 2020 (https://github.com/lh3/calN50) and a custom Python 

(https://www.python.org) script. caln50 is run using the following simple command: 
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caln50 \ 

 -s 0.01 \ 

 -L ${GENOME_SIZE} \ 

 ${CONTIGS_OR_SCAFFOLDS_FILE} \ 

 > ${STATISTICS_FILE} 

 
The custom Python script is not efficient, but it does calculate Nx, Lx, NGx, and LGx, as 

well as a few other interesting points about sequences in a fasta file. This script is too long to 

realistically represent when embedded in the text; it is available on GitHub at https://github.com/

pickettbd/basicAsmStatsCalcInPy. 

Assembly correctness was assessed using single-copy orthologs with BUSCO v4.0.6 

(Simão et al. 2015) and OrthoDB v10 (Kriventseva et al. 2019). The BUSCO config file was the 

not modified from the default aside from the locations of OrthoDB v10 and the binary 

executables for BUSCO. It was run based on the following command structure: 

busco \ 

 --offline \ 

 --config ${BUSCO_CONFIG_FILE} \ 

 --cpu ${THREADS} \ 

 --in ${CONTIGS_OR_SCAFFOLDS_FASTA} \ 

 --out_path ${OUTPUT_DIR} \ 

 --out ${OUTPUT_FILE_PREFIX} \ 

 --mode genome \ 

 --lineage actinopterygii \ 

 --augustus_species zebrafish 

 
 
S.6 – Transcriptome Assembly 

The transcripts were assembled using Trinity v2.6.6 (Grabherr et al. 2011), which 

depended on Bowtie v2.3.4.3 (Langmead and Salzberg 2012), Jellyfish v2.2.10 (Marcais and 

Kingsford 2011), salmon v0.12 (Patro et al. 2017), and SAMtools v1.6 (Li et al. 2009): 
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trinity \ 

 --no_version_check \ 

 --max_memory ${MEMORY} \ 

 --CPU ${THREADS} \ 

 --long_reads ${DUAL_CORRECTED_PACBIO_READS} \ 

 --seqType fq \ 

 --left ${RNASEQ_READS_LEFT} \ 

 --right ${RNASEQ_READS_RIGHT} \ 

 --SS_lib_type FR \ 

 --normalize_max_read_cov 50 \ 

 --normalize_by_read_set \ 

 --min_contig_length 200 \ 

 --output ${TRINITY_OUTPUT_DIR} 

 
Assembly correctness was assessed using single-copy orthologs with BUSCO v4.0.6 

(Simão et al. 2015) and OrthoDB v10 (Kriventseva et al. 2019). The command and config file 

were a match to how BUSCO was run to assess genome assembly correctness, except that the --

mode option was transcriptome instead of genome. 

 

S.7 – Computational Annotation 

The MAKER v3.01.02-beta (Holt and Yandell 2011) pipeline was used to annotate the 

assembly. With a large enough cluster with MPI support, MAKER runs relatively quickly for 

each round. The general process was described in prose in the main manuscript, but it can be 

summarized in outline form here: 

I. MAKER round #1 

II. ab initio gene predictors 

a. AUGUSTUS 

b. GeneMark-ES 

c. SNAP 

III. MAKER round #2 

IV. ab initio gene predictors 
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a. AUGUSTUS 

b. SNAP 

V. MAKER round #3 

VI. MAKER post-processing & functional annotation 

As each round of MAKER was run in a nearly identical fashion, the process will be 

described once, followed by differences between the rounds. Similarly, AUGUSTUS and SNAP 

will also be described once. 

S.7.1 – MAKER Round #1 

The command to run MAKER is straight-forward, though may vary slightly depending 

on the implementation of MPI employed by the cluster. The MAKER documentation says to run 

MAKER with the mpiexec command, but mpirun was successful for our setup. Running 

MAKER from a working directory on an NFS drive will almost certainly result in failure unless 

MAKER is directed where to do its work in a non-NFS temporary directory. This required some 

extra attention to job cleanup on our cluster, but it was successful when we pointed MAKER to 

the local drives on the nodes on which it was run, which were mounted at /tmp. When calling 

MAKER from the directory in which the control files exist, the command to start MAKER looks 

like this: 

mpirun maker \ 

-cpus ${CPUS} \ 

-TMP ${MAKER_TMP_DIR} 

 
The truly critical parts are in the MAKER control files. Assuming one has a successfully 

installed and configured version of MAKER available, default control files can be generated in 

the working directory by running the following command: maker -CTL. No modifications were 

made to the maker_evm.ctl file. The maker_bopt.ctl file was left unchanged as well. Note 

that use_rapsearch was set to 0 and blast_type was set to ncbi+. The maker_exe.ctl file 
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was modified as needed only to set correct paths to the executables for MAKER’s dependencies. 

The following shows the modified or otherwise relevant lines from the maker_opts.ctl file: 

# genome 

genome=/path/to/scaffolds.fa 

organism_type=eukaryotic 

 

#re-annotation 

maker_gff= 

est_pass=0 

protein_pass=0 

rm_pass=0 

model_pass=0 

pred_pass=0 

other_pass=0 

 

# est/rna-seq 

est=/path/to/Trinity/transcripts.fa 

est_gff= 

 

# protein homology 

protein=/path/to/uniprot_sprot.fa 

protein_gff= 

 

# repeat masking 

model_org=all 

rmlib=/path/to/RepeatModeler/results/assembly-db-families.fa 

repeat_protein=/path/to/maker-install-dir/data/te_proteins.fa 

rm_gff= 

softmask=1 

 

# gene prediction 

snaphmm= 

gmhmm= 

augustus_species= 

pred_gff= 

model_gff= 

run_evm=0 

est2genome=1 

protein2genome=1 

trna=0 

 

# maker behavior 

max_dna_len=1000000 

min_contig=20000 
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pred_flank=200 

pred_stats=0 

AED_threshold=1 

min_protein=0 

alt_splice=0 

always_complete=0 

map_forward=0 

keep_preds=0 

 

split_hit=10000 

min_intron=20 

single_exon=0 

single_length=250 

correct_est_fusion=0 

 
Once MAKER has completed, a few MAKER accessory scripts can be run to extract the 

results from its datastore located at ${PROJECT_DIR}/maker/rnd1/*.datastore. Additional 

modifications (shown), can also be employed to make output names more palatable. For sake of 

demonstration, we assume the master datastore index log file is prefixed with scaffolds, and 

the output base (-o option for fasta_merge) is agloss-rnd1 (A. glossodonta round 1)): 

cd maker/rnd1/scaffolds.maker.output 

 

fasta_merge \ 

 -o agloss-rnd1 \ 

 -d scaffolds_ master_datastore_index.log 
 

gff3_merge \ 

 -n -s \ 

 -d scaffolds_ master_datastore_index.log \ 
 > agloss-rnd1_noSeq.gff 

 

cd scaffolds_datastore 

 

rename 's/.all.maker./_/' *.fasta # Perl rename, not Linux util 

rename 's/fasta/fa/' *.fasta      # Perl rename, not Linux util 

 

awk '{if ($2 == "est2genome") print $0}' \ 

 agloss-rnd1_noSeq.gff \ 

 > agloss-rnd1_est2genome.gff 

 

awk '{if ($2 == "protein2genome") print $0}' \ 

 agloss-rnd1_noSeq.gff \ 

 > agloss-rnd1_protein2genome.gff 
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awk '{if ($2 ~ "repeat") print $0}' \ 

 agloss-rnd1_noSeq.gff \ 

 > agloss-rnd1_repeats.gff 

 

mv agloss-rnd1*.fa agloss-rnd1*.gff ../.. 

 

cd ../../../.. 

 
S.7.2 – ab initio Gene Prediction 

Three ab initio gene prediction programs were run between MAKER rounds 1 and 2. 

AUGUSTUS and SNAP can take gene models as input, and they are thus able to be run with 

new models after rounds 1 and 2 of MAKER in preparation for rounds 2 and 3, respectively. 

GeneMark-ES does not take gene models as input, and it thus needs to be run only one time. 

 
S.7.2.1 – GeneMark-ES 

GeneMark-ES required a software key to be run, which can be obtained or re-obtained 

for free for academic use at any time. GeneMark-ES also requires a configuration file to be run; 

the default configuration file was used. The following command demonstrates how to run 

GeneMark-ES: 

gmes_petap.pl \ 

 --ES \ 

 --usr_cfg ${COPY_OF_DEFAULT_CONFIG_FILE} \ 

 --cores ${THREADS} \ 

 --sequence ${SCAFFOLDS_ASSEMBLY_FILE} 

 

S.7.2.2 – AUGUSTUS 

AUGUSTUS training can be handled with BUSCO. Before AUGUSTUS can be trained, 

configuration files and data from AUGUSTUS and BUSCO will need to be copied to the 

working directory for this part of the analysis, and the relevant environment variables will need 

to be reset (which assumes they are properly set in the first place): 
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cp  -r ${AUGUSTUS_CONFIG_PATH} ${PROJECT_DIR}/augustus_config 

export AUGUSTUS_CONFIG_PATH=${PROJECT_DIR}/augustus_config 

 

cp  ${BUSCO_CONFIG_FILE} ${PROJECT_DIR}/busco_config.ini 

export BUSCO_CONFIG_FILE=${PROJECT_DIR}/busco_config.ini 

 
No changes were made to the AUGUSTUS files. The only change made to the BUSCO 

configuration file was to set download_path=/path/to/odb10 instead of ./busco_download. 

This is assuming OrthoDB v10 has already been downloaded to that location and that the 

‑‑offline flag will be used when running BUSCO. Before training AUGUSTUS, candidate gene 

regions need to be extracted. This was done with a custom Python script (available at 

https://github.com/pickettbd/albula-glossodonta_assembly-paper_misc-scripts) and BEDTools 

v2.28.0 (Quinlan and Hall 2010). 

python3 generateBedForMrnaExtraction.py \ 

 maker/rnd1/agloss-rnd1_noSeq.gff \ 

 scaffolds.fa \ 

 candidates-rnd1.bed 

 

bedtools getfasta \ 

 -fi scaffolds.fa \ 

 -bed candidates-rnd1.bed \ 

 -fo candidates-rnd1.fa 

 
AUGUSTUS was trained by running BUSCO with the same command described in the 

section S.5.4 (i.e., mode=genome, lineage=actinopterygii, augustus_species=zebrafish). 

To make the AUGUSTUS training parameters generated after running BUSCO available to the 

next round of MAKER, some post-processing is required: 

# make dir for final results 

mkdir augustus_config/species/agloss 

 

# move to results location 

cd "busco-augustus/agloss-rnd1/ 

 run_actinopterygii_odb10/augustus_output/ 

 retraining_parameters/BUSCO_agloss-rnd1" 
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# rename some files and their references to eachother 

rename \ # Perl rename, not Linux util 

 's/BUSCO_(agloss-rnd1_)/$1/' \ 

 ./* 

 

sed \ # gnu sed 

 -i -r \ 

 's/BUSCO_(agloss-rnd1_)/\1/' \ 

 ./agloss-rnd1_parameters.cfg* 

 

# do it again, removing the rnd info 

rename \ # Perl rename, not Linux util 

 's/(agloss)-rnd1)/$1/' \ 

 ./* 

 

sed \ # gnu sed 

 -i -r \ 

 's/(agloss)-rnd1/\1/' \ 

 ./* 

 

# copy the files to final results location 

cp -f ./* ../../../../../../augustus_config/species/agloss/ 

 

# move back to main project dir 

cd – 

 

S.7.2.3 – SNAP 

Training with SNAP is much less resource intensive than training AUGUSTUS. Most, if 

not all, of the commands can reasonably be run “locally” on a login node or other machine. The 

final output file, genome.hmm, is what will be provided to the next round of MAKER. Inspection 

of the log files was performed after each step. The process of training SNAP can be described by 

the following commands: 

mkdir -p snap/rnd1 

 

ln -s \ 

 ../../maker/rnd1/agloss-rnd1_withSeq.gff \ 

 snap/rnd1/genome.gff 

 

cd snap/rnd1 

 

maker2zff genome.gff 
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fathom \ 

 genome.ann genome.dna \ 

 -gene-stats \ 

 > gene-stats.log 

 

fathom \ 

 genome.ann genome.dna \ 

 -validate \ 

 > validate.log 

 

fathom \ 

 genome.ann genome.dna \ 

 -categorize 1000 \ 

 > categorize.log 

 

fathom \ 

 uni.ann uni.dna \ 

 -export 1000 -plus \ 

 > export.log 

 

forge \ 

 export.ann export.dna \ 

 > forge.log 

 

hmm-assembler.pl \ 

 genome params \ 

 > genome.hmm 

 
S.7.3 – MAKER Round #2 

The second round of MAKER was run much the same way as the first, with a few 

modifications. First, the second round was run in a separate directory: maker/rnd2. The run_evm 

flag was set to enable MAKER to run EVidenceModeler v1.1.1 (Haas et al. 2008). The control 

files were copied from the first round and the following changes were made to maker_opts.ctl: 

# est/rna-seq 

est= 

est_gff=/path/to/project/maker/rnd1/agloss-rnd1_est2genome.gff 

 

# protein homology 

protein= 

protein_gff=/path/to/project/maker/rnd1/agloss-rnd1_protein2genome.gff 
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# repeat masking 

model_org= 

rmlib= 

repeat_protein= 

rm_gff=/path/to/project/maker/rnd1/agloss-rnd1_repeats.gff 

 

# gene prediction 

snaphmm=/path/to/project/snap/rnd1/genome.hmm 

gmhmm=/path/to/project/gmes/output/gmhmm.mod 

augustus_species=agloss 

run_evm=1 

est2genome=0 

protein2genome=0 

 
Additionally, the same accessory scripts, renaming, etc. was performed after this second round of 

MAKER as with the first round. The only differences being that rnd1 was replaced with rnd2 in 

all the commands and names and the awk commands were skipped. 

 

S.7.4 – ab initio Gene Prediction 

Since GeneMark-ES does not take gene models as input, only SNAP and AUGUSTUS 

could be re-run after MAKER’s second round. Before training them, the models from MAKER 

were filtered using gFACs v1.1.1 (Caballero and Wegrzyn 2019). 

 

S.7.4.1 – gFACs Filtering 

In an attempt to improve the quality of gene models being used for this final round of 

training with AUGUSTUS and SNAP, gFACs was employed to filter out models with single-

exon genes, introns shorter than 20bp, etc. The gFACs command and relevant supporting 

commands (e.g., creating working directories) are shown here: 

mkdir -p gfacs/rnd2 

 

ln -s \ 

 ../../maker/rnd2/agloss-rnd2_noSeq.gff \ 

 gfacs/rnd2/orig_noSeq.gff 
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ln -s \ 

 ../../assembly/scaffolds.fa \ 

 gfacs/rnd2/assembly.fa 

 

awk \ 

 'BEGIN{x=0;}/^##FASTA/{x=1;}{if(x){print $0;}}' \ 

 maker/rnd2/agloss-rnd2_withSeq.gff \ 

 > gfacs/rnd2/orig_onlySeq.gff 

 

cd gfacs/rnd2 

 

gFACs.pl \ 

 -f "maker_2.31.9_gff" \ 

 -p  ./output/agloss-rnd2_noSeq \ 

 --statistics-at-every-step \ 

 --statistics \ 

 --rem-monoexonics \ 

 --min-exon-size 20 \ 

 --min-intron-size 20 \ 

 --min-CDS-size 74 \ 

 --fasta assembly.fa \ 

 --splice-table \ 

 --nt-content \ 

 --canonical-only \ 

 --rem-genes-without-stop-codon \ 

 --allowed-inframe-stop-codons 0 \ 

 --create-gff3 \ 

 --get-fasta-with-introns \ 

 --get-fasta-without-introns \ 

 --get-protein-fasta \ 

 --distributions \ 

 exon_lengths \ 

 intron_lengths \ 

 CDS_lengths \ 

 gene_lengths \ 

 exon_position \ 

 exon_position_data \ 

 intron_position \ 

 intron_position_data \ 

 -O ./output \ 

 orig_noSeq.gff 
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ln -s \ 

 agloss-rnd2_noSeq_out.gff3 \ 

 output/agloss-rnd2_noSeq.gff 

 

cat \ 

 output/agloss-rnd2_noSeq.gff orig_onlySeq.gff \ 

 > output/agloss-rnd2_withSeq.gff 

 

cd ../.. 

 
S.7.4.2 – AUGUSTUS 

Training AUGUSTUS after the second round of MAKER in preparation for the third 

round occurred in the same manner as the first time. The exceptions were that (a) the input GFF3 

file came from gFACs instead of directly from MAKER, (b) augustus_species=agloss was 

used instead of augustus_species=zebrafish, and (c) the occurrences of rnd1 in the 

commands and names were changed to rnd2. The commands are replicated (and appropriately 

modified) again here: 

python3 generateBedForMrnaExtraction.py \ 

 gfacs/rnd2/output/agloss-rnd2_noSeq.gff \ 

 scaffolds.fa \ 

 candidates-rnd2.bed 

 

bedtools getfasta \ 

 -fi scaffolds.fa \ 

 -bed candidates-rnd2.bed \ 

 -fo candidates-rnd2.fa 

 

AUGUSTUS was trained by running BUSCO with the same command described in the section 

S.5.4 (i.e., mode=genome and lineage=actinopterygii) except that 

augustus_species=agloss instead of zebrafish. To make the AUGUSTUS training 

parameters generated after running BUSCO available to the next round of MAKER, some post-

processing is required: 
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# move to results location 

cd "busco-augustus/agloss-rnd2/ 

 run_actinopterygii_odb10/augustus_output/ 

 retraining_parameters/BUSCO_agloss-rnd2" 

 

# rename some files and their references to each other 

rename \ # Perl rename, not Linux util 

 's/BUSCO_(agloss-rnd2_)/$1/' \ 

 ./* 

 

sed \ # gnu sed 

 -i -r \ 

 's/BUSCO_(agloss-rnd2_)/\1/' \ 

 ./agloss-rnd1_parameters.cfg* 

 

# do it again, removing the rnd info 

rename \ # Perl rename, not Linux util 

 's/(agloss)-rnd2)/$1/' \ 

 ./* 

 

sed \ # gnu sed 

 -i -r \ 

 's/(agloss)-rnd2/\1/' \ 

 ./* 

 

# copy the files to final results location 

cp -f ./* ../../../../../../augustus_config/species/agloss/ 

 

# move back to main project dir 

cd – 

 
S.7.4.3 – SNAP 

Training SNAP after the second round of MAKER in preparation for the third round 

occurred in the same manner as the first time. The exceptions were that (a) the input GFF3 file 

came from gFACs instead of directly from MAKER, (b) the maker2zff command had to be 

modified, and (c) the occurrences of rnd1 in the commands and names were changed to rnd2. 

The maker2zff script provided by MAKER that was modified is referred to as maker2zff_v2. 

The only change required was to use exon instead of CDS on line 142. The commands are 

replicated (and appropriately modified) again here: 
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mkdir -p snap/rnd2 

 

ln -s \ 

 ../../gfacs/rnd2/output/agloss-rnd2_withSeq.gff \ 

 snap/rnd2/genome.gff 

 

cd snap/rnd2 

 

maker2zff_v2 -n genome.gff 

 

fathom \ 

 genome.ann genome.dna \ 

 -gene-stats \ 

 > gene-stats.log 

 

fathom \ 

 genome.ann genome.dna \ 

 -validate \ 

 > validate.log 

 

fathom \ 

 genome.ann genome.dna \ 

 -categorize 1000 \ 

 > categorize.log 

 

fathom \ 

 uni.ann uni.dna \ 

 -export 1000 -plus \ 

 > export.log 

 

forge \ 

 export.ann export.dna \ 

 > forge.log 

 

hmm-assembler.pl \ 

 genome params \ 

 > genome.hmm 

 
S.7.5 – MAKER Round #3 

The third round of MAKER was run much the same way as the second, with a few 

modifications. First, the third round was run in a separate directory: maker/rnd3.  The trna flag 

was used to ensure MAKER ran tRNAscan-SE v1.3.1 (Chan and Lowe 2019). The control files 

were copied from the second round and the following changes were made to maker_opts.ctl: 
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# gene prediction 

snaphmm=/path/to/project/snap/rnd2/genome.hmm 

trna=1 

 
Additionally, the same accessory scripts, renaming, etc. was performed after this third round of 

MAKER as with the second round. The only difference being rnd2 replaced with rnd3 in all the 

commands and names (the awk commands were again skipped).  

 

S.7.6 – MAKER Post-processing and Functional Annotation 

The structural annotations created by MAKER required some modest post-processing 

before adding functional annotations.  MAKER accessory scripts were used to update sequence 

names from the long MAKER names to friendlier ones. Other MAKER scripts were used to 

update the fasta and/or gff3 files with functional annotations found with the BLAST+ Suite 

v2.9.0 (Altschul et al. 1990; Camacho et al. 2009) and InterProScan v5.45-80.0 (Jones et al. 

2014; Mitchell et al. 2019). 

# create and move to a working dir 

mkdir -p maker/post 

cd maker/post 

 

# copy the requisite output files 

cp ../rnd3/*.gff ../rnd3/*.fa . 

cp ../rnd1/agloss-rnd1_{repeats,{est,protein}2genome}.gff . 

 

# remove the rnd info 

rename \ # Perl version, not Linux util 

 's/-rnd[1-3]//' \ 

 *.fa *.gff 

 

# map new ids to MAKER names 

NUM_SEQS=`grep -Ev '^#' agloss_noSeq.gff \ 

 | cut -d "\t" -f 9 | tr ';' '\n' \ 

 | cut -d '=' -f 2 | sort -u | wc -l` 
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maker_map_ids \ 

 --initial=1 \ 

 --prefix=Albula-glossodonta \ 

 --suffix='-?%' \ 

 --iterate=1 \ 

 --justify=${#NUM_SEQS} \ 

 agloss_withSeq.gff \ 

 > identifiers_map.tsv 

 

# rename based on new ids 

for FASTA in *.fa 

do 

 cp -f "${FASTA}" "${FASTA%.fa}_renamed.fa" 

 map_fasta_ids identifiers_map.tsv "${FASTA%.fa}_renamed.fa" 

done 

 

for GFF in *.gff 

do 

 cp -f "${GFF}" "${GFF%.gff}_renamed.gff" 

 map_gff_ids identifiers_map.tsv "${GFF%.gff}_renamed.gff" 

done 

 

# prep for functional annotation 

cd /path/to/swissprot 

 

makeblastdb \ 

 -dbtype prot \ 

 -in uniprot_sprot.fa \ 

 -input_type fasta \ 

 -title uniprot_sprot \ 

 -hash_index \ 

 -out uniprot_sprot \ 

 -logfile uniprot_sprot_makeblastdb.log 

 

cd – 

 

# do the alignment for func. annot. 

blastp \ 

 -task blastp \ 

 -query proteins_renamed.fa \ 

 -db /path/to/swissprot/uniprot_sprot \ 

 -num_threads ${THREADS} \ 

 -max_target_seqs 1 \ 

 -max_hsps 1 \ 

 -evalue 1e-6 \ 

 -outfmt 6 \ 

 -out proteins-x-uniprotSprot_fmt6.tsv 
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# update the fasta and gff files with func. annots. 

for FASTA in *_renamed.fa 

do 

 maker_functional_fasta \ 

  /path/to/swissprot/unitprot_sprot.fa \ 

  proteins-x-uniprotSprot_fmt6.tsv \ 

  ${FASTA} \ 

  > ${FASTA%.fa}_putative-function.fa 

done 

 

for GFF in *_renamed.gff 

do 

 maker_functional_gff \ 

  /path/to/swissprot/unitprot_sprot.fa \ 

  proteins-x-uniprotSprot_fmt6.tsv \ 

  ${GFF} \ 

  > ${GFF%.gff}_putative-function.gff 

done 

 

# run interproscan for more func. annots. 

interproscan.sh \ 

 -m "standalone" \ 

 -cpu ${THREADS} \ 

 -T "${TMP}" \ 

 -appl "pfam" \ 

 -dp \ 

 -f "TSV" \ 

 -goterms \ 

 -iprlookup \ 

 -pa \ 

 -t "p" \ 

 -i proteins_renamed.fa\ 

 -o proteins-interproscan.tsv 

 

# update the gff files with interproscan results 

for GFF in {with,no}Seq_renamed_putative-function.gff 

do 

 ipr_update_gff \ 

  ${GFF} \ 

  proteins-interproscan.tsv \ 

  > ${GFF%.gff}_domain-added.gff 

done 

 

for GFF in {with,no}Seq_renamed.gff 

do 

 iprscan2gff3 \ 

  proteins-interproscan.tsv \ 

  ${GFF} \ 

  > ${GFF%.gff} _visible-iprscan-domains.gff 
done 
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cd ../.. 
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APPENDIX 3 

Chapter 2 – Additional File 2 

 

SUPPLEMENTAL TABLES 

—  for  — 

Genome Assembly of the Roundjaw Bonefish (Albula glossodonta), a Vulnerable 

Circumtropical Sportfish 
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Table S1. Sampling sites for A. glossodonta for population genomic analyses. The number of individuals (N) 
after data filtering are displayed for each atoll and island group. 

Island Group Atoll N (Atoll) N (Island group) 
Amirantes  St Joseph 17 17 
Farquhar  Farquhar 8 17 

 Providence 9 
Aldabra  Aldabra 8 14 

  Cosmoledo 6 
Mauritius St. Brandon 18 18 

 
 
 
 
 
 
 
 
Table S2. BUSCO statistics for the RNA transcripts and genomic assemblies

 Complete 
(%) 

Complete 
Single-Copy 

(%) 

Complete 
Duplicated 

(%) 
Fragmented 

(%) 
Missing 

(%) Total 
Transcriptome       

Trinity 
Transcripts 

3,144 
(86.4) 

1,241 
(34.1) 

1,903 
(52.3) 

128 
(3.5) 

368 
(10.1) 3,640 

Genome       

Canu 
Contigs 

3,485 
(95.7) 

3,081 
(84.6) 

404 
(11.1) 

22 
(0.6) 

133 
(3.7) 3,640 

RaCon 
Polished 
Contigs 

3,484 
(95.7) 

3,076 
(84.5) 

408 
(11.2) 

22 
(0.6) 

134 
(3.7) 3,640 

SALSA 
Scaffolds 

3,480 
(95.6) 

3,074 
(84.5) 

406 
(11.2) 

27 
(0.7) 

133 
(3.7) 3,640 

SALSA 
+ Rascaf 
Scaffolds 

3,481 
(95.6) 

3,076 
(84.5) 

405 
(11.1) 

25 
(0.7) 

134 
(3.7) 3,640 
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Table S3. Input parameters for ipyrad used to assemble ddRAD data to the A. glossodonta reference genome
Parameter Description Input 
assembly_method  Assembly method reference 
datatype  Datatype ddrad 
restriction_overhang  Restriction overhang (cut1,) or (cut1, cut2) TGCAG, CCG 
max_low_qual_bases  Max low quality base calls (Q<20) in a read 5 
phred_Qscore_offset  phred Q score offset 33 
mindepth_statistical  Min depth for statistical base calling 6 
mindepth_majrule  Min depth for majority-rule base calling 6 
maxdepth  Max cluster depth within samples 10000 
clust_threshold  Clustering threshold for de novo assembly 0.9 
max_barcode_mismatch  Max number of allowable mismatches in barcodes 0 
filter_adapters  Filter for adapters/primers 2 
filter_min_trim_len  Min length of reads after adapter trim 35 
max_alleles_consens  Max alleles per site in consensus sequences 2 
max_Ns_consens  Max N's (uncalled bases) in consensus 0.05 
max_Hs_consens  Max Hs (heterozygotes) in consensus 0.05 
min_samples_locus  Min # samples per locus for output 10 
max_SNPs_locus  Max # SNPs per locus 0.2 
max_Indels_locus  Max # of indels per locus 8 
max_shared_Hs_locus  Max # heterozygous sites per locus 0.5 
trim_reads  Trim raw read edges (R1>, <R1, R2>, <R2) 0, 0, 0, 0 
trim_loci  Trim locus edges (R1>, <R1, R2>, <R2) 0, 0, 0, 0 
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Table S4. Data filtering steps implemented in VCFtools and PLINK after assembly in ipyrad
SNP Quality Filters  

Genotype Calls Remove individuals missing > 98% genotype calls  
Indels Remove indels 

Read Depth Remove loci with mean depth > 100 

Singletons and minor alleles Retain sites with a minor allele frequency > 0.05  and 
minor allele count  ≥ 2 

Biallelic SNPs Max alleles = 2 
Missing Data  
 Remove loci with genotype call rate < 40% 
 Remove individuals missing > 60% genotype calls 
 Remove loci with genotype call rate < 60% 
 Remove individuals missing > 50% genotype calls 
 Remove loci with genotype call rate < 75% 
Hardy-Weinberg Equilibrium Remove loci out of HWE (0.05) 
Linkage Disequilibrium Remove loci within 1kb windows with r2 > 0.6  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S5. Observed heterozygosity (HO) and expected heterozygosity (HS) for each island group
Island Group HO HS 
Amirantes 0.2800 0.2915 
Farquhar  0.2901 0.2946 
Aldabra  0.2589 0.2862 
Mauritius 0.2829 0.2923 
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APPENDIX 4 

Chapter 3 – Supplementary File 1 

 

SUPPLEMENTARY BIOINFORMATICS METHODS 

An overview of the methods used in this study was provided in the main manuscript. 

Where appropriate, additional details, such as the code for custom scripts and the commands 

used to run software, are provided here. 

 

Read Error Correction 

The self-corrected reads were generated using Canu v1.6 (Koren et al. 2017) with the 

following command: 

canu -correct \ 

    -s ${SETTINGS_FILE} \ 

-d ${OUTPUT_DIR_NAME} \ 

-p ${OUTPUT_PREFIX} \ 

-pacbio-raw \ 

${INPUT_PACBIO_READS[@]} 

 
The relevant lines of the setting file are included here: 

genomeSize=782400000 

ovsMethod=sequential 

gridEngine=slurm 

 

 
Genome Assembly and Scaffolding 

The individual steps of genome assembly and scaffolding will each be described 

separately. Calculation of assembly summary statistics will also be described. 

 
Genome Assembly 
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The assembly was created with Canu v1.6 (Koren et al. 2017) using the already corrected 

reads from the “self” correction strategy using the following command: 

canu -trim-assemble \ 

    -s ${SETTINGS_FILE} \ 

-d ${OUTPUT_DIR_NAME} \ 

-p ${OUTPUT_PREFIX} \ 

-pacbio-corrected \ 

${INPUT_SELF_CORRECTED_PACBIO_READS_FILE} 

 

Scaffolding 

The RNA-seq data were aligned using HiSat v0.1.6-beta (Kim et al. 2015), and the 

alignments were converted from SAM to BAM format and sorted using SAMtools v1.6 (Li et al. 

2009). First, the assembly (contigs from Canu) was indexed with HiSat. For each tissue (i.e., 

brain, eye, fin, gill, heart, kidney, liver, and muscle), HiSat aligned reads to the assembly, 

SAMtools sorted and compressed the output alignments, and Rascaf downloaded June 2018 

(Song et al. 2016) computed how scaffolding could be done. The actual scaffolding was done 

with Rascaf in a single step after all steps had been completed for each tissue. The process is 

described in the following script: 

hisat-build \ 

${HISAT_IDX_PREFIX} \ 

${HIC_SCAFFOLDS} 

 

 

for TISSUE in {brain,eye,fin,gill,heart,kidney,liver,muscle} 

do 

RNASEQ_READS_LEFT=${TISSUE}_L.fq.gz 

RNASEQ_READS_RIGHT=${TISSUE}_R.fq.gz 

ALIGNMENT_SAM=${TISSUE}_aln.sam 

 

hisat \ 

-p ${THREADS} \ 

--phred33 -q -t \ 

-x ${HISAT_IDX_PREFIX} \ 

-1 ${RNASEQ_READS_LEFT} \ 

-2 ${RNASEQ_READS_RIGHT} \ 

-S ${ALIGNMENT_SAM} 
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samtools view \ 

-buh ${ALIGNMENT_SAM} \ 

| samtools sort \ 

-@ ${THREADS} \ 

-m ${MEMORY}M \ 

-O BAM \ 

-o ${ALIGNMENT_BAM} 

 

rascaf \ 

-breakN 1 \ 

-b ${ALIGNMENT_BAM} \ 

-f ${HIC_SCAFFOLDS} \ 

-o ${TISSUE}.out 

done 

 

rascaf-join \ 

-r gill.out \ 

-r heart.out \ 

-r liver.out \ 

-o ${OUTPUT_FILE_PREFIX} 

 
Assembly Statistics 

Assembly continuity statistics, e.g., N50 and auN (Li 2020), were calculated with caln50 

downloaded April 2020 (https://github.com/lh3/calN50) and a custom Python 

(https://www.python.org) script. caln50 is run using the following simple command: 

caln50 \ 

-s 0.01 \ 

-L ${GENOME_SIZE} \ 

${CONTIGS_OR_SCAFFOLDS_FILE} \ 

> ${STATISTICS_FILE} 

 
The custom Python script is not efficient, but it does calculate Nx, Lx, NGx, and LGx, as well as 

a few other interesting points about sequences in a fasta file. This script is too long to 

realistically represent when embedded in the text; it is available on GitHub at 

https://github.com/pickettbd/basicAsmStatsCalcInPy. 

Assembly correctness was assessed using single-copy orthologs with BUSCO v4.0.6 

(Simão et al. 2015) and OrthoDB v10 (Kriventseva et al. 2019). The BUSCO config file was the 
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not modified from the default aside from the locations of OrthoDB v10 and the binary 

executables for BUSCO. It was run based on the following command structure: 

busco \ 

--offline \ 

--config ${BUSCO_CONFIG_FILE} \ 

--cpu ${THREADS} \ 

--in ${CONTIGS_OR_SCAFFOLDS_FASTA} \ 

--out_path ${OUTPUT_DIR} \ 

--out ${OUTPUT_FILE_PREFIX} \ 

--mode genome \ 

--lineage actinopterygii \ 

--augustus_species zebrafish 

 
Transcriptome Assembly 

The transcripts were assembled using Trinity v2.6.6 (Grabherr et al. 2011), which 

depended on Bowtie v2.3.4.3 (Langmead and Salzberg 2012), Jellyfish v2.2.10 (Marcais and 

Kingsford 2011), salmon v0.12 (Patro et al. 2017), and SAMtools v1.6 (Li et al. 2009): 

trinity \ 

--no_version_check \ 

--max_memory ${MEMORY} \ 

--CPU ${THREADS} \ 

--long_reads ${DUAL_CORRECTED_PACBIO_READS} \ 

--seqType fq \ 

--left ${RNASEQ_READS_LEFT} \ 

--right ${RNASEQ_READS_RIGHT} \ 

--SS_lib_type FR \ 

--normalize_max_read_cov 50 \ 

--normalize_by_read_set \ 

--min_contig_length 200 \ 

--output ${TRINITY_OUTPUT_DIR} 

 
Assembly correctness was assessed using single-copy orthologs with BUSCO v4.0.6 (Simão et 

al. 2015) and OrthoDB v10 (Kriventseva et al. 2019). The command and config file were a 

match to how BUSCO was run to assess genome assembly correctness, except that the --mode 

option was transcriptome instead of genome. 

 

Computational Annotation 
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The MAKER v3.01.02-beta (Holt and Yandell 2011) pipeline was used to annotate the 

assembly. With a large enough cluster with MPI support, MAKER runs relatively quickly for 

each round. The general process was described in prose in the main manuscript, but it can be 

summarized in outline form here: 

I. MAKER round #1 

II. ab initio gene predictors 

a. AUGUSTUS 

b. GeneMark-ES 

c. SNAP 

III. MAKER round #2 

IV. ab initio gene predictors 

d. AUGUSTUS 

e. SNAP 

V. MAKER round #3 

VI. MAKER post-processing & functional annotation 

As each round of MAKER was run in a nearly identical fashion, the process will be described 

once, followed by differences between the rounds. Similarly, AUGUSTUS and SNAP will also 

be described once. 

MAKER Round #1 

The command to run MAKER is straight-forward, though may vary slightly depending 

on the implementation of MPI employed by the cluster. The MAKER documentation says to run 

MAKER with the mpiexec command, but mpirun was successful for our setup. Running 

MAKER from a working directory on an NFS drive will almost certainly result in failure unless 

MAKER is directed where to do its work in a non-NFS temporary directory. This required some 
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extra attention to job cleanup on our cluster, but it was successful when we pointed MAKER to 

the local drives on the nodes on which it was run, which were mounted at /tmp. When calling 

MAKER from the directory in which the control files exist, the command to start MAKER looks 

like this: 

mpirun maker \ 

-cpus ${CPUS} \ 

-TMP ${MAKER_TMP_DIR} 

 
The truly critical parts are in the MAKER control files. Assuming one has a successfully 

installed and configured version of MAKER available, default control files can be generated in 

the working directory by running the following command: maker -CTL. No modifications were 

made to the maker_evm.ctl file. The maker_bopt.ctl file was left unchanged as well. Note 

that use_rapsearch was set to 0 and blast_type was set to ncbi+. The maker_exe.ctl file 

was modified as needed only to set correct paths to the executables for MAKER’s dependencies. 

The following shows the modified or otherwise relevant lines from the maker_opts.ctl file: 

# genome 

genome=/path/to/scaffolds.fa 

organism_type=eukaryotic 

 

#re-annotation 

maker_gff= 

est_pass=0 

protein_pass=0 

rm_pass=0 

model_pass=0 

pred_pass=0 

other_pass=0 

 

# est/rna-seq 

est=/path/to/Trinity/transcripts.fa 

est_gff= 

 

# protein homology 

protein=/path/to/uniprot_sprot.fa 

protein_gff= 
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# repeat masking 

model_org=all 

rmlib=/path/to/RepeatModeler/results/assembly-db-families.fa 

repeat_protein=/path/to/maker-install-dir/data/te_proteins.fa 

rm_gff= 

softmask=1 

 

# gene prediction 

snaphmm= 

gmhmm= 

augustus_species= 

pred_gff= 

model_gff= 

run_evm=0 

est2genome=1 

protein2genome=1 

trna=0 

 

# maker behavior 

max_dna_len=1000000 

min_contig=20000 

 

pred_flank=200 

pred_stats=0 

AED_threshold=1 

min_protein=0 

alt_splice=0 

always_complete=0 

map_forward=0 

keep_preds=0 

 

split_hit=10000 

min_intron=20 

single_exon=0 

single_length=250 

correct_est_fusion=0 

 
Once MAKER has completed, a few MAKER accessory scripts can be run to extract the 

results from its datastore located at ${PROJECT_DIR}/maker/rnd1/*.datastore. Additional 

modifications (shown) can also be employed to make output names more palatable. For sake of 

demonstration, we assume the master datastore index log file is prefixed with scaffolds, and 

the output base (-o option for fasta_merge) is cmel-rnd1 (C. melampygus round 1)): 

cd maker/rnd1/scaffolds.maker.output 
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fasta_merge \ 

-o cmel-rnd1 \ 

-d scaffolds_ master_datastore_index.log 
 

gff3_merge \ 

-n -s \ 

-d scaffolds_ master_datastore_index.log \ 
> cmel-rnd1_noSeq.gff 

 

cd scaffolds_datastore 

 

rename 's/.all.maker./_/' *.fasta # Perl rename, not Linux util 

rename 's/fasta/fa/' *.fasta      # Perl rename, not Linux util 

 

awk '{if ($2 == "est2genome") print $0}' \ 

cmel-rnd1_noSeq.gff \ 

> cmel-rnd1_est2genome.gff 

 

awk '{if ($2 == "protein2genome") print $0}' \ 

cmel-rnd1_noSeq.gff \ 

> cmel-rnd1_protein2genome.gff 

 

awk '{if ($2 ~ "repeat") print $0}' \ 

cmel-rnd1_noSeq.gff \ 

> cmel-rnd1_repeats.gff 

 

mv cmel-rnd1*.fa cmel-rnd1*.gff ../.. 

 

cd ../../../.. 

 
ab initio Gene Prediction 

Three ab initio gene prediction programs were run between MAKER rounds 1 and 2. 

AUGUSTUS and SNAP can take gene models as input, and they are thus able to be run with 

new models after rounds 1 and 2 of MAKER in preparation for rounds 2 and 3, respectively. 

GeneMark-ES does not take gene models as input, and it thus needs to be run only one time. 

 

GeneMark-ES 

GeneMark-ES required a software key to be run, which can be obtained or re-obtained 

for free for academic use at any time. GeneMark-ES also requires a configuration file to be run; 
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the default configuration file was used. The following command demonstrates how to run 

GeneMark-ES: 

gmes_petap.pl \ 

--ES \ 

--usr_cfg ${COPY_OF_DEFAULT_CONFIG_FILE} \ 

--cores ${THREADS} \ 

--sequence ${SCAFFOLDS_ASSEMBLY_FILE} 

 
AUGUSTUS 

AUGUSTUS training can be handled with BUSCO. Before AUGUSTUS can be trained, 

configuration files and data from AUGUSTUS and BUSCO will need to be copied to the 

working directory for this part of the analysis, and the relevant environment variables will need 

to be reset (which assumes they are properly set in the first place): 

cp  -r ${AUGUSTUS_CONFIG_PATH} ${PROJECT_DIR}/augustus_config 

export AUGUSTUS_CONFIG_PATH=${PROJECT_DIR}/augustus_config 

 

cp  ${BUSCO_CONFIG_FILE} ${PROJECT_DIR}/busco_config.ini 

export BUSCO_CONFIG_FILE=${PROJECT_DIR}/busco_config.ini 

 
No changes were made to the AUGUSTUS files. The only change made to the BUSCO 

configuration file was to set download_path=/path/to/odb10 instead of ./busco_download. 

This is assuming OrthoDB v10 has already been downloaded to that location and that the 

‑‑offline flag will be used when running BUSCO. Before training AUGUSTUS, candidate gene 

regions need to be extracted. This was done with a custom Python script (available at 

https://github.com/pickettbd/caranx-melampygus_assembly-paper_misc-scripts) and BEDTools 

v2.28.0 (Quinlan and Hall 2010). 
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python3 generateBedForMrnaExtraction.py \ 

maker/rnd1/cmel-rnd1_noSeq.gff \ 

scaffolds.fa \ 

candidates-rnd1.bed 

 

bedtools getfasta \ 

-fi scaffolds.fa \ 

-bed candidates-rnd1.bed \ 

-fo candidates-rnd1.fa 

 
AUGUSTUS was trained by running BUSCO with the same command described in the 

Assembly Statistics section (i.e., mode=genome, lineage=actinopterygii, 

augustus_species=zebrafish). To make the AUGUSTUS training parameters generated after 

running BUSCO available to the next round of MAKER, some post-processing is required: 

# make dir for final results 

mkdir augustus_config/species/cmel 

 

# move to results location 

cd "busco-augustus/cmel-rnd1/ 

run_actinopterygii_odb10/augustus_output/ 

retraining_parameters/BUSCO_cmel-rnd1" 

 

# rename some files and their references to eachother 

rename \ # Perl rename, not Linux util 

's/BUSCO_(cmel-rnd1_)/$1/' \ 

./* 

 

sed \ # gnu sed 

-i -r \ 

's/BUSCO_(cmel-rnd1_)/\1/' \ 

./cmel-rnd1_parameters.cfg* 

 

# do it again, removing the rnd info 

rename \ # Perl rename, not Linux util 

's/(cmel)-rnd1)/$1/' \ 

./* 

 

sed \ # gnu sed 

-i -r \ 

's/(cmel)-rnd1/\1/' \ 

./* 

 

# copy the files to final results location 

cp -f ./* ../../../../../../augustus_config/species/cmel/ 
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# move back to main project dir 

cd – 

 
SNAP     

Training with SNAP is much less resource intensive than training AUGUSTUS. Most, if 

not all, of the commands can reasonably be run “locally” on a login node or other machine. The 

final output file, genome.hmm, is what will be provided to the next round of MAKER. Inspection 

of the log files was performed after each step. The process of training SNAP can be described by 

the following commands: 

mkdir -p snap/rnd1 

 

ln -s \ 

../../maker/rnd1/cmel-rnd1_withSeq.gff \ 

snap/rnd1/genome.gff 

 

cd snap/rnd1 

 

maker2zff genome.gff 

 

fathom \ 

genome.ann genome.dna \ 

-gene-stats \ 

> gene-stats.log 

 

fathom \ 

genome.ann genome.dna \ 

-validate \ 

> validate.log 

 

fathom \ 

genome.ann genome.dna \ 

-categorize 1000 \ 

> categorize.log 

 

fathom \ 

uni.ann uni.dna \ 

-export 1000 -plus \ 

> export.log 

 

forge \ 

export.ann export.dna \ 

> forge.log 
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hmm-assembler.pl \ 

genome params \ 

> genome.hmm 

 
MAKER Round #2 

The second round of MAKER was run much the same way as the first, with a few 

modifications. First, the second round was run in a separate directory: maker/rnd2. The run_evm 

flag was set to enable MAKER to run EVidenceModeler v1.1.1 (Haas et al. 2008). The control 

files were copied from the first round and the following changes were made to maker_opts.ctl: 

# est/rna-seq 

est= 

est_gff=/path/to/project/maker/rnd1/cmel-rnd1_est2genome.gff 

 

# protein homology 

protein= 

protein_gff=/path/to/project/maker/rnd1/cmel-rnd1_protein2genome.gff 

 

# repeat masking 

model_org= 

rmlib= 

repeat_protein= 

rm_gff=/path/to/project/maker/rnd1/cmel-rnd1_repeats.gff 

 

# gene prediction 

snaphmm=/path/to/project/snap/rnd1/genome.hmm 

gmhmm=/path/to/project/gmes/output/gmhmm.mod 

augustus_species=cmel 

run_evm=1 

est2genome=0 

protein2genome=0 

 
Additionally, the same accessory scripts, renaming, etc. was performed after this second round of 

MAKER as with the first round. The only differences being that rnd1 was replaced with rnd2 in 

all the commands and names and the awk commands were skipped. 

 

ab initio Gene Prediction 
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Since GeneMark-ES does not take gene models as input, only SNAP and AUGUSTUS 

could be re-run after MAKER’s second round. Before training them, the models from MAKER 

were filtered using gFACs v1.1.1 (Caballero and Wegrzyn 2019). 

 

gFACs Filtering 

In an attempt to improve the quality of gene models being used for this final round of 

training with AUGUSTUS and SNAP, gFACs was employed to filter out models with single-

exon genes, introns shorter than 20bp, etc. The gFACs command and relevant supporting 

commands (e.g., creating working directories) are shown here: 

mkdir -p gfacs/rnd2 

 

ln -s \ 

../../maker/rnd2/cmel-rnd2_noSeq.gff \ 

gfacs/rnd2/orig_noSeq.gff 

 

ln -s \ 

../../assembly/scaffolds.fa \ 

gfacs/rnd2/assembly.fa 

 

awk \ 

'BEGIN{x=0;}/^##FASTA/{x=1;}{if(x){print $0;}}' \ 

maker/rnd2/cmel-rnd2_withSeq.gff \ 

> gfacs/rnd2/orig_onlySeq.gff 

 

cd gfacs/rnd2 

 

gFACs.pl \ 

-f "maker_2.31.9_gff" \ 

-p  ./output/cmel-rnd2_noSeq \ 

--statistics-at-every-step \ 

--statistics \ 

--rem-monoexonics \ 

--min-exon-size 20 \ 

--min-intron-size 20 \ 

--min-CDS-size 74 \ 

--fasta assembly.fa \ 

--splice-table \ 

--nt-content \ 

--canonical-only \ 

--rem-genes-without-stop-codon \ 

--allowed-inframe-stop-codons 0 \ 
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--create-gff3 \ 

--get-fasta-with-introns \ 

--get-fasta-without-introns \ 

--get-protein-fasta \ 

--distributions \ 

exon_lengths \ 

intron_lengths \ 

CDS_lengths \ 

gene_lengths \ 

exon_position \ 

exon_position_data \ 

intron_position \ 

intron_position_data \ 

-O ./output \ 

orig_noSeq.gff 

 

ln -s \ 

cmel-rnd2_noSeq_out.gff3 \ 

output/cmel-rnd2_noSeq.gff 

 

cat \ 

output/cmel-rnd2_noSeq.gff orig_onlySeq.gff \ 

> output/cmel-rnd2_withSeq.gff 

 

cd ../.. 

 
 

AUGUSTUS 

Training AUGUSTUS after the second round of MAKER in preparation for the third 

round occurred in the same manner as the first time. The exceptions were that (a) the input GFF3 

file came from gFACs instead of directly from MAKER, (b) augustus_species=cmel was used 

instead of augustus_species=zebrafish, and (c) the occurrences of rnd1 in the commands 

and names were changed to rnd2. The commands are replicated (and appropriately modified) 

again here: 

python3 generateBedForMrnaExtraction.py \ 

gfacs/rnd2/output/cmel-rnd2_noSeq.gff \ 

scaffolds.fa \ 

candidates-rnd2.bed 
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bedtools getfasta \ 

-fi scaffolds.fa \ 

-bed candidates-rnd2.bed \ 

-fo candidates-rnd2.fa 

 

AUGUSTUS was trained by running BUSCO with the same command described in the 

Assembly Statistics section (i.e., mode=genome and lineage=actinopterygii) except that 

augustus_species=cmel instead of zebrafish. To make the AUGUSTUS training parameters 

generated after running BUSCO available to the next round of MAKER, some post-processing is 

required: 

 

# move to results location 

cd "busco-augustus/cmel-rnd2/ 

run_actinopterygii_odb10/augustus_output/ 

retraining_parameters/BUSCO_cmel-rnd2" 

 

# rename some files and their references to each other 

rename \ # Perl rename, not Linux util 

's/BUSCO_(cmel-rnd2_)/$1/' \ 

./* 

 

sed \ # gnu sed 

-i -r \ 

's/BUSCO_(cmel-rnd2_)/\1/' \ 

./cmel-rnd1_parameters.cfg* 

 

# do it again, removing the rnd info 

rename \ # Perl rename, not Linux util 

's/(cmel)-rnd2)/$1/' \ 

./* 

 

sed \ # gnu sed 

-i -r \ 

's/(cmel)-rnd2/\1/' \ 

./* 

 

# copy the files to final results location 

cp -f ./* ../../../../../../augustus_config/species/cmel/ 

 

# move back to main project dir 

cd – 

 
SNAP     
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Training SNAP after the second round of MAKER in preparation for the third round 

occurred in the same manner as the first time. The exceptions were that (a) the input GFF3 file 

came from gFACs instead of directly from MAKER, (b) the maker2zff command had to be 

modified, and (c) the occurrences of rnd1 in the commands and names were changed to rnd2. 

The maker2zff script provided by MAKER that was modified is referred to as maker2zff_v2. 

The only change required was to use exon instead of CDS on line 142. The commands are 

replicated (and appropriately modified) again here: 

mkdir -p snap/rnd2 

 

ln -s \ 

../../gfacs/rnd2/output/cmel-rnd2_withSeq.gff \ 

snap/rnd2/genome.gff 

 

cd snap/rnd2 

 

maker2zff_v2 -n genome.gff 

 

fathom \ 

genome.ann genome.dna \ 

-gene-stats \ 

> gene-stats.log 

 

fathom \ 

genome.ann genome.dna \ 

-validate \ 

> validate.log 

 

fathom \ 

genome.ann genome.dna \ 

-categorize 1000 \ 

> categorize.log 

 

fathom \ 

uni.ann uni.dna \ 

-export 1000 -plus \ 

> export.log 

 

forge \ 

export.ann export.dna \ 

> forge.log 
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hmm-assembler.pl \ 

genome params \ 

> genome.hmm 

 
MAKER Round #3 

The third round of MAKER was run much the same way as the second, with a few 

modifications. First, the third round was run in a separate directory: maker/rnd3.  The trna flag 

was used to ensure MAKER ran tRNAscan-SE v1.3.1 (Chan and Lowe 2019). The control files 

were copied from the second round and the following changes were made to maker_opts.ctl: 

# gene prediction 

snaphmm=/path/to/project/snap/rnd2/genome.hmm 

trna=1 

 
Additionally, the same accessory scripts, renaming, etc. was performed after this third round of 

MAKER as with the second round. The only difference being rnd2 replaced with rnd3 in all the 

commands and names (the awk commands were again skipped).  

 

MAKER Post-processing and Functional Annotation 

The structural annotations created by MAKER required some modest post-processing 

before adding functional annotations.  MAKER accessory scripts were used to update sequence 

names from the long MAKER names to friendlier ones. Other MAKER scripts were used to 

update the fasta and/or gff3 files with functional annotations found with the BLAST+ Suite 

v2.9.0 (Camacho et al. 2009; Altschul et al. 1990) and InterProScan v5.45-80.0 (Jones et al. 

2014; Mitchell et al. 2019). BLAST was run using the annotated protein sequences as the query and 

UniProt/Swissprot as the subject database. The following options were used: -task blastp -

max_target_seqs 1 -max_hsps 1 -evalue 1e-6 -outfmt 6. InterProScan was run using 

annotated proteins as input (same as BLAST) with the following options:  -appl pfam -dp -f TSV 

-goterms -iprlookup -pa -t p. 
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# create and move to a working dir 

mkdir -p maker/post 

cd maker/post 

 

# copy the requisite output files 

cp ../rnd3/*.gff ../rnd3/*.fa . 

cp ../rnd1/cmel-rnd1_{repeats,{est,protein}2genome}.gff . 

 

# remove the rnd info 

rename \ # Perl version, not Linux util 

's/-rnd[1-3]//' \ 

*.fa *.gff 

 

# map new ids to MAKER names 

NUM_SEQS=`grep -Ev '^#' cmel_noSeq.gff \ 

| cut -d "\t" -f 9 | tr ';' '\n' \ 

| cut -d '=' -f 2 | sort -u | wc -l` 

 

maker_map_ids \ 

--initial=1 \ 

--prefix=Caranx-melampygus\ 

--suffix='-?%' \ 

--iterate=1 \ 

--justify=${#NUM_SEQS} \ 

cmel_withSeq.gff \ 

> identifiers_map.tsv 

 

# rename based on new ids 

for FASTA in *.fa 

do 

cp -f "${FASTA}" "${FASTA%.fa}_renamed.fa" 

map_fasta_ids identifiers_map.tsv "${FASTA%.fa}_renamed.fa" 

done 

 

for GFF in *.gff 

do 

cp -f "${GFF}" "${GFF%.gff}_renamed.gff" 

map_gff_ids identifiers_map.tsv "${GFF%.gff}_renamed.gff" 

done 

 

# prep for functional annotation 

cd /path/to/swissprot 

 

makeblastdb \ 

-dbtype prot \ 

-in uniprot_sprot.fa \ 

-input_type fasta \ 

-title uniprot_sprot \ 

-hash_index \ 

-out uniprot_sprot \ 

-logfile uniprot_sprot_makeblastdb.log 
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cd – 

 

# do the alignment for func. annot. 

blastp \ 

-task blastp \ 

-query proteins_renamed.fa \ 

-db /path/to/swissprot/uniprot_sprot \ 

-num_threads ${THREADS} \ 

-max_target_seqs 1 \ 

-max_hsps 1 \ 

-evalue 1e-6 \ 

-outfmt 6 \ 

-out proteins-x-uniprotSprot_fmt6.tsv 

 

# update the fasta and gff files with func. annots. 

for FASTA in *_renamed.fa 

do 

maker_functional_fasta \ 

/path/to/swissprot/unitprot_sprot.fa \ 

proteins-x-uniprotSprot_fmt6.tsv \ 

${FASTA} \ 

> ${FASTA%.fa}_putative-function.fa 

done 

 

for GFF in *_renamed.gff 

do 

maker_functional_gff \ 

/path/to/swissprot/unitprot_sprot.fa \ 

proteins-x-uniprotSprot_fmt6.tsv \ 

${GFF} \ 

> ${GFF%.gff}_putative-function.gff 

done 

 

# run interproscan for more func. annots. 

interproscan.sh \ 

-m "standalone" \ 

-cpu ${THREADS} \ 

-T "${TMP}" \ 

-appl "pfam" \ 

-dp \ 

-f "TSV" \ 

-goterms \ 

-iprlookup \ 

-pa \ 

-t "p" \ 

-i proteins_renamed.fa\ 

-o proteins-interproscan.tsv 

 

# update the gff files with interproscan results 

for GFF in {with,no}Seq_renamed_putative-function.gff 

do 

ipr_update_gff \ 
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${GFF} \ 

proteins-interproscan.tsv \ 

> ${GFF%.gff}_domain-added.gff 

done 

 

for GFF in {with,no}Seq_renamed.gff 

do 

iprscan2gff3 \ 

proteins-interproscan.tsv \ 

${GFF} \ 

> ${GFF%.gff} _visible-iprscan-domains.gff 
done 

 

cd ../.. 

 

Demographic History 

The scripts to perform this analysis are available on GitHub (https://github.com/

pickettbd/msmc-slurmPipeline) with supporting documentation. 

 



www.manaraa.com

 377 

SUPPLEMENTAL REFERENCES 

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, 1990 Basic Local 
Alignment Search Tool. J. Mol. Biol. 215:403-410. 

Caballero, M., and J. Wegrzyn, 2019 gFACs: Gene Filtering, Analysis, and Conversion to Unify 
Genome Annotations Across Alignment and Gene Prediction Frameworks. Genomics 
Proteomics Bioinformatics 17 (3):305-310. 

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., 2009 BLAST+: 
architecture and applications. BMC Bioinform. 10:421. 

Chan, P. P., and T. M. Lowe, 2019 tRNAscan-SE: Searching for tRNA Genes in Genomic 
Sequences. Methods Mol. Biol. 1962:1-14. 

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson et al., 2011 Full-length 
transcriptome assembly from RNA-Seq data without a reference genome. Nat. 
Biotechnol. 29 (7):644-652. 

Haas, B. J., S. L. Salzberg, W. Zhu, M. Pertea, J. E. Allen et al., 2008 Automated eukaryotic 
gene structure annotation using EVidenceModeler and the Program to Assemble Spliced 
Alignments. Genome Biol. 9 (1):R7. 

Holt, C., and M. Yandell, 2011 MAKER2: an annotation pipeline and genome-database 
management tool for second-generation genome projects. BMC Bioinform. 12:491. 

Jones, P., D. Binns, H.-Y. Chang, M. Fraser, W. Li et al., 2014 InterProScan 5: genome-scale 
protein function classification. Bioinformatics 30 (9):1236-1240. 

Kim, D., B. Langmead, and S. L. Salzberg, 2015 HISAT: a fast spliced aligner with low memory 
requirements. Nat. Methods 12 (4):357-360. 

Koren, S., B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman et al., 2017 Canu: scalable and 
accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome 
Res. 27 (5):722-736. 

Kriventseva, E. V., D. Kuznetsov, F. Tegenfeldt, M. Manni, R. Dias et al., 2019 OrthoDB v10: 
sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for 
evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47 (D1):D807-
D811. 

Langmead, B., and S. L. Salzberg, 2012 Fast gapped-read alignment with Bowtie 2. Nat. 
Methods 9 (4):357-359. 

Li, H., 2020 auN: a new metric to measure assembly contiguity in Heng Li’s Blog. 



www.manaraa.com

 378 

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., 2009 The Sequence 
Alignment/Map format and SAMtools. Bioinformatics 25 (16):2078-2079. 

Marcais, G., and C. Kingsford, 2011 A fast, lock-free approach for efficient parallel counting of 
occurrences of k-mers. Bioinformatics 27 (6):764-770. 

Mitchell, A. L., T. K. Attwood, P. C. Babbitt, M. Blum, P. Bork et al., 2019 InterPro in 2019: 
improving coverage, classification and access to protein sequence annotations. Nucleic 
Acids Res. 47 (D1):D351-D360. 

Patro, R., G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, 2017 Salmon provides fast 
and bias-aware quantification of transcript expression. Nat. Methods 14 (4):417-419. 

Quinlan, A. R., and I. M. Hall, 2010 BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics 26 (6):841-842. 

Simão, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, 2015 
BUSCO: assessing genome assembly and annotation completeness with single-copy 
orthologs. Bioinformatics 31 (19):3210-3212. 

Song, L., D. S. Shankar, and L. Florea, 2016 Rascaf: Improving Genome Assembly with RNA 
Sequencing Data. Plant Genome 9 (3):1-12. 

 



www.manaraa.com

 379 

APPENDIX 5 

Chapter 4 – Supplementary File 1 

 

SUPPLEMENTARY BIOINFORMATICS METHODS 

An overview of the methods used in this study was provided in the main manuscript. 

Where appropriate, additional details, such as the code for custom scripts and the commands 

used to run software, are provided here. 

Read Error Correction 

The self-corrected reads were generated using Canu v1.8 1 with the following command: 

canu -correct \ 

    -s ${SETTINGS_FILE} \ 

-d ${OUTPUT_DIR_NAME} \ 

-p ${OUTPUT_PREFIX} \ 

-pacbio-raw \ 

${INPUT_PACBIO_READS[@]} 

 
The relevant lines of the setting file are included here: 

genomeSize=625920000 

ovsMethod=sequential 

gridEngine=slurm 

 
Genome Assembly and Scaffolding 

The individual steps of genome assembly and scaffolding will each be described 

separately. Calculation of assembly summary statistics will also be described. 

 

Genome Assembly 

The assembly was created with Canu v1.8 1 using the already corrected reads from the 

correction process using the following command: 
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canu -trim-assemble \ 

    -s ${SETTINGS_FILE} \ 

-d ${OUTPUT_DIR_NAME} \ 

-p ${OUTPUT_PREFIX} \ 

-pacbio-corrected \ 

${INPUT_SELF_CORRECTED_PACBIO_READS_FILE} 

 
Scaffolding and Mis-assembly Detection with Hi-C Data 

Part of the scaffolding process with Hi-C data employed by SALSA is a mis-assembly 

detection step. The set of contigs created during this process will be pointed out as the 

scaffolding process is described. The Hi-C data (in this case, Dovetail Genomics Omni-C library 

using general endonucleases instead of site-specific restriction enzymes) alignments were 

performed following the Arima Genomics (San Diego, California, USA; 

https://arimagenomics.com) Mapping Pipeline commit #2e74ea4 (https://github.com/

ArimaGenomics/mapping_pipeline), which relied on BWA‑MEM2 v2.1 2,3, Picard v2.19.2 4, and 

SAMtools v1.9 5.  As the pipeline is reasonably well-documented, it will be only summarized 

here: 

1. The assembly (Canu contigs) is indexed using SAMtools faidx.  

2. The assembly is indexed with bwa index and the Hi-C reads are mapped to the 

assembly with bwa mem (I used BWA-MEM2 instead). 

3. The alignments are converted from SAM to BAM format with SAMtools view. 

4. The 5’ ends are filtered using SAMtools view and the Arima Genomics Perl 

(https://www.perl.org) script filter_five_end.pl. 

5. Paired-end reads are combined into a single file with the Arima Genomics Perl script 

two_read_bam_combiner.pl and sorted with SAMtools sort. These reads will be 

treated as single-end hereafter. 

6. Read groups are added to the BAM file using Picard AddOrReplaceReadGroups. 
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7. Merge technical replicates. This step was skipped because no such replicates existed. 

8. Duplicates in the BAM file were marked using Picard MarkDuplicates. 

9. Merge biological replicates. This step was skipped because no such replicates existed. 

10. The final BAM file was indexed with SAMtools index. 

11. Stats were reported with the Arima Genomics Perl script get_stats.pl. 

Scaffolding was performed on the Canu contigs using the final BAM file from the Arima 

Genomics Mapping Pipeline with SALSA commit #974589f 6,7. First, some pre-processing was 

required with BEDTools v2.28.0 8 to convert the final BAM file from the mapping pipeline to 

BED format; this was then sorted. The BEDTools, sorting, and SALSA commands are listed 

here (note that the ${RESTRICTION_ENZYME_SEQ} was DNASE): 

bedtools bamtobed \ 

    -i ${FINAL_ARIMA_BAM_FILE} \ 

> ${HIC_BED_FILE} 

 

sort -k 4 \ 

${HIC_BED_FILE} \ 

> ${SORTED_HIC_BED_FILE} 

 

run_pipeline.py \ 

-a ${CANU_CONTIGS_FILE} \ 

-l ${CANU_CONTIGS_FAIDX_FILE} \ 

-b ${SORTED_HIC_BED_FILE} \ 

-e ${RESTRICTION_ENZYME_SEQ} \ 

-s ${GENOME_SIZE} \ 

-m yes \ 

-o ${OUTPUT_SALSA_DIR} 

 

Note that all newly-created gaps from SALSA will all be assigned a length of 500 

nucleotides (i.e., 500 Ns in a row). Assuming these are gaps of unknown size, these will ideally 

be changed to 100 nucleotides for any submissions to GenBank. If you have multiple sources of 

evidence for gaps, you will want to keep track of which gaps were supported by each type of 

evidence. The final command in that set (i.e., run_pipeline.py) iteratively scaffolds with the 
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Hi-C evidence after fixing mis-assemblies. The fixed contigs will be found in a file called 

assembly.cleaned.fasta and the final iteration of scaffolds will be located in 

scaffolds_FINAL.fasta. The tiling of contigs (from assembly.cleaned.fasta to create 

scaffolds_FINAL.fasta) will be in scaffolds_FINAL.agp. 

 

Scaffolding with RNA-seq Data 

The RNA-seq data were aligned using HiSat v0.1.6-beta 9, and the alignments were 

converted from SAM to BAM format and sorted using SAMtools v1.11 5. First, the assembly 

(scaffolds from SALSA) was indexed with HiSat. For each tissue (i.e., brain, eye, fin, gill, heart, 

kidney, liver, and muscle), HiSat aligned reads to the assembly, SAMtools sorted and 

compressed the output alignments, and Rascaf v1.0.2 commit #690f618 10 computed how 

scaffolding could be done. The actual scaffolding was done with Rascaf in a single step after all 

steps had been completed for each tissue. The process is described in the following script: 

hisat-build \ 

${HISAT_IDX_PREFIX} \ 

${HIC_SCAFFOLDS} 

 

 

for TISSUE in {brain,eye,fin,gill,heart,kidney,liver,muscle} 

do 

RNASEQ_READS_LEFT=${TISSUE}_L.fq.gz 

RNASEQ_READS_RIGHT=${TISSUE}_R.fq.gz 

ALIGNMENT_SAM=${TISSUE}_aln.sam 

 

hisat \ 

-p ${THREADS} \ 

--phred33 -q -t \ 

-x ${HISAT_IDX_PREFIX} \ 

-1 ${RNASEQ_READS_LEFT} \ 

-2 ${RNASEQ_READS_RIGHT} \ 

-S ${ALIGNMENT_SAM} 
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samtools view \ 

-buh ${ALIGNMENT_SAM} \ 

| samtools sort \ 

-@ ${THREADS} \ 

-m ${MEMORY}M \ 

-O BAM \ 

-o ${ALIGNMENT_BAM} 

 

rascaf \ 

-breakN 600 \ 

-b ${ALIGNMENT_BAM} \ 

-f ${HIC_SCAFFOLDS} \ 

-o ${TISSUE}.out 

done 

 

rascaf-join \ 

-r brain.out \ 

-r eye.out \ 

-r fin.out \ 

-r gill.out \ 

-r heart.out \ 

-r kidney.out \ 

-r liver.out \ 

-r muscle.out \ 

-o ${OUTPUT_FILE_PREFIX} 

 
Note that all newly-created gaps from Rascaf will all be assigned a length of 17 

nucleotides (i.e., 17 Ns in a row). Assuming these are gaps of unknown size, these will ideally be 

changed to 100 nucleotides for any submissions to GenBank. If you have multiple sources of 

evidence for gaps, you will want to keep track of which gaps were supported by each type of 

evidence. Also, note that the -breakN option of Rascaf was set to 600 because the gaps from 

SALSA were 500 bases long. The choice of 600 was arbitrary, it just needed to be longer than 

500 (i.e., 501 would have been sufficient). The goal here was to prevent Rascaf from undoing the 

work SALSA had already done. 

Unfortunately, Rascaf does not produce an AGP file like SALSA does. For simplicity in 

submission to GenBank, such a file is necessary because you would submit the contig-level 

assembly (contigs made with Canu and fixed with SALSA in this case) and provide an AGP file 

with scaffold joins and relevant evidence. The information needed to create an AGP file from the 
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Rascaf scaffolds is available in the ancillary output file ending in “.info”. A custom Python script 

was written to take the contigs file, SALSA AGP file, SALSA scaffolds file, Rascaf scaffolds 

file, and Rascaf .info file to create two sets of two output files (4 total files). Each set is a fasta 

and AGP pair where the fasta file is the scaffold level sequence and the AGP file is the 

description of how to obtain that file from the contig-level file (provided as input). The first set 

of these files leaves the gaps as they are provided (500 Ns from SALSA and 17 Ns from Rascaf), 

the second converts them all to 100 Ns. This script is too long to be readable in a document, but 

the code is available in the file combineHicRna.py on GitHub at https://github.com/pickettbd/

caranx-ignobilis_assembly-paper_misc-scripts. During the NCBI submission process, 

contaminants were identified in the submitted fasta file. These sequences were removed, and 

appropriate adjustments to the AGP file were also made before resubmission. To create a new 

scaffold-level fasta file, another custom script was written. It will take an AGP file and input 

contigs and output scaffolds in fasta format. It is also available in the same GitHub repository in 

the file agp2fa.py. 

 

Assembly Statistics 

Assembly continuity statistics, e.g., N50 and auN 11, were calculated with caln50 commit 

#3e1b2be (https://github.com/lh3/calN50) and a custom Python (https://www.python.org) script. 

caln50 is run using the following simple command: 

caln50 \ 

-s 0.01 \ 

-L ${GENOME_SIZE} \ 

${CONTIGS_OR_SCAFFOLDS_FILE} \ 

> ${STATISTICS_FILE} 

 
The custom Python script is not efficient, but it does calculate Nx, Lx, NGx, and LGx, as well as 

a few other interesting points about sequences in a fasta file. This script is too long to 
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realistically represent when embedded in the text; it is available on GitHub at https://github.com/

pickettbd/basicAsmStatsCalcInPy. 

Assembly completeness was assessed using single-copy orthologs with BUSCO v4.0.6 12 

and OrthoDB v10 13. The BUSCO config file was the not modified from the default aside from 

the locations of OrthoDB v10 and the binary executables for BUSCO. It was run based on the 

following command structure: 

busco \ 

--offline \ 

--config ${BUSCO_CONFIG_FILE} \ 

--cpu ${THREADS} \ 

--in ${CONTIGS_OR_SCAFFOLDS_FASTA} \ 

--out_path ${OUTPUT_DIR} \ 

--out ${OUTPUT_FILE_PREFIX} \ 

--mode genome \ 

--lineage actinopterygii \ 

--augustus_species zebrafish 

 

Genome Comparisons with Single-copy Orthologs 

Single-copy orthologs were identified from the Actinopterygii set of OrthoDB v9 (same 

process as for assessing the assembly, but with OrthoDB v9 instead of v10) and BUSCO v3.0.6. 

These versions of BUSCO and OrthoDB were used, despite being older, because the plotting 

technique provided by ChrOrthLink depends on the output file structure from BUSCO v3, and 

BUSCO v4 has changed the format. The commands between BUSCO versions have changed 

slightly, but they are the same in essence. The command for each genome was based on the 

following structure: 
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run_busco.py \ 

--cpu ${THREADS} \ 

--in ${ASSEMBLY_FASTA} \ 

--out_path ${OUTPUT_DIR} \ 

--out ${OUTPUT_FILE_PREFIX} \ 

--mode genome \ 

--lineage_path odb9/actinopterygii \ 

--species zebrafish 

 
The ChrOrthLink scripts have not yet been prepared for production, so manual editing of 

the files was necessary to repurpose the code for this analysis. The four scripts (three Python, one 

R14) accept no command-line arguments, so the only way to make it work without adding that 

functionality is to edit file names and things directly. The simplest way to recreate my analysis or 

repurpose the ChrOrthLink code for your own analysis in a similar manner would be to clone the 

repository, edit according to the process described below (substituting your 

species/filenames/etc. over those described here), and copy your input files into the directory 

tree. We omitted all sequences that were shorter than 1mb for the plot. 

1. Clone the repository. Let’s assume the repo is cloned into a directory called 

project_dir. Enter the directory and only subdirectory (cd project_dir/VGP_fig5a). 

2. Cleanup the stuff you don’t need. 

rm -rf \ 

 work/output/* \ 

 work/BUSCO_genoPlotR_input \ 

 work/*.csv \ 

 work/input/BUSCO/*.txt \ 

 work/input/chr.assign/*.csv \ 

 work/input/chrsize/*.txt 

 

3. Make a note to yourself of some handy abbreviations to use for the genome names. For 

ours, we used the first letter of the genus and the first 3 letters of the species (e.g., Enau, 

Cign, Tova, etc.). The rest of these comments will refer to the species name and be 

meaning this shortened code name as ${SPECIES} (in shell scripts). 
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4. Copy the BUSCO output into work/input/BUSCO. Do not move the original output files 

because these copies will get edited by the scripts; if you made a mistake, it would be 

annoying to undo the changes when you could have simply re-copied over them. There 

should be one file per genome included in the analysis (for us, that was eight). The output 

files from BUSCO are located in the respective BUSCO output directories. The filename 

is full_table_${SPECIES}.tsv. When copied into work/input/BUSCO, it will need to 

match the following pattern BUSCO_${SPECIES}.txt. 

5. Create the chrsize files. These are formatted as a tab-separated file with the first column 

being the sequence identifier (from the fasta file, without the >) and the second column 

being the length of the sequence. The simplest way to obtain this, if you don’t already 

have it, is to create a fasta index using SAMtools faidx: samtools faidx 

${SPECIES}.fa. This will create the index file at ${SPECIES}.fa.fai. The first two 

columns of this file are what you need. They can be extracted with cut: 

cut -d \t -f 1-2 \ 

 path/to/${SPECIES}.fa.fai \ 

 > work/input/chrsize/chrsize_${SPECIES}.txt 

 

6. Create the chr.assign files. These are formatted as comma-separated files with the first 

column being the sequence identifier (from the fasta file, without the >), the second 

column being the assigned chromosome number, and the third column being “y” or “n”. 

If you have curated genomes with assigned chromosome numbers, they can be used. 

Otherwise, you can make something up. For our plot, we simply assigned chromosome 

numbers 1-n, where n was the number of sequences in the file. We ordered it based on 

length of the sequence. We also assigned “y” for the third column for each entry. This 

can be done with a simple sort and awk command: 
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sort -t \t -n -r -k 2 \ 

 work/input/chrsize/chrsize_${SPECIES}.txt \ 

 | awk 'BEGIN{FS="\t"; OFS=",";}{print $1, NR, "y";}' 

 > work/input/chr.assign/${SPECIES}.csv 

 
7. Edit script #1 in the bin directory (if needed). I changed the location of the work 

directory, so I had to change the paths, but otherwise this shouldn’t need any fixing. This 

script will edit the files in work/input/BUSCO and work/input/chrsize based on the 

files in work/input/chr.assign. Run the script. If a mistake is made when run, you’ll 

have to re-do steps 4-6 here. 

8. Edit script #2 in the bin directory. This script creates *.csv files in work. Change the 

value of Ref_BUSCO on line 16; we set it to BUSCO_Enau.txt. Run the script. 

9. Edit script #3 in the bin directory. This script creates the input for the plot. Change the 

value of RefID_list on line 19. We set it to ["Enau"]. Change the value of sID_LIST 

on line 21 to all the species codes. We set it to ["Enau", "Cign", "Cmel", "Tova", 

"Ttra", "Sdum", "Squi ", "Sriv"]. Change the value of target_chr_name to on 

line 23 to  "All". I suggest changing the system calls for mkdir around line 570 to 

include the -p option; this will prevent errors from being unable to create directories that 

already exist if you re-run these scripts. Run the script. 

10. Edit script #4 in the bin directory. Change the value of RefID on line 32. We set it to 

"Enau". Change the list starting on line 72 to the same names in the same order for 

sID_LIST as described in step #9. Do the same for the items starting on line 94. Add or 

remove items for the list starting on line 112 until there are numbers 1-(n-1), with n being 

the number of species used. In our case, we had 1-7. Run the script. The output should be 

in work/output. The species names were manually edited in Adobe Illustrator for the 

final figure. 
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APPENDIX 6 

Chapter 5 – Supplement 

 

SUPPLEMENTARY TEXTS 

Supplementary Text 1. Suffix and Longest Common Prefix Arrays 

A suffix array is an array of character positions representing a list of all possible suffixes 

of a string, ordered lexicographically. Consider the sequence “CAGAGA$”. A proper suffix 

array implementation would not enumerate a list of suffixes, but viewing the list helps 

conceptualize suffix array construction (see Supplementary Fig. 1A and B). The suffix and 

longest common prefix arrays (with zero-based indexing) for this sequence are shown in 

Supplementary Fig. 1C. The 6 in position 0 of the suffix array (Supplementary Fig. 1B and C) 

informs us that the suffix beginning at position 6 (i.e., “$”) is lexicographically first. The 5 in 

position 1 of the suffix array informs us that the suffix beginning at position 5 (i.e., “A$”) is 

lexicographically second. Likewise, the 2 in position 6 of the suffix array informs us that the 

suffix beginning at position 2 (i.e., “GAGA$”) is lexicographically last. 

Longest common prefix arrays are arrays of the lengths of the longest common prefix of 

each adjacent suffix in the suffix array. To illustrate, consider position 3 in the suffix and longest 

common prefix arrays in Supplementary Fig. 1C. The longest common prefix at this position is 3 

(highlighted in red text in Supplementary Fig. 1C), meaning there are three common nucleotides 

at the beginning of the suffixes starting at positions 1 and 3 (i.e., “AGA”). The longest common 

prefix array stores the length of the longest common prefix, and the positions of the two suffixes 

in the original sequence are obtained by looking at the same position in the suffix array (in this 
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example position 3), and the prior position in the suffix array (in this example position 2). This 

longest common prefix is represented in red nucleotides in Supplementary Fig. 1B. Although the 

sequence is the same, they are adjacent in the original sequence. These relationships are the basis 

for our algorithm to find SSRs in a sequence. The longest common prefix array is constructed 

while creating the suffix array. 

 

Supplementary Text 2. Calculating SSR Length and Position from Suffix and 
Longest Common Prefix Arrays 

Let k equal the length of an SSR repeating unit or period size, r equal the number of 

times it repeats after the original occurrence, and p equal the position of the first nucleotide of 

the first period of the SSR. For example, consider the repeating unit “ACG” in the sequence 

“ACGACGACG”. The length of the repeating unit is 3 (k), there are three instances of the unit (r 

+ 1), and the SSR begins at position 0 in the sequence (p). So, in this example, k = 3, r = 2 (r + 1 

is the total number of repeats in the SSR), and p = 0. SSRs are identified by calculating k, p, and 

r from the suffix and longest common prefix arrays. Let i equal the index of any entry in the 

suffix array (except the first position), where SA and LCPA are the suffix and longest common 

prefix arrays, respectively: 

 𝑘 = |𝑆𝐴𝑖 − 𝑆𝐴𝑖−1| (1) 

 𝑟 = ⌊
𝐿𝐶𝑃𝐴𝑖

𝑘𝑖
⌋ (2) 

 𝑝 = 𝑀𝐼𝑁(𝑆𝐴𝑖−1, 𝑆𝐴𝑖) (3) 

If r > 0, an SSR of length k * (r + 1) exists at position p in the original sequence, 

otherwise if r = 0 there is no SSR at position p. The base unit (e.g., AG in the SSR AGAGAG) of 
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the SSR starts at position p and ends at position p + (k − 1). Thus, by comparing each adjacent 

element in the suffix array we can find SSRs in a sequence.  

Extending the previous example, Fig. 1C shows the values of k, r, and p calculated from 

the suffix and longest common prefix arrays for “CAGAGA$”. Two SSRs, each of length 4, 

exist at positions 1 and 2 in the original sequence (i.e., “AGAG” and “GAGA”) and their 

locations are shown in Fig. 1D. 

 

SUPPLEMENTARY FIGURES 
============= REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK ============= 

 



www.manaraa.com

 393 

 
Supplementary Figure 1. Suffix and Longest Common Prefix Arrays Example. In this figure we demonstrate 
how to construct a suffix array and its use to identify SSRs. (A) First, all suffixes of “CAGAGA$”, are shown here 
and marked by their beginning position in the original sequence. (B) Next, the set of possible suffixes (part A) are 
ordered lexicographically, where ‘$’ is the first character in the alphabet, and maintain their start positions in the 
original sequence. The start positions are the numbers to the left of each suffix. The new ordering of these start 
positions is the suffix array. (C) Here we show the suffix array, longest common prefix array, and three parameters: 
k, r, and p (explained in the text). The suffix array stores the ordered start positions determined by ordering possible 
suffixes (shown in part B). (D) This particular sequence has two SSRs: “AGAG” and “GAGA”. In part D we show 
each of the two SSRs in the original sequence. SSR1 is highlighted blue, and SSR2 is highlighted green. The 
repeating units of the two SSRs are AG and GA, respectively, and a vertical bar separates each repeating unit in the 
sequence.  
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Supplementary Figure 2. Arabidopsis thaliana Sequence Length Density Plot. Density plot showing the 
distribution of sequence lengths for the Arabidopsis thaliana chromosome 4. A summary is included in the upper, 
right-hand corner.  
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Supplementary Figure 3. Caenorhabditis elegans Sequence Lengths Density Plot. Density plot showing the 
distribution of sequence lengths for the Caenorhabditis elegans genome.  A summary is included in the upper, right-
hand corner.  
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Supplementary Figure 4. Drosophila melanogaster Sequence Lengths Density Plot. Density plot showing the 
distribution of sequence lengths for the Drosophila melanogaster genome. A summary is included in the upper, 
right-hand corner.  
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Supplementary Figure 5. Escherichia coli Sequence Lengths Density Plot. Density plot showing the distribution 
of sequence lengths for the Escherichia coli genome. A summary is included in the upper, right-hand corner.  
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Supplementary Figure 6. Zaire ebolavirus Sequence Lengths Density Plot. Density plot showing the distribution 
of sequence lengths for the Zaire ebolavirus genome. A summary is included in the upper, right-hand corner. 
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SUPPLEMENTARY TABLES 

Supplementary Table 1. Algorithms Included in Comparisons. We compared our algorithm to existing 
algorithms that (a) were capable of processing the Drosophila melanogaster genome dataset (see the main text), (b) 
had a non-interactive, Linux, command-line interface, (c) were freely available for immediate download, and (d) had 
10 or more citations per year (based on publication date and Google Scholar citation count) or were published in the 
last three years. A few other algorithms met our requirements, but were rendered unusable due to antiquated shared 
libraries, compile- or run-time errors, or other issues. 

Algorithm 
GMATo (Wang, et al., 2013) 
MREPS (Kolpakov, et al., 2003) 
PRoGeRF (Lopes, et al., 2015) 
QDD (Meglécz, et al., 2014) 
SSR-Pipeline (Miller, et al., 2013) 
SSRIT (Temnykh, et al., 2001) 
TRF (Benson, 1999) 
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Supplementary Table 2. Performance Comparisons. 
a MREPS timing includes the pre- and post-processing time for each genome necessary to adjust positions to account 
for removing "incorrect symbols" and Ns. The additional times are an average of multiple approaches. 

b We only considered SSRs with period sizes 1-7 (inclusive) and lengths of at least 16 nucleotides (nt). The 
difference between the number of SSRs in range and reported is due exclusively to SSR length (less than 16 nt) and 
period size (greater than 7). 

c Whenever possible, we salvaged correct SSRs that were inside incorrect SSRs reported by other software 
packages. For example, in Drosophila melanogaster, we recovered three for PRoGeRF and 8,408 for TRF. To 
illustrate, in sequence JXOZ01000043.1, TRF reports a CT repeated 36 times at position 2,171. While TRF does 
correctly identify a low-complexity region with many CT repeats, there are not 36 perfect repeats in a row. In this 
case, we salvaged two perfect CT regions, each repeating 8 times. 

d Detailed pairwise comparisons can be found in Supplementary Tables 4-31. 

        Comparison with SA-SSR 

  CPU Time 
(mm:ss) 

Real Time 
(mm:ss) 

SSRs 
Reported 

SSRs In 
Range 

Number 
Correct 

Percent 
Correct 

SSRs 
Unique to 
Software 

SSRs 
Unique to 

SA-SSR 
SSRs 

Shared 

Ar
ab

id
op

si
s t

ha
lia

na
 (c

hr
 4

) GMATo 312:29 312:29 4,004,812 1,854 1,854 100 5 713 1,550 

MREPS 386:15 386:15 4,201 2,270 2,270 100 11 0 2,259 

PRoGeRF 9:23 9:23 4,116,484 2,247 2,247 100 11 26 2,233 

QDD 2:02 2:02 3,965 1,100 1,100 100 2 1,165 1,098 

SA-SSR 28,066:12 2,338:47 2,265 2,265 2,265 100 NA NA NA 

SSR-Pipeline 1,395:04 1,395:04 4,754,929 2,242 2,242 100 11 66 2,193 

SSRIT 0:10 0:10 900 900 900 100 6 1,365 894 

TRF 0:47 0:47 135,135 9,275 2,167 23.36 10 152 2,107 
                     

C
ae

no
rh

ab
di

tis
 e

le
ga

ns
 

GMATo 9:39 9:39 22,889,822 6,068 6,068 100 27 2,685 5,236 

MREPS 4:34 4:34 18,958 7,962 7,962 100 53 0 7,909 

PRoGeRF 744:21 744:21 531,822 105 105 100 0 7,818 105 

QDD 10:32 10:32 11,720 3,379 3,379 100 8 4,552 3,369 

SA-SSR 645:54 60:31 7,923 7,923 7,923 100 NA NA NA 

SSR-Pipeline 13:14 13:14 26,475,821 7,827 7,827 100 32 204 7,715 

SSRIT 0:57 0:57 2,374 2,374 2,374 100 12 5,555 2,362 

TRF 7:20 7:20 1,029,051 39,378 6,663 16.92 23 1,578 6,336 
                     



www.manaraa.com

 401 

        Comparison with SA-SSR 

  CPU Time 
(mm:ss) 

Real Time 
(mm:ss) 

SSRs 
Reported 

SSRs In 
Range 

Number 
Correct 

Percent 
Correct 

SSRs 
Unique to 
Software 

SSRs 
Unique to 

SA-SSR 
SSRs 

Shared 

D
ro

so
ph

ila
 m

el
an

og
as

te
r 

GMATo 6:31 6:31 30,386,038 23,218 23,171 99.80 78 7,970 19,900 

MREPS 1:47 1:47 52,346 28,008 28,008 100 163 0 27,845 

PRoGeRF 2,436:55 2,436:55 470,382 571 562 98.42 2 27,318 560 

QDD 11:11 11:11 37,525 12,931 12,931 100 39 14,978 12,883 

SA-SSR 52:58 4:52 27,880 27,880 27,880 100 NA NA NA 

SSR-Pipeline 1:47 1:47 29,015,430 27,513 27,513 100 96 726 27,138 

SSRIT 1:02 1:02 9,943 9,943 9,943 100 37 17,956 9,906 

TRF 4:01 4:01 856,363 105,179 25,940 24.66 85 2,770 25,084 
                     

Es
ch

er
ic

hi
a 

co
li 

GMATo 0:39 0:39 1,127,792 14 14 100 0 9 11 

MREPS 0:26 0:26 46 20 20 100 0 0 20 

PRoGeRF 3:36 3:36 334,091 4 4 100 0 16 4 

QDD 0:32 0:32 38 8 8 100 0 12 8 

SA-SSR 55:07 12:21 20 20 20 100 NA NA NA 

SSR-Pipeline 1:15 1:15 1,309,541 20 20 100 0 0 20 

SSRIT 0:03 0:03 0 0 0 NA 0 20 0 

TRF 0:06 0:06 15,107 224 20 8.93 0 0 20 
                     

Za
ir

e 
eb

ol
av

ir
us

 

GMATo 0:00 0:00 4,180 0 0 NA 0 0 0 

MREPS 0:00 0:00 0 0 0 NA 0 0 0 

PRoGeRF 0:03 0:03 4,350 0 0 NA 0 0 0 

QDD 0:00 0:00 0 0 0 NA 0 0 0 

SA-SSR 0:01 0:01 0 0 0 NA NA NA NA 

SSR-Pipeline 0:01 0:01 4,862 0 0 NA 0 0 0 

SSRIT 0:00 0:00 0 0 0 NA 0 0 0 

TRF 0:00 0:00 59 0 0 NA 0 0 0 
                     

C
om

bi
ne

d 

GMATo 329:18 329:18 58,412,644 31,154 31,107 99.85 110 11,377 26,697 

MREPS 393:02 393:02 75,551 38,260 38,260 100 227 0 38,033 

PRoGeRF 3,194:18 3,194:18 5,457,129 2,927 2,918 99.69 13 35,178 2,902 

QDD 24:17 24:17 53,248 17,418 17,418 100 49 20,707 17,358 

SA-SSR 28,820:12 2,416:32 38,088 38,088 38,088 100 NA NA NA 

SSR-Pipeline 1,411:21 1,411:21 61,560,583 37,602 37,602 100 139 996 37,066 

SSRIT 2:12 2:12 13,217 13,217 13,217 100 55 24,896 13,162 

TRF 12:14 12:14 2,035,715 154,056 34,790 22.58 118 4,500 33,547 
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Supplementary Table 3. Features of Software for Finding SSRs. 

 
Op. Sys.  Format  Complexity  

MS 
Win 

Mac 
OS X Linux CLI GUI Input Output Language Algorithm Type Time Space Period Repeats 

Multi-
threaded Ignore Characters 

Search for 
Specific SSRs 

SA-SSR   X X  FASTA TSV C++ Combinatorial Exact O(n) O(n) 1+ 2+ X Yes (Configurable) X 

GMATo X X X X X FASTA TSV Perl & Java Regular 
Expressions Exact ? ? 1-10 2+  Yes (default)  

MREPS   X X  FASTA Text C Combinatorial Inexact O(nk · 
log(n/k) + S) ? 1+ 2+  Yes (only some Ns)  

PRoGeRF   X X Web FASTA TSV Perl ? Inexact ? ? 1-12 2+  Yes (default)  

QDD X  X X  FASTA SCSV Perl ? Exact ? ? ? 2+  Yes (default)  

SSR-
Pipeline X X X X  FASTA FASTA Python ? Exact ? ? 2-25 2+  Yes (default)  

SSRIT   X X  FASTA TSV Perl Regular 
Expressions Exact ? ? ? 2+  Yes (default)  

TRF X X X X X FASTA Text ? Heuristic Inexact O(n2 · 
polylog(n)) ? 1+ 2+  Yes (default)  
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Supplementary Table 4. SA-SSR compared with GMATo for Arabidopsis thaliana. The number of SSRs in the 
Arabidopsis thaliana chromosome 4 found unique to GMATo, unique to SA-SSR, and shared between the two using 
the following parameter set: -l 1 -L 18600000 -m 1 -M 7 -n 16 -r 1 –i D,M,N.  Any SSRs with period size greater 
than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison. 

 1 2 3 4 5 6 7 Total 

GMATo 0 0 0 0 0 0 0 0 

SA-SSR 660 721 343 126 60 245 110 2265 

Shared 0 0 0 0 0 0 0 0 
 
 
 
 
 
 
 
Supplementary Table 5. SA-SSR compared with MREPS for Arabidopsis thaliana. The number of SSRs in the 
Arabidopsis thaliana chromosome 4 found unique to MREPS, unique to SA-SSR, and shared between the two using 
three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 18600000 -m 1 -M 
7 -n 16 -r 1 –i D,M,N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive set 
was identical to overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total length 
less than 16nt, or that were incorrect were excluded from this comparison. 

Why did SA-SSR not find the 11 SSRs that MREPS found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  9 of the 11 were also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result.  The remaining 2 SSRs were also found 
by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving the specific 
sequence and suffix sort order.  The number of unique SSRs found by SA-SSR as reported using the exhaustive 
parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 MREPS 0 5 1 2 1 2 0 11 

SA-SSR 660 5 1 1 0 1 0 668 

Shared 0 716 342 125 60 244 110 1597 
                    

O
ve

rla
p MREPS 0 0 0 0 1 1 0 2 

SA-SSR 2742 6064 2171 322 134 553 535 12521 

Shared 0 721 343 127 60 245 110 1606 
                    

Ex
ha

us
tiv

e MREPS 0 0 0 0 0 0 0 0 

SA-SSR 2752 8824 3761 9867 1029 10115 1194 37542 

Shared 0 721 343 127 61 246 110 1608 
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Supplementary Table 6. SA-SSR compared with ProGeRF for Arabidopsis thaliana. The number of SSRs in the 
Arabidopsis thaliana chromosome 4 found unique to ProGeRF, unique to SA-SSR, and shared between the two 
using three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 18600000 -m 
1 -M 7 -n 16 -r 1 –i D,M,N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive 
set was identical to overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total 
length less than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 32 SSRs that ProGeRF found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  16 of the 32 were also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result.  14 of the remaining 16 SSRs were also 
found by SA-SSR, but SA-SSR correctly reported shorter period lengths than ProGeRF did.  Obviously, reporting a 
longer period length than is strictly necessary to describe the SSR is misleading and certainly incorrect.  
AAAAAAAAA has a period size of one repeated nine times, not three repeated three times. Likewise, ATATATAT 
has a period size of two repeated four times, not four repeated two times.  The last 2 SSRs were also found by SA-
SSR, but only when using the exhaustive approach because of a special, rare case involving the specific sequence 
and suffix sort order.  The number of unique SSRs found by SA-SSR as reported using the exhaustive parameter set 
is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 ProGeRF 0 5 6 3 2 16 0 32 

SA-SSR 660 7 21 5 1 4 0 698 

Shared 0 714 322 121 59 241 110 1567 
                    

O
ve

rla
p ProGeRF 0 0 0 0 1 15 0 16 

SA-SSR 2742 6066 2186 325 134 556 535 12544 

Shared 0 719 328 124 60 242 110 1583 
                    

Ex
ha

us
tiv

e ProGeRF 0 0 0 0 0 0 0 0 

SA-SSR 2752 8826 3776 9870 1029 10104 1194 37551 

Shared 0 719 328 124 61 257 110 1599 
  



www.manaraa.com

 405 

Supplementary Table 7. SA-SSR compared with QDD for Arabidopsis thaliana. The number of SSRs in the 
Arabidopsis thaliana chromosome 4 found unique to QDD, unique to SA-SSR, and shared between the two using 
two different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 18600000 -m 1 -M 7 
-n 16 -r 1 –i D,M,N.  The overlap set was identical to normal with the following addition: -o. Any SSRs with period 
size greater than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 2 SSRs that QDD found uniquely?  By default, SA-SSR reports only one SSR when 
multiple may be found in an overlapping location.  Both were also found by SA-SSR when this default behavior is 
changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by SA-SSR as 
reported using the overlap parameter set is inflated as a result. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 QDD 0 2 0 0 0 0 0 2 

SA-SSR 660 2 1 99 55 240 110 1167 

Shared 0 719 342 27 5 5 0 1098 
                    

O
ve

rla
p QDD 0 0 0 0 0 0 0 0 

SA-SSR 2742 6064 2172 422 189 793 645 13027 

Shared 0 721 342 27 5 5 0 1100 
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Supplementary Table 8. SA-SSR compared with SSR-Pipeline for Arabidopsis thaliana. The number of SSRs in 
the Arabidopsis thaliana chromosome 4 found unique to SSR-Pipeline, unique to SA-SSR, and shared between the 
two using three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 
18600000 -m 1 -M 7 -n 16 -r 1 –i D,M,N.  The overlap set was identical to normal with the following addition: -o.  
The exhaustive set was identical to overlap with the following addition: -e.  Any SSRs with period size greater than 
7, with total length less than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 84 SSRs that SSR-Pipeline found uniquely?  By default, SA-SSR reports only one 
SSR when multiple may be found in an overlapping location.  81 of the 84 were also found by SA-SSR when this 
default behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs 
found by SA-SSR as reported using the overlap parameter set is inflated as a result.  One of the remaining 3 SSRs 
was just a different SSR base, but covering essentially the same SSR (AATAAA vs AAAATA).  The remaining 2 
SSRs were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case 
involving the specific sequence and suffix sort order.  The number of unique SSRs found by SA-SSR as reported 
using the exhaustive parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 SSR-Pipeline 0 47 16 7 1 7 6 84 

SA-SSR 660 59 26 9 0 8 7 769 

Shared 0 662 317 117 60 237 103 1496 
                    

O
ve

rla
p SSR-Pipeline 0 0 0 0 1 2 0 3 

SA-SSR 2742 6076 2181 325 134 556 536 12550 

Shared 0 709 333 124 60 242 109 1577 
            

Ex
ha

us
tiv

e SSR-Pipeline 0 0 0 0 0 0 0 0 

SA-SSR 2752 8836 3771 9870 1029 10117 1195 37570 

Shared 0 709 333 124 61 244 109 1580 
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Supplementary Table 9. SA-SSR compared with SSRIT for Arabidopsis thaliana. The number of SSRs in the 
Arabidopsis thaliana chromosome 4 found unique to SSRIT, unique to SA-SSR, and shared between the two using 
two different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 18600000 -m 1 -M 7 
-n 16 -r 1 –i D,M,N.  The overlap set was identical to normal with the following addition: -o.  Any SSRs with period 
size greater than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 7 SSRs that SSRIT found uniquely?  By default, SA-SSR reports only one SSR when 
multiple may be found in an overlapping location.  All 7 were also found by SA-SSR when this default behavior is 
changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by SA-SSR as 
reported using the overlap parameter set is inflated as a result. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 SSRIT 0 5 1 1 0 0 0 7 

SA-SSR 660 198 1 98 60 245 110 1372 

Shared 0 523 342 28 0 0 0 893 
            

O
ve

rla
p SSRIT 0 0 0 0 0 0 0 0 

SA-SSR 2742 6257 2171 420 194 798 645 13227 

Shared 0 528 343 29 0 0 0 900 
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Supplementary Table 10. SA-SSR compared with TRF for Arabidopsis thaliana. The number of SSRs in the 
Arabidopsis thaliana chromosome 4 found unique to TRF, unique to SA-SSR, and shared between the two using 
three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 18600000 -m 1 -M 
7 -n 16 -r 1 –i D,M,N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive set 
was identical to overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total length 
less than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 124 SSRs that TRF found uniquely?  By default, SA-SSR reports only one SSR when 
multiple may be found in an overlapping location.  111 of the 124 were also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result.  The remaining 13 SSRs were also found 
by SA-SSR and they fall into three different categories.  The categories are overstated period size, finding different 
numbers of repeats, and special cases requiring the exhaustive approach by SA-SSR.  6 of the 13 are cases where 
TRF overstated the period size (e.g., calling ATATATAT a 4-mer instead of a 2-mer).  Obviously, reporting a 
longer period length than is strictly necessary to describe the SSR is misleading and certainly incorrect.  
AAAAAAAAA has a period size of one repeated nine times, not three repeated three times. Likewise, ATATATAT 
has a period size of two repeated four times, not four repeated two times.  Of the remaining 7, the 6 that were not 
found even under the exhaustive approach were actually found by SA-SSR, but SA-SSR correctly reported a larger 
number of repeats.  So, while it appeared that SA-SSR didn't find them, it actually did.  For these 6, both are correct, 
but SA-SSR is more complete.  Finally, the last of the 7 was found during the exhaustive approach and is a special, 
rare case involving the specific sequence and suffix sort.  Of course, the number of unique SSRs found by SA-SSR 
as reported using the exhaustive parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 TRF 0 48 26 9 2 14 25 124 

SA-SSR 660 67 41 13 3 42 36 862 

Shared 0 654 302 113 57 203 74 1403 
            

O
ve

rla
p TRF 0 1 3 5 0 3 1 13 

SA-SSR 2742 6084 2189 332 135 584 547 12613 

Shared 0 701 325 117 59 214 98 1514 
            

Ex
ha

us
tiv

e TRF 0 1 3 0 0 1 1 6 

SA-SSR 2752 8844 3779 9872 1031 10145 1206 37629 

Shared 0 701 325 122 59 216 98 1521 
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Supplementary Table 11. SA-SSR compared with GMATo for Caenorhabditis elegans. The number of SSRs in 
the Caenorhabditis elegans genome found unique to GMATo, unique to SA-SSR, and shared between the two using 
three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 700000 -m 1 -M 7 -
n 16 -r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive set was 
identical to overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total length less 
than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 2291 SSRs that GMATo found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  2270 of the 2291 were also found by SA-SSR when this 
default behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs 
found by SA-SSR as reported using the overlap parameter set is inflated as a result.  One of the remaining 21 SSRs 
were also found by SA-SSR, but SA-SSR correctly reported a greater number of repeats than GMATo did.  Finally, 
the last 20 were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case 
involving the specific sequence and suffix sort order.  The number of unique SSRs found by SA-SSR as reported 
using the exhaustive parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 GMATo 0 687 220 248 55 807 274 2291 

SA-SSR 522 866 428 601 130 1551 565 4663 

Shared 0 1032 415 393 50 1097 273 3260 
                    

O
ve

rla
p GMATo 0 3 0 5 0 12 1 21 

SA-SSR 1862 13378 2802 4084 661 16224 5361 44372 

Shared 0 1716 635 636 105 1892 546 5530 
                    

Ex
ha

us
tiv

e GMATo 0 0 0 0 0 0 0 0 

SA-SSR 1862 15261 3803 21089 1258 32453 5858 81584 

Shared 0 1719 635 641 105 1904 547 5551 
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Supplementary Table 12. SA-SSR compared with MREPS for Caenorhabditis elegans. The number of SSRs in 
the Caenorhabditis elegans genome found unique to MREPS, unique to SA-SSR, and shared between the two using 
the three different parameter sets.  The normal parameter set was as follows: -l 1 -L 700000 -m 1 -M 7 -n 16 -r 1 –i 
N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive set was identical to 
overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total length less than 16nt, 
or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 84 SSRs that MREPS found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  54 of the 84 were also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result.  Four of the remaining 30 SSRs were also 
found by SA-SSR, but SA-SSR reported a different repeating unit than MREPS did (e.g., GT vs TG).  Finally, the 
last 26 were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case 
involving the specific sequence and suffix sort order.  The number of unique SSRs found by SA-SSR as reported 
using the exhaustive parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 MREPS 0 11 3 16 0 39 15 84 

SA-SSR 522 6 0 8 0 22 9 567 

Shared 0 1892 843 986 180 2626 829 7356 
                    

O
ve

rla
p MREPS 0 5 1 8 0 14 2 30 

SA-SSR 1862 13196 2592 3726 586 15465 5065 42492 

Shared 0 1898 845 994 180 2651 842 7410 
                    

Ex
ha

us
tiv

e MREPS 0 0 0 0 0 0 0 0 

SA-SSR 1862 15077 3592 20728 1183 31692 5561 79695 

Shared 0 1903 846 1002 180 2665 844 7440 
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Supplementary Table 13. SA-SSR compared with ProGeRF for Caenorhabditis elegans. The number of SSRs 
in the Caenorhabditis elegans genome found unique to ProGeRF, unique to SA-SSR, and shared between the two 
using two different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l -L 700000 -m 1 -M 
7 -n 16 -r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  Any SSRs with period 
size greater than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 2 SSRs that ProGeRF found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  1 of the 2 was also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result.  The remaining SSR was also found by 
SA-SSR, but SA-SSR correctly reported shorter period lengths than ProGeRF did.  Obviously, reporting a longer 
period length than is strictly necessary to describe the SSR is misleading and certainly incorrect.  AAAAAAAAA 
has a period size of one repeated nine times, not three repeated three times. Likewise, ATATATAT has a period size 
of two repeated four times, not four repeated two times. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 ProGeRF 0 0 0 0 0 1 1 2 

SA-SSR 522 1871 833 971 179 2620 830 7826 

Shared 0 27 10 23 1 28 8 97 
                    

O
ve

rla
p ProGeRF 0 0 0 0 0 1 0 1 

SA-SSR 1862 15067 3427 4697 765 18088 5898 49804 

Shared 0 27 10 23 1 28 9 98 
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Supplementary Table 14. SA-SSR compared with QDD for Caenorhabditis elegans. The number of SSRs in the 
Caenorhabditis elegans genome found unique to QDD, unique to SA-SSR, and shared between the two using three 
different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 700000 -m 1 -M 7 -n 16 -
r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive set was identical 
to overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total length less than 
16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 16 SSRs that QDD found uniquely?  By default, SA-SSR reports only one SSR when 
multiple may be found in an overlapping location.  9 of the 16 were also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result.  One of the remaining 7 was a case where 
the two programs correctly reported different repeating units (e.g., GT vs TG).  The remaining 6 SSRs were also 
found by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving the 
specific sequence and suffix sort order.  The number of unique SSRs found by SA-SSR as reported using the 
exhaustive parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 QDD 0 8 1 4 0 3 0 16 

SA-SSR 522 4 0 715 141 2340 838 4560 

Shared 0 1894 843 279 39 308 0 3363 
                    

O
ve

rla
p QDD 0 5 1 0 0 1 0 7 

SA-SSR 1862 13197 2594 4437 727 17806 5907 46530 

Shared 0 1897 843 283 39 310 0 3372 
                    

Ex
ha

us
tiv

e QDD 0 0 0 0 0 0 0 0 

SA-SSR 1862 15078 3594 21447 1324 34046 6405 83756 

Shared 0 1902 844 283 39 311 0 3379 
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Supplementary Table 15. SA-SSR compared with SSR-Pipeline for Caenorhabditis elegans. The number of 
SSRs in the Caenorhabditis elegans genome found unique to SSR-Pipeline, unique to SA-SSR, and shared between 
the two using three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 
700000 -m 1 -M 7 -n 16 -r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  The 
exhaustive set was identical to overlap with the following addition: -e.  Any SSRs with period size greater than 7, 
with total length less than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 286 SSRs that SSR-Pipeline found uniquely?  By default, SA-SSR reports only one 
SSR when multiple may be found in an overlapping location.  259 of the 286 were also found by SA-SSR when this 
default behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs 
found by SA-SSR as reported using the overlap parameter set is inflated as a result.  Three of the remaining 27 were 
cases where the two programs correctly reported different repeating units (e.g., GT vs TG).  The remaining 24 SSRs 
were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving 
the specific sequence and suffix sort order.  The number of unique SSRs found by SA-SSR as reported using the 
exhaustive parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 SSR-Pipeline 0 116 31 38 1 87 13 286 

SA-SSR 522 141 53 56 3 115 14 904 

Shared 0 1757 790 938 177 2533 824 7019 
                    

O
ve

rla
p SSR-Pipeline 0 5 1 5 0 14 2 27 

SA-SSR 1862 13226 2617 3749 588 15510 5072 42624 

Shared 0 1868 820 971 178 2606 835 7278 
                    

Ex
ha

us
tiv

e SSR-Pipeline 0 0 0 0 0 0 0 0 

SA-SSR 1862 15107 3617 20754 1185 31737 5568 79830 

Shared 0 1873 821 976 178 2620 837 7305 
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Supplementary Table 16. SA-SSR compared with SSRIT for Caenorhabditis elegans. The number of SSRs in 
the Caenorhabditis elegans genome found unique to SSRIT, unique to SA-SSR, and shared between the two using 
three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 700000 -m 1 -M 7 -
n 16 -r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive set was 
identical to overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total length less 
than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 17 SSRs that SSRIT found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  14 of the 17 were also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result.  The remaining 3 SSRs were also found 
by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving the specific 
sequence and suffix sort order.  The number of unique SSRs found by SA-SSR as reported using the exhaustive 
parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 SSRIT 0 8 3 6 0 0 0 17 

SA-SSR 522 662 0 716 180 2648 838 5566 

Shared 0 1236 843 278 0 0 0 2357 
                    

O
ve

rla
p SSRIT 0 2 1 0 0 0 0 3 

SA-SSR 1862 13852 2592 4436 766 18116 5907 47531 

Shared 0 1242 845 284 0 0 0 2371 
                    

Ex
ha

us
tiv

e SSRIT 0 0 0 0 0 0 0 0 

SA-SSR 1862 15736 3592 21446 1363 34357 6405 84761 

Shared 0 1244 846 284 0 0 0 2374 
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Supplementary Table 17. SA-SSR compared with TRF for Caenorhabditis elegans. The number of SSRs in the 
Caenorhabditis elegans genome found unique to TRF, unique to SA-SSR, and shared between the two using three 
different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 700000 -m 1 -M 7 -n 16 -
r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive set was identical 
to overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total length less than 
16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 900 SSRs that TRF found uniquely?  By default, SA-SSR reports only one SSR when 
multiple may be found in an overlapping location.  851 of the 900 were also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result.  The remaining 49 SSRs were also found 
by SA-SSR, and they fall into three different categories.  The categories are overstated period size, finding different 
numbers of repeats, and special cases requiring the exhaustive approach by SA-SSR.  10 of the 49 are cases where 
TRF overstated the period size (e.g., calling ATATATAT a 4-mer instead of a 2-mer).  Obviously, reporting a 
longer period length than is strictly necessary to describe the SSR is misleading and certainly incorrect.  
AAAAAAAAA has a period size of one repeated nine times, not three repeated three times. Likewise, ATATATAT 
has a period size of two repeated four times, not four repeated two times.  Of the remaining 38, the 26 that were not 
found even under the exhaustive approach were actually found by SA-SSR.  For 25 of the 26, SA-SSR correctly 
reported a larger number of repeats.  So, while it appeared that SA-SSR didn't find them, it actually did.  For these 
25, both are correct, but SA-SSR is more complete.  The last of the 26 was also found by SA-SSR, but SA-SSR 
correctly stated a shorter period size (another example where ATATATAT should be a 2-mer, not a 4-mer).  This 
leaves us with 13 unaccounted for.  7 were more cases where TRF and SA-SSR either reported different SSRs (e.g., 
GT vs TG) or reported different number of repeats.  Finally, the last 6 were found during the exhaustive approach 
and is a special, rare case involving the specific sequence and suffix sort.  Of course, the number of unique SSRs 
found by SA-SSR as reported using the exhaustive parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 TRF 0 99 46 77 11 537 130 900 

SA-SSR 522 144 66 165 26 1443 283 2649 

Shared 0 1754 777 829 154 1205 555 5274 
                    

O
ve

rla
p TRF 0 9 8 10 3 17 2 49 

SA-SSR 1862 13250 2622 3824 604 16391 5224 43777 

Shared 0 1844 815 896 162 1725 683 6125 
                    

Ex
ha

us
tiv

e TRF 0 8 7 2 3 5 1 26 

SA-SSR 1862 15135 3622 20826 1201 32620 5721 80987 

Shared 0 1845 816 904 162 1737 684 6148 
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Supplementary Table 18. SA-SSR compared with GMATo for Drosophila melanogaster. The number of SSRs 
in the Drosophila melanogaster genome found unique to GMATo, unique to SA-SSR, and shared between the two 
using two different sets of parameters for SA-SSR.  The normal parameter set was as follows: -L 1000000 -m 1 -M 
7 -n 16 -r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  Any SSRs with period 
size greater than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 467 SSRs that GMATo found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  450 of the 467 were also found by SA-SSR when this 
default behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs 
found by SA-SSR as reported using the overlap parameter set is inflated as a result.  The remaining 17 SSRs were 
also found by SA-SSR, but SA-SSR correctly reported longer SSRs than GMATo did (e.g., in sequence 
JXOZ01000280.1, SA-SSR reported CAGGGAC repeated 7 times beginning at position 73168 while GMATo 
reported the same repeating only 4 times). 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 GMATo 0 0 0 15 20 151 281 467 

SA-SSR 4734 8094 3286 3328 1088 5557 1207 27294 

Shared 0 0 0 15 25 228 318 586 
                    

O
ve

rla
p GMATo 0 0 0 1 1 6 9 17 

SA-SSR 31700 47110 16452 14537 4328 25154 6006 145287 

Shared 0 0 0 29 44 373 590 1036 
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Supplementary Table 19. SA-SSR compared with MREPS for Drosophila melanogaster. The number of SSRs 
in the Drosophila melanogaster genome found unique to MREPS, unique to SA-SSR, and shared between the two 
using three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -L 1000000 -m 1 -M 
7 -n 16 -r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive set was 
identical to overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total length less 
than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 232 SSRs that MREPS found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  188 of the 232 were also found by SA-SSR when this 
default behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs 
found by SA-SSR as reported using the overlap parameter set is inflated as a result.  43 of the remaining 44 SSRs 
were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving 
the specific sequence and suffix sort order.  The last SSR was a case where SA-SSR and MREPS simply reported a 
slightly different SSR (e.g., AT vs TA).  The number of unique SSRs found by SA-SSR as reported using the 
exhaustive parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 MREPS 6 21 33 56 17 90 9 232 

SA-SSR 1 11 19 16 10 42 5 104 

Shared 4733 8083 3267 3327 1103 5743 1520 27776 
            

O
ve

rla
p MREPS 2 2 0 36 3 1 0 44 

SA-SSR 26963 39008 13152 11219 3255 19695 5067 118359 

Shared 4737 8102 3300 3347 1117 5832 1529 27964 
            

Ex
ha

us
tiv

e MREPS 0 0 0 0 0 0 0 0 

SA-SSR 26963 70718 36560 90090 21713 91821 21709 359574 

Shared 4739 8104 3300 3383 1120 5833 1529 28008 
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Supplementary Table 20. SA-SSR compared with ProGeRF for Drosophila melanogaster. The number of SSRs 
in the Drosophila melanogaster genome found unique to ProGeRF, unique to SA-SSR, and shared between the two 
using two different sets of parameters for SA-SSR.  The normal parameter set was as follows: -L 1000000 -m 1 -M 
7 -n 16 -r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  Any SSRs with period 
size greater than 7, with total length less than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 10 SSRs that ProGeRF found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  6 of the 10 were also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result.  The remaining 4 SSRs were also found 
by SA-SSR, but SA-SSR correctly reported shorter period lengths than ProGeRF did (e.g., in sequence 
JXOZ01000073.1, SA-SSR reported A repeated 19 times beginning at position 136707 while ProGeRF reported 
AAA repeating 6 times at the same position).  Obviously, reporting a longer period length than is strictly necessary 
to describe the SSR is misleading and certainly incorrect.  AAAAAAAAA has a period size of one repeated nine 
times, not three repeated three times. Likewise, ATATATAT has a period size of two repeated four times, not four 
repeated two times. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 ProGeRF 1 1 4 0 1 3 0 10 

SA-SSR 4651 7930 3233 3271 1095 5659 1485 27324 

Shared 83 164 53 72 18 126 40 556 
                    

O
ve

rla
p ProGeRF 0 1 2 0 0 1 0 4 

SA-SSR 31616 46946 16397 14494 4353 25399 6556 145761 

Shared 84 164 55 72 19 128 40 562 
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Supplementary Table 21. SA-SSR compared with QDD for Drosophila melanogaster. The number of SSRs in 
the Drosophila melanogaster genome found unique to QDD, unique to SA-SSR, and shared between the two using 
three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -L 1000000 -m 1 -M 7 -n 
16 -r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive set was 
identical to overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total length less 
than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 63 SSRs that QDD found uniquely?  By default, SA-SSR reports only one SSR when 
multiple may be found in an overlapping location.  59 of the 63 were also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result.  The remaining 4 SSRs were also found 
by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving the specific 
sequence and suffix sort order.  The number of unique SSRs found by SA-SSR as reported using the exhaustive 
parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 QDD 0 25 22 8 6 2 0 63 

SA-SSR 4734 18 15 2246 880 5594 1525 15012 

Shared 0 8076 3271 1097 233 191 0 12868 
                    

O
ve

rla
p QDD 0 2 0 2 0 0 0 4 

SA-SSR 31700 39011 13159 13463 4133 25334 6596 133396 

Shared 0 8099 3293 1103 239 193 0 12927 
                    

Ex
ha

us
tiv

e QDD 0 0 0 0 0 0 0 0 

SA-SSR 31702 70721 36567 92368 22594 97461 23238 374651 

Shared 0 8101 3293 1105 239 193 0 12931 
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Supplementary Table 22. SA-SSR compared with SSR-Pipeline for Drosophila melanogaster. The number of 
SSRs in the Drosophila melanogaster genome found unique to SSR-Pipeline, unique to SA-SSR, and shared 
between the two using three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -L 
1000000 -m 1 -M 7 -n 16 -r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  The 
exhaustive set was identical to overlap with the following addition: -e.  Any SSRs with period size greater than 7, 
with total length less than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 987 SSRs that SSR-Pipeline found uniquely?  By default, SA-SSR reports only one 
SSR when multiple may be found in an overlapping location.  944 of the 987 were also found by SA-SSR when this 
default behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs 
found by SA-SSR as reported using the overlap parameter set is inflated as a result.  42 of the remaining 43 SSRs 
were also found by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving 
the specific sequence and suffix sort order.  The last SSR was a case where SA-SSR and SSR-Pipeline simply 
reported a slightly different SSR (e.g., AT vs TA).  The number of unique SSRs found by SA-SSR as reported using 
the exhaustive parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 SSR-Pipeline 6 386 207 152 45 166 25 987 

SA-SSR 1 473 271 190 70 298 51 1354 

Shared 4733 7621 3015 3153 1043 5487 1474 26526 
                    

O
ve

rla
p SSR-Pipeline 2 2 0 36 2 1 0 43 

SA-SSR 26963 39105 13230 11297 3286 19875 5097 118853 

Shared 4737 8005 3222 3269 1086 5652 1499 27470 
                    

Ex
ha

us
tiv

e SSR-Pipeline 0 0 0 0 0 0 0 0 

SA-SSR 26963 70815 36638 90168 21745 92001 21739 360069 

Shared 4739 8007 3222 3305 1088 5653 1499 27513 
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Supplementary Table 23. SA-SSR compared with SSRIT for Drosophila melanogaster. The number of SSRs in 
the Drosophila melanogaster genome found unique to SSRIT, unique to SA-SSR, and shared between the two using 
three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -L 1000000 -m 1 -M 7 -n 
16 -r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive set was 
identical to overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total length less 
than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 56 SSRs that SSRIT found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  54 of the 56 were also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result.  The remaining 2 SSRs were also found 
by SA-SSR, but only when using the exhaustive approach because of a special, rare case involving the specific 
sequence and suffix sort order.  The number of unique SSRs found by SA-SSR as reported using the exhaustive 
parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 SSRIT 0 12 32 12 0 0 0 56 

SA-SSR 4734 2570 18 2248 1113 5785 1525 17993 

Shared 0 5524 3268 1095 0 0 0 9887 
                    

O
ve

rla
p SSRIT 0 0 0 2 0 0 0 2 

SA-SSR 31700 41574 13152 13461 4372 25527 6596 136382 

Shared 0 5536 3300 1105 0 0 0 9941 
                    

Ex
ha

us
tiv

e SSRIT 0 0 0 0 0 0 0 0 

SA-SSR 31702 73286 36560 92366 22833 97654 23238 377639 

Shared 0 5536 3300 1107 0 0 0 9943 
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Supplementary Table 24. SA-SSR compared with TRF for Drosophila melanogaster. The number of SSRs in 
the Drosophila melanogaster genome found unique to TRF, unique to SA-SSR, and shared between the two using 
three different sets of parameters for SA-SSR.  The normal parameter set was as follows: -L 1000000 -m 1 -M 7 -n 
16 -r 1 –i N.  The overlap set was identical to normal with the following addition: -o.  The exhaustive set was 
identical to overlap with the following addition: -e.  Any SSRs with period size greater than 7, with total length less 
than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 2187 SSRs that TRF found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  2018 of the 2187 were also found by SA-SSR when this 
default behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs 
found by SA-SSR as reported using the overlap parameter set is inflated as a result.  The remaining 169 SSRs were 
also found by SA-SSR and they fall into three different categories.  The categories are overstated period size, 
finding different numbers of repeats, and special cases requiring the exhaustive approach by SA-SSR.  60 of the 169 
are cases where TRF overstated the period size (e.g., in sequence JXOZ01000843.1, TRF reports an AGAG 
repeating 4 times at position 109312 while SA-SSR correctly reports an AG repeated 8 times at the same position).  
2 of these appear again in the 103 that SA-SSR didn't appear to find using the exhaustive parameter set, but SA-SSR 
did find them, it just reported the correct period size.  Obviously, reporting a longer period length than is strictly 
necessary to describe the SSR is misleading and certainly incorrect.  AAAAAAAAA has a period size of one 
repeated nine times, not three repeated three times. Likewise, ATATATAT has a period size of two repeated four 
times, not four repeated two times. 

The remaining 111 cases fall into the other two categories.  104 of the 169 are cases where TRF and SA-SSR 
reported different SSRs (e.g., AT vs TA) or TRF reported less repeats of the same SSR (e.g., in sequence 
JXOZ01001169.1, TRF reports a TTTCGA repeated 3 times at position 83483 while SA-SSR reports the same 
repeated 4 times).  101 of these also appear not to be found using the exhaustive parameter set because SA-SSR 
correctly reported SSRs with more repeats.  The remaining 5 were also found by SA-SSR, but only when using the 
exhaustive approach because of a special, rare case involving the specific sequence and suffix sort order.  The 
number of unique SSRs found by SA-SSR as reported using the exhaustive parameter set is also inflated. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 TRF 5 769 373 323 61 528 128 2187 

SA-SSR 22 1042 551 544 210 1224 318 3911 

Shared 4712 7052 2735 2799 903 4561 1207 23969 
                    

O
ve

rla
p TRF 1 53 14 54 9 36 2 169 

SA-SSR 26984 39342 13358 11498 3417 20474 5263 120336 

Shared 4716 7768 3094 3068 955 5053 1333 25987 
                    

Ex
ha

us
tiv

e TRF 0 52 13 15 8 13 2 103 

SA-SSR 26985 71053 36765 90366 21877 92578 21905 361529 

Shared 4717 7769 3095 3107 956 5076 1333 26053 
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Supplementary Table 25. SA-SSR compared with GMATo for Escherichia coli. The number of SSRs in the 
Escherichia coli genome found unique to GMATo, unique to SA-SSR, and shared between the two using two 
different sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 600000 -m 1 -M 7 -n 16 -
r 1.  The overlap set was identical to normal with the following addition: -o.  Any SSRs with period size greater than 
7, with total length less than 16nt, or that were incorrect were excluded from this comparison. 
Why did SA-SSR not find the 8 SSRs that GMATo found uniquely?  By default, SA-SSR reports only one SSR 
when multiple may be found in an overlapping location.  All 8 were also found by SA-SSR when this default 
behavior is changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by 
SA-SSR as reported using the overlap parameter set is inflated as a result. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 GMATo 0 0 0 0 0 7 1 8 

SA-SSR 1 0 0 0 0 13 1 15 

Shared 0 0 0 1 0 4 0 5 
                    

O
ve

rla
p GMATo 0 0 0 0 0 0 0 0 

SA-SSR 5 0 0 2 0 287 36 330 

Shared 0 0 0 1 0 11 1 13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table 26. SA-SSR compared with MREPS for Escherichia coli. The number of SSRs in the 
Escherichia coli genome found unique to MREPS, unique to SA-SSR, and shared between the two using the 
following parameter set: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1.  Any SSRs with period size greater than 7, with total 
length less than 16nt, or that were incorrect were excluded from this comparison. 

 1 2 3 4 5 6 7 Total 

MREPS 0 0 0 0 0 0 0 0 

SA-SSR 1 0 0 0 0 0 0 1 

Shared 0 0 0 1 0 17 1 19 
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Supplementary Table 27. SA-SSR compared with ProGeRF for Escherichia coli. The number of SSRs in the 
Escherichia coli genome found unique to ProGeRF, unique to SA-SSR, and shared between the two using the 
following parameter set: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1.  Any SSRs with period size greater than 7, with total 
length less than 16nt, or that were incorrect were excluded from this comparison. 

 1 2 3 4 5 6 7 Total 

ProGeRF 0 0 0 0 0 0 0 0 

SA-SSR 1 0 0 1 0 13 1 16 

Shared 0 0 0 0 0 4 0 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table 28. SA-SSR compared with QDD for Escherichia coli. The number of SSRs in the 
Escherichia coli genome found unique to QDD, unique to SA-SSR, and shared between the two using two different 
sets of parameters for SA-SSR.  The normal parameter set was as follows: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1.  The 
overlap set was identical to normal with the following addition: -o. Any SSRs with period size greater than 7, with 
total length less than 16nt, or that were incorrect were excluded from this comparison. 

Why did SA-SSR not find the 8 SSRs that QDD found uniquely?  By default, SA-SSR reports only one SSR when 
multiple may be found in an overlapping location.  All 8 were also found by SA-SSR when this default behavior is 
changed to report every SSR, even though they overlap.  Naturally, the number of unique SSRs found by SA-SSR as 
reported using the overlap parameter set is inflated as a result. 

  1 2 3 4 5 6 7 Total 

N
or

m
al

 QDD 0 0 0 0 0 8 0 8 

SA-SSR 1 0 0 1 0 17 1 20 

Shared 0 0 0 0 0 0 0 0 
                    

O
ve

rla
p QDD 0 0 0 0 0 0 0 0 

SA-SSR 5 0 0 3 0 290 37 335 

  Shared  0 
  

0 
  

0 
  

0 
  

0 
  

8 
  

0 
  

8 
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Supplementary Table 29. SA-SSR compared with SSR-Pipeline for Escherichia coli. The number of SSRs in 
the Escherichia coli genome found unique to SSR-Pipeline, unique to SA-SSR, and shared between the two using 
the following parameter set: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1.  Any SSRs with period size greater than 7, with 
total length less than 16nt, or that were incorrect were excluded from this comparison. 

 1 2 3 4 5 6 7 Total 

SSR-Pipeline 0 0 0 0 0 0 0 0 

SA-SSR 1 0 0 1 0 17 1 20 

Shared 0 0 0 0 0 0 0 0 
 
 
 
 
 
 
 
 
Supplementary Table 30. SA-SSR compared with SSRIT for Escherichia coli. The number of SSRs in the 
Escherichia coli genome found unique to SSRIT, unique to SA-SSR, and shared between the two using the 
following parameter set: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1.  Any SSRs with period size greater than 7, with total 
length less than 16nt, or that were incorrect were excluded from this comparison. 

 1 2 3 4 5 6 7 Total 

SSRIT 0 0 0 0 0 0 0 0 

SA-SSR 1 0 0 1 0 17 1 20 

Shared 0 0 0 0 0 0 0 0 
 
 
 
 
 
 
 
Supplementary Table 31. SA-SSR compared with TRF for Escherichia coli. The number of SSRs in the 
Escherichia coli genome found unique to TRF, unique to SA-SSR, and shared between the two using the following 
parameter set: -l 1 -L 600000 -m 1 -M 7 -n 16 -r 1.  Any SSRs with period size greater than 7, with total length less 
than 16nt, or that were incorrect were excluded from this comparison. 

 1 2 3 4 5 6 7 Total 

TRF 0 0 0 0 0 0 0 0 

SA-SSR 1 0 0 0 0 0 0 1 

Shared 0 0 0 1 0 17 1 19 
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APPENDIX 7 

Chapter 7 – File S1 

 

SUPPLEMENTARY BIOINFORMATICS METHODS 

This document contains an explanation of the bioinformatics methods required for 

incompatibility group/replicon typing and plasmid characterization. It is expanded from our 

paper in Genome. This document will begin with an overview of the process and will be 

followed by a detailed description of the methods. 

 

Overview 

The process begins with one fasta file and multiple GenBank files. The fasta file is the 

local download of the PlasmidFinder database referenced in our paper. The GenBank files come 

from the Entrez search strategy also described in the paper. The ultimate output is a CSV file and 

text-based report file for each input GenBank file. The CSV file contains basic information (e.g., 

plasmid length), the incompatibility group(s) the plasmid best aligns to, accession numbers of 

identical plasmids, some gene/function annotation based on key term searches of the GenBank 

file's CDS regions, and some other metadata extracted from the GenBank files. The text-based 

report is a file containing various information and statistics about each group of plasmids from 

the various input GenBank files. We also generated a tree to help visualize the identical 

plasmids. 

Our process occurs stepwise, with most steps requiring the output from the previous 

steps. As our project developed, additional steps were inserted or modified. While most steps do 
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depend on the output of the previous step(s), the order is in many instances arbitrary. The code is 

published online in this GitHub repository (https://github.com/ridgelab/plasmidCharacterization). 

Each output CSV file requires the following input processed from the “raw” input data (in no 

particular order): (a) a list of identical plasmids for each accession, (b) extracted metadata from 

the GenBank files, (c) gene/function annotations extracted from the GenBank files, and (d) a list 

of incompatibility groups. Each output statistics report file is created based on each CSV file just 

described.  

 

Identical Plasmids 

First, a blast database was created with makeblastdb. Each plasmid sequence (which 

would have to be extracted from the GenBank files) is aligned with blastn to each other plasmid 

sequence in a pairwise fashion. Hits were kept only if the percent identity was >=98%. Plasmids 

were considered identical if the hits covered >=98% of both the query and the subject sequence. 

We created a tree using a simple distance metric to help visualize the identical plasmids. The 

distance metric is the sum of the query and subject covered bases divided by the sum of the 

length of the query and subject sequences (see step 25 for details). The Newick formatted tree 

was made from the distance matrix using the makeNewick.py script from CAM (Miller et al. 

2019) and is available on GitHub at https://github.com/ridgelab/cam. makeblastdb and blastn are 

part of the BLAST+ Suite (Altschul et al. 1990; Camacho et al. 2009). 

 

GenBank Metadata 

The sequencing technology used to sequence each plasmid was identified with GNU 

AWK. The remaining metadata was also obtained from the GenBank files using GNU AWK. 
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The remaining data points are as follows: country of origin for the plasmid, isolation source for 

the plasmid, plasmid collection data, and source organism. 

 

GenBank Annotations 

This is by far the most complicated part of the process. First, search regions were 

extracted from the GenBank files. The search regions were the function, gene, note, and product 

sections of the CDS features. We then identified matches in these regions to key terms (these key 

terms were obtained as described in our paper). The search occurred under the following 

strategy: 

The search terms are each part of one or more categories. Each can belong to 

multiple categories, but only if the categories are subsets of each other. Five principal 

categories exist, two of which have subcategories. The category structure is as follows: 

• Antimicrobial Resistance 

o Beta-lactamase 

 Beta-lactamase Special 

• Toxin/Antitoxin System 

• DNA Maintenance/Modification 

o DNA Maintenance/Modification Special 

• Mobile Genetic Elements 

• Hypothetical Genes 

 

The strategy could be described as top-to-bottom, in-to-out; i.e., Antimicrobial 

Resistance is more important that Toxin/Antitoxin System and Beta-lactamase Special is 

more important than Beta-lactamase and Antimicrobial Resistance. The reason these are 
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shown nested instead of simply above their parents is because a match for a Beta-

lactamase Special search term will increment the count for not only itself, but also its 

parents. If no matches are found, the CDS region being searched is classified as "Other". 

Some CDS regions will never be searched for these terms if they first match a term in a 

special "Ignored" category. Provided a CDS region is not to be ignored, it will be 

searched with Beta-lactamase Special terms, then Beta-lactamase terms, then 

Antimicrobial Resistance Terms, then Toxin/Antitoxin System terms, and so-forth, until a 

match is found (thus halting the search on this CDS region) or no more search terms 

remain, in which case it is assigned to the "Other" category. All CDS regions are 

converted to lowercase before being searched as described. These terms are listed, with 

their associated Python regular expressions, in the doc directory of the online repository. 

 

Incompatibility Groups 

The incompatibility fasta sequences were downloaded from the PlasmidFinder database 

as previously described. This was turned into a database using makeblastdb. Each plasmid 

sequence was then aligned to the database using blastn and hits were retained only if the percent 

identity was >=80%. Hits were further dropped if the subject (the sequences in the database) 

coverage was <60%. The “best” hits were then used to determine which incompatibility group(s) 

applied to each plasmid. “Best” is defined as the result(s) with the highest percent identity and 

those that have percent identities within only 1 percent of the highest one. makeblastdb and 

blastn are part of the BLAST+ Suite (Altschul et al. 1990; Camacho et al. 2009). 

 

Detailed Methods 
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This section is a more detailed explanation of the bioinformatics methods required for 

incompatibility group/replicon typing and plasmid characterization. Please note that most of 

these steps will be simple data formatting. Also note that it would have been easier in some cases 

to combine multiple steps into one. The choice to separate each piece of the process was for 

clarity and to enable another to modify this process for their own purposes. Additionally, some 

steps might have made better sense in different orders. This process evolved as the project 

changed; we recognize alternate orders are plausible. For our work, all steps could be run 

interactively, i.e., not requiring a high-performance computing (HPC) architecture. Our work 

was completed on a machine running Red Hat Enterprise Linux. 

 

Summary 

This process begins with one fasta file and multiple GenBank files. The formats for these 

files are described in steps 1 and 3, respectively. The fasta file contains the incompatibility group 

sequences. In our work, this was a download of the PlasmidFinder v1.3 Enterobacteriaceae 

database (Carattoli et al. 2014). The GenBank files contain one or more GenBank records in 

them, where each record could itself be considered a GenBank file for a single accession 

number. Thus, these GenBank files are concatenations of multiple GenBank records. Effectively, 

this is how we grouped accessions of interest. The same accession may appear in multiple 

groupings. Note, if you attempt to re-use our process with your own data and have GenBank files 

as a single file per accession, combining them into groups will feel unnecessary. We began this 

way because that is what we had to start with. 

The results of the entire process are CSV files with information about each plasmid in a 

group and a text file with summary statistics about each group. The file contains basic 

information (e.g., plasmid length), the incompatibility group(s) the plasmid best aligns to, and 
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some gene/function annotation based on key term searches of the GenBank file's CDS regions. 

To accomplish this, each (input) group GenBank file is split into a single GenBank file per 

accession and the sequences are extracted as fasta files. The sequence lengths are recorded, and 

these sequences are individually aligned (using the NCBI BLAST+ Suite (Altschul et al. 1990; 

Camacho et al. 2009)) to the incompatibility group sequences. After filtering out the "best" 

alignments, the incompatibility group is determined and saved for later assimilation into the final 

outputs. The CDS regions are extracted from the GenBank files and searched for key terms using 

regular expressions. Each key term belongs to one or more categories. Matches in each category 

are counted and summarized in the final output. For more details on this searching strategy, 

please see step #14. The key terms are listed with their Python regular expression in the 

supplement of our paper. Additional information, e.g., sequencing platforms, country, etc., is 

also available in the final outputs. 

This summary concludes with an outline of the steps. Each step will then be addressed in 

detail. The code in the detailed steps has, in many cases, been simplified. In other cases, the code 

is several pages long and would be difficult to copy and paste effectively. Especially with the 

Python code, readability suffers as lines wrap because a standard page is not wide enough to 

contain some code statements on a single line. Accordingly, we encourage you to visit the online 

repository for the code: https://github.com/ridgelab/plasmidCharacterization. 

 

Outline of Steps 

Step 1. Format Incompatibility Groups Fasta File 
Step 2. Create Incompatibility Groups BLAST Database 
Step 3. Split Multi-Accession GenBank Files 
Step 4. Extract ORIGIN Sequence from GB to Fasta 
Step 5. Extract Group Lists 
Step 6. BLAST Incompatibility Groups 
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Step 7. Subset BLAST Results by Coverage Cutoff of 60% 
Step 8. Add Incompatibility Group Family as Column to BLAST Results 
Step 9. Filter Best Matches in BLAST Results 
Step 10. Extract Incompatibility Families 
Step 11. Extract Sequencing Technologies 
Step 12. Extract Source Information 
Step 13. Extract Plasmid Search Regions 
Step 14. Identify Plasmid Matches 
Step 15. Summarize Plasmid Matches 
Step 16. Drop Plasmids 
Step 17. Create Plasmid BLAST Database 
Step 18. BLAST Plasmid 
Step 19. Extract Identical Plasmids with BLAST Result Coverage Cutoff of 98% 
Step 20. Fix Identical Plasmid Non-concordance 
Step 21. Generate Plasmid CSVs 
Step 22. Create Group CSVs from Plasmid CSVs 
Step 23. Create Group Matches from Plasmid Matches 
Step 24. Calculate Group Statistics from Group CSV 
Step 25. Create Distance Matrix 
Step 26. Create Distance Tree 
Step 27. Add Leaf Labels to Tree 
Step 28. Add Color to Leaf Labels 
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Step 1. Format Incompatibility Groups Fasta File 

Input: Fasta file with incompatibility group sequences. Each sequence may be on one or 
more lines. The headers might start with “Inc”.  
 
Output: Same fasta file as the input, but sequences occur on only one line. Headers without 
“Inc” now have “Inc” prepended. 
 
Code: 
 

Bash Command 
 

awk -f formatIncGroupFasta.awk \ 

  original_incomp-grp.fasta \ 

  > incomp-grp.fasta 

 
 AWK Script (formatIncGroupFasta.awk) 

 
#! /bin/awk -f 

 

{ 

 if ( $0 ~ /^>.+$/ ) { 

 

  if ( NR != 1 ) { 

   printf "\n"; 

  } 

 

  if ( $0 ~ /^>Inc.+$/ ) { 

   print $0; 

  } 

  else { 

   printf "%s%s\n", ">Inc", substr($0, 2); 

  } 

 } 

 else { 

  printf "%s", $0; 

 } 

} 

 

END { 

 printf "\n"; 

} 
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Step 2. Create Incompatibility Groups BLAST database 

Input: Fasta file with incompatibility group sequences. Each sequence is on only one line. 
The headers start with “>Inc”. 
 
Output: BLAST database of the incompatibility group sequences. 
 
Code: 
 

Bash Command 
 

makeblastdb \ 

  -dbtype nucl \ 

  -in  incompatibility.fasta \ 

  -input_type fasta \ 

  -title incompatibility \ 

  -parse_seqids \ 

  -hash_index \ 

  -out incompatibility \ 

  -max_file_sz 2GB \ 

  -logfile makeBlastDB.log 

 
BLAST Software 

 
NCBI (United States National Center for Biotechnology Information) BLAST+ Suite 
version 2.4.0 (Altschul et al. 1990; Camacho et al. 2009). 
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Step 3. Split Multi-Accession GenBank Files 

Input: 1+ GenBank files, each with 1+ records. Each record is itself a GenBank file for a 
single Accession. Thus, the multi-accession GenBank files are simply concatenations of 
multiple single-accession GenBank files. Assume that these GenBank files are in a directory 
called original_gb. 
 
Output: One GenBank file for each accession. If the same accession exists in more than one 
multi-accession file, assume they are the same and overwrite it. Assume that the output 
GenBank files will be in a directory called plasmid_gb. 
 
Code: 
 

Bash Command 
 

cd plasmid_gb 

 

while read ifn 

do 

  awk -f splitMultiGB.awk "${ifn}" 

 

done < <(ls -1 original_gb/*.gb) 

 
 AWK Script (splitMultiGB.awk) 

 
#! /bin/awk -f 

 

BEGIN { 

 FS="[ ]+"; 

 accession=""; 

 ofn=""; 

} 

 

{ 

 if ($0 == "//" || $0 == "") 

 { 

  accession = ""; 

  ofn = ""; 

 } 

 else if ($1 == "LOCUS") 

 { 

  accession = $2; 

  ofn = accession ".gb"; 

  print $0 > ofn; 

 } 

 else 

 { 

  print $0 >> ofn; 

 } 

} 
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END { 

 print "done splitting " FILENAME " by accession"; 

} 
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Step 4. Extract ORIGIN Sequence from GB to Fasta 

Input: One GenBank file with a single accession in it. Assume it is in the directory 
plasmid_gb and it is named after the pattern ${ACCESSION}.gb. 
 
Output: One Fasta file with the sequence from the ORIGIN section of the GenBank file. The 
Fasta file has sequences that are each on only one line. It will be in the directory 
plasmid_fasta. 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" ".gb"` 

 

  awk -f extractOriginSeqFromGBtoFasta.awk \ 

   "plasmid_gb/${ACCESSION}.gb" \ 

   > "plasmid_fasta/${ACCESSION}.fasta" 

 

done < <(ls -1 plasmid_gb/*.gb) 

 
 AWK Script (extractOriginSeqFromGBtoFasta.awk) 

 
#! /bin/awk -f 

 

BEGIN { 

 FS = "[ ]+"; 

 origin_found = 0; # false 

} 

 

{ 

 if (origin_found) 

 { 

  sub(/ *[0-9]+ /, "", $0); 

  gsub(/ +/, "", $0); 

  printf toupper($0); 

 } 

 else if ($1 == "ORIGIN") 

 { 

  origin_found = 1; # true 

 

  print ">" gensub(/^(.+)\.gb$/, "\\1", "-1", gensub(/^.*\//, 

"", "-1", FILENAME)); 

 } 

} 
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END { 

 printf "\n"; 

 print "done extracting ORIGIN seq from " FILENAME " to fasta" > 

"/dev/stderr"; 

} 
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Step 5. Extract Group Lists 

Input: One GenBank file with multiple accessions in it. Assume it is in the directory 
original_gb and it is named after the pattern ${GROUP}.gb. 
 
Output: Multiple text files, each with the extension ".list". Each file is a line separated list of 
accession numbers that make up the group. The files will be in a directory called groups 
with the name ${GROUP}.list. 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  awk -f extractGroupLists.awk \ 

   "${ifn}" 

 

done < <(ls -1 original_gb/*.gb) 

 
 AWK Script (extractGroupLists.awk) 

 
#! /bin/awk -f 

 

BEGIN { 

 FS="[ ]+"; 

 accession=""; 

 ofn=""; 

} 

 

{ 

 if (NR == 1) 

 { 

  ofn = gensub(/^(.+)\.gb$/, "\\1", "-1", gensub(/^.*\//, "", "-

1", FILENAME)) ".list"; 

 } 

 

 if ($1 == "LOCUS") 

 { 

  accession = $2; 

  print accession >> ofn; 

 } 

} 

 

END { 

 print "done extracting accessions from " FILENAME; 

} 
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Step 6. BLAST Incompatibility Groups 

Input: Fasta files. Each contains the sequence from a single accession. Assume they are in 
the directory plasmid_fasta and they are named after the pattern ${ACCESSION}.fasta. 
 
Input: The incompatibility groups BLAST database created in step #1. It is named 
incompatibility. 
 
Output: One tab-separated value file for each input file. Each file is a modified version of 
the BLAST output format 6. The format is specified as seen using the -outfmt option with 
blastn. The columns are as follows: qseqid, sseqid, pident, length, evalue, qframe, qlen, 
qstart, qend, sframe, slen, sstart, send, qseq, and sseq. The files will be in a directory called 
blast_results and named after the pattern ${ACCESSION}_fmt6c.tsv. Note that a match 
was not included in the output if the percent identity was <80%. 
 
Code: 
 

Bash Command 
 

THREADS=8 

 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" ".fasta"`   

 

  blastn \ 

   -query "${ifn}" \ 

   -strand both \ 

   -task blastn \ 

   -db icompatibility \ 

   -out blast_results/${ACCESSION}_fmt6c.tsv \ 

   -outfmt "6 qseqid sseqid pident length evalue qframe 

qlen qstart qend sframe slen sstart send qseq sseq" \ 

   -num_threads ${THREADS} \ 

   -perc_identity 80 

 

done < <(ls -1 plasmid_fasta/*.fasta) 

 
BLAST Software 

 
NCBI (United States National Center for Biotechnology Information) BLAST+ Suite 
version 2.4.0 (Altschul et al. 1990; Camacho et al. 2009). 

 
  



www.manaraa.com

 442 

Step 7. Subset BLAST Results by Coverage Cutoff of 60% 

Input: Tab-separated value files. Each contains the results from blasting the sequence of a 
single accession against the incompatibility groups BLAST database. Assume they are in the 
directory blast_results and they are named after the pattern ${ACCESSION}_fmt6c.tsv. 
 
Output: One tab-separated value file for each input file. Each file is a copy of its respective 
input file except some results may be omitted if the coverage was less than 60%. The files 
will be in a directory called blast_results and named after the pattern ${ACCESSION}_
fmt6c_cov60.tsv. Note that a new column was inserted as column number 14 (1-based 
indexing). The columns will now be as follows: qseqid, sseqid, pident, length, evalue, 
qframe, qlen, qstart, qend, sframe, slen, sstart, send, scov, qseq, and sseq. 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" "_fmt6c.tsv"`   

 

  awk -f subCovCutoff60.awk \ 

   "${ifn}" \ 

   > "blast_results/${ACCESSON}_fmt6c_cov60.tsv" 

 

done < <(ls -1 blast_results/*_fmt6c.tsv) 

 
 AWK Script (subCovCutoff60.awk) 

 
#! /bin/awk -f 

 

BEGIN { 

 FS="\t"; 

 OFS="\t"; 

 ORS="\n"; 

 count=0; 

} 

 

{ 

 # 4 = length, 11 = slen, scov = length / slen 

 scov = $4 / $11; 

 if (scov >= 0.6) 

 { 

  count += 1 

 

  # keep 1-13, add new column, keep 14-15 (will become 15-16) 

  for (i = 1; i <= 13; i++) 

  { 

   printf "%s", $i OFS; 

  } 
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  printf "%f", scov OFS; 

 

  for (i = 14; i <= NF; i++) 

  { 

   printf "%s", $i (i == NF ? ORS : OFS); 

  } 

 } 

} 

 

END { 

 print FILENAME ": " count > "/dev/stderr"; 

} 
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Step 8. Add Incompatibility Group as Column to BLAST Results 

Input: Tab-separated value files. Each contains the results from blasting the sequence of a 
single accession against the incompatibility groups BLAST database. It has an added column 
with the subject coverage and has only records with coverage >60%. Assume they are in the 
directory blast_results and they are named after the pattern 
${ACCESSION}_fmt6c_cov60.tsv. 
 
Output: One tab-separated value file for each input file. Each file is a copy of its respective 
input file except that an additional column is added. This column has the family or root of the 
incompatibility group from column #2 (sseqid). The files will be in a directory called 
blast_results and named after the pattern ${ACCESSION}_fmt6c_cov60_fam.tsv. Note 
that a new column was inserted as column number 3 (1-based indexing). The columns will 
now be as follows: qseqid, sseqid, fam, pident, length, evalue, qframe, qlen, qstart, qend, 
sframe, slen, sstart, send, scov, qseq, and sseq. 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" "_fmt6c_cov60.tsv"`   

 

  awk -f addFamCol.awk \ 

   "${ifn}" \ 

   > "blast_results/${ACCESSON}_fmt6c_cov60_fam.tsv" 

 

done < <(ls -1 blast_results/*_fmt6c_cov60.tsv) 

 
 AWK Script (addFamCol.awk) 

 
#! /bin/awk -f 

 

BEGIN { 

 FS="\t"; 

 OFS="\t"; 

 ORS="\n"; 

} 

 

{ 

 # 2 = subject_id, keep 1-2, add new column, 

 #keep 3-16 (will become 4-17) 

 for (i = 1; i <= 2; i++) 

 { 

  printf "%s", $i OFS; 

 } 

 

 printf "%s", gensub(/^([^(_]+).*$/, "\\1", "-1", $2) OFS; 
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 for (i = 3; i <= NF; i++) 

 { 

  printf "%s", $i (i == NF ? ORS : OFS); 

 } 

} 
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Step 9. Filter Best Matches in BLAST Results 

Input: Tab-separated value files. Each contains the results from blasting the sequence of a 
single accession against the incompatibility groups BLAST database. It has two added 
columns with the subject coverage (and has only records with coverage >60%) and family. 
Assume they are in the directory blast_results and are named after the pattern 
${ACCESSION}_fmt6c_cov60_fam.tsv. 
 
Output: One tab-separated value file for each input file. Each file is a copy of its respective 
input file except that some results are omitted. The “best” results are retained. “Best” is 
defined as the result(s) with the highest percent identity and those that have percent identities 
within only 1 percent of the highest one. The files will be in a directory called 
blast_results and named after the pattern ${ACCESSION}_fmt6c_cov60_fam_best.tsv. 
As in the input file, the columns will be as follows: qseqid, sseqid, fam, pident, length, 
evalue, qframe, qlen, qstart, qend, sframe, slen, sstart, send, scov, qseq, and sseq. 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" "_fmt6c_cov60_fam.tsv"`   

 

  python3 filterBestResults.py \ 

   "${ifn}" \ 

   > "blast_results/${ACCESSON}_fmt6c_cov60_fam_best.tsv" 

 

done < <(ls -1 blast_results/*_fmt6c_cov60_fam.tsv) 

 
 Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
 Python Script (filterBestResults.py 
 

This script has at least one line that is too long to represent in this document without 
sacrificing readability. Please view it in the freely-accessible online repository. 
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Step 10. Extract Incompatibility Families 

Input: Tab-separated value files. Each contains the results from blasting the sequence of a 
single accession against the incompatibility groups BLAST database. It has two added 
columns with the subject coverage (and has only records with coverage >60%) and family. 
Only the “best” results remain. Assume they are in the directory blast_results and are 
named after the pattern ${ACCESSION}_fmt6c_cov60_fam_best.tsv. 
 
Output: One file for each input file. Each file is a line-delimited list of incompatibility group 
roots/families. The files will be in a directory called blast_results and named after the 
pattern ${ACCESSION}_families.list. 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" 

"_fmt6c_cov60_fam_best.tsv"`   

 

  cut -f 3 "${ifn}" \ 

   | sort \ 

   | uniq \ 

   > blast_results/"${ACCESSON}_families.list" 

 

done < <(ls -1 blast_results/*_fmt6c_cov60_fam_best.tsv 
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Step 11. Extract Sequencing Technologies 

Input: GenBank files for each plasmid. We assume they are in the directory plasmid_gb and 
they are named after the pattern ${ACCESSION}.gb. 
 
Output: One tab-separated value file. The file has one column for the accession number, one 
column containing the sequencing technology string taken from the GenBank file, and 
several columns containing counts for the various sequencing technologies and groups of 
technologies. The file is assumed to be called seqTechs.tsv in the plasmid_seqTech 
directory. The columns are as follows: accession, sequencing_technologies, num_total, 
num_short, num_long, num_illumina, num_454, num_abi, num_sanger, num_torrent, 
num_pacbio, and num_nanopore. 
 
Code: 
 

Bash Command 
 

printf "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" \ 

 'accession' \ 

 'sequencing_technologies' \ 

 "num_total" \ 

 "num_short" \ 

 "num_long" \ 

 "num_illumina" \ 

 "num_454" \ 

 "num_abi" \ 

 "num_sanger" \ 

 "num_torrent" \ 

 "num_pacbio" \ 

 "num_nanopore" \ 

 > "plasmid_seqTech/seqTech.tsv" 

 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" ".gb"` 

 

  printf '%s\t' "${ACCESSION}" >> "plasmid_seqTech/seqTech.tsv" 

 

  awk -f sequesterSeqTech.awk \ 

   "${ifn}" \ 

   >> "plasmid_seqTech/seqTech.tsv" 

 

done < <(ls -1 plasmid_gb/*.gb) 

 
 AWK Script (sequesterSeqTech.awk) 

 
This script is too long to reasonably represent in this document. Please view it in the 
freely-accessible online repository. 
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Step 12. Extract Source Information 

Input: GenBank files for each plasmid. We assume they are in the directory plasmid_gb and 
they are named after the pattern ${ACCESSION}.gb. 
 
Output: One tab-separated value file. The file has one column for the accession number and 
one column for each of these subsections of the GenBank file source section: organism, 
isolation source, country, and collection_date. The file is assumed to be called 
sourceInfo.tsv in the plasmid_sourceInfo directory. The columns are as follows: 
accession, organism, isolation_source, country, and collection_date. 
 
Code: 
 

Bash Command 
 

printf "%s\t%s\t%s\t%s\t%s\n" \ 

 'accession' \ 

 'organism' \ 

 'isolation_source' \ 

 'country' \ 

 'collection_date' \ 

 > "plasmid_sourceInfo/sourceInfo.tsv" 

 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" ".gb"` 

 

  printf '%s\t' "${ACCESSION}" >> 

"plasmid_sourceInfo/sourceInfo.tsv" 

 

  awk -f snagSourceInfo.awk \ 

   "${ifn}" \ 

   >> " plasmid_sourceInfo/sourceInfo.tsv " 

 

done < <(ls -1 plasmid_gb/*.gb) 

 
 AWK Script (snagSourceInfo.awk) 

 
This script is too long to reasonably represent in this document. Please view it in the 
freely-accessible online repository. 
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Step 13. Extract Plasmid Search Regions 

Input: This Python program requires 3 inputs. 1- The accession number of the plasmid it will 
extract the search regions from. 2- The directory where the output will be placed. 3- The 
directory where the GenBank file is located for that plasmid. We assume the GenBank file is 
named after the pattern ${ACCESSION}.gb. 
 
Output: One text file containing the lines from input GenBank file that will be searched 
using the key terms. We assume the output file will be named after the following pattern: 
${ACCESSION}_searchRegions.txt. For convenience, it will also generate a copy of the 
input GenBank file with shell color codes, marking the CDS and source regions in blue, the 
portions of the CDS and source regions that will be included in green, and the portion of the 
CDS and source regions that will not be searched in red. The FEATURE line will be blue. 
This file will have the same name as the .txt file but will have the extension .gb instead of 
.txt. Note that intended search space is to consider each CDS region as a separate entity. 
However, only the following subsections of each CDS region are to be considered: 
/function, /gene, /note, and /product. 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" ".gb"`   

 

  python3 extractPlasmidSearchRegions.py \ 

   "${ACCESSION}" \ 

   plasmid_searchRegions \ 

   plasmid_gb 

 

done < <(ls -1 plasmid_gb/*.gb) 

 
 Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
 Python Script (extractPlasmidSearchRegions.py 
 

This script has at least one line that is too long to represent in this document without 
sacrificing readability. Please view it in the freely-accessible online repository. 
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Step 14. Identify Plasmid Matches 

Input: This Python program requires 3 inputs. 1- The accession number of the plasmid in 
which it will identify matches. 2- The directory where the input search regions file is located. 
3- The directory where the output matches will be placed. We assume the input search 
regions file is named after the pattern ${ACCESSION}_searchRegions.txt. 
 
Output: One text file containing the lines from input GenBank file that will be searched 
using One tab-separated value file containing matches. We assume the output file will be 
named after the following pattern: ${ACCESSION}_matches.tsv. The columns of the file are 
as follows: 
 

1. Ignored (True/False) 
2. Categories (c1[,c2,…,cN]) 
3. Search Term 
4. CDS Region 

 
Column 1 is a simple flag denoting if the term was to be ignored. This could also be 
determined based on the second column, but it was convenient to have a simple flag as its 
own column. Column 2 contains the category (categories) that the search term belonged to. 
Column 3 contains the regular expression used. Column 4 contains the CDS region that was 
searched (all tabs and newlines were converted to \t (backslash and a t, not a tab) and \n 
(backslash and an n, not a newline) to not interfere with the tab-separated value file format 
and keep each record on a single line). 
 
Search Strategy: The search terms are each part of one or more categories. It can belong to 
multiple categories only if the categories are subsets of each other. Five principal categories 
exist, two of which have subcategories. The category structure is as follows: 
 

 Antimicrobial Resistance 
o Beta-lactamase 

 Beta-lactamase Special 
 Toxin/Antitoxin System 
 DNA Maintenance/Modification 

o DNA Maintenance/Modification Special 
 Mobile Genetic Elements 
 Hypothetical Genes 

 
The strategy could be described as top-to-bottom, in-to-out; i.e., Antimicrobial Resistance is 
more important that Toxin/Antitoxin System and Beta-lactamase Special is more important 
than Beta-lactamase and Antimicrobial Resistance. The reason these are shown nested 
instead of simply above their parents is because a match for a Beta-lactamase Special search 
term will increment the count for not only itself, but also its parents. If no matches are found, 
the CDS region being searched is classified as "Other". Some CDS regions will never be 
searched for these terms if they first match a term in a special "Ignored" category. Provided a 
CDS region is not to be ignored, it will be searched with Beta-lactamase Special terms, then 
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Beta-lactamase terms, then Antimicrobial Resistance Terms, then Toxin/Antitoxin System 
terms, and so-forth, until a match is found (thus halting the search on this CDS region) or no 
more search terms remain (it is assigned to the "Other" category). All CDS regions are 
converted to lowercase before being searched as described. See our paper for a table of 
search terms. 
 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" "_searchRegions.txt"` 

 

  python3 identifyPlasmidMatches.py \ 

   "${ACCESSION}" \ 

   plasmid_searchRegions \ 

   plasmid_matches 

 

done < <(ls -1 plasmid_searchRegions/*_searchRegions.txt) 

 
 Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
 Python Script (identifyPlasmidMatches.py 
 

This script has at least one line that is too long to represent in this document without 
sacrificing readability. Please view it in the freely-accessible online repository. 
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Step 15. Summarize Plasmid Matches 

Input: This Python program requires 2 inputs. 1- The accession number of the plasmid in 
which it will summarize matches. 2- The directory where the input matches are to be found 
and the output summarized matches will be placed. We assume the input matches file is 
named after the pattern ${ACCESSION}_matches.tsv in a directory called 
plasmid_matches. 
 
Output: One tab-separated value file containing summarized matches. It will have two lines 
only. The first is a header line; the second the data. We assume the output file will be named 
after the following pattern: ${ACCESSION}_matches-summary.tsv in a directory called 
plasmid_matches. The columns of the file are as follows: 
 

1. Accession # 
2. Antimicrobial Resistance CDS 
3. Antimicrobial Resistance CDS % 
4. Beta-lactamase CDS 
5. Beta-lactamase CDS % 
6. Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy # 
7. Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Beta-

lactamase 
8. Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Total 
9. Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Absent (Yes/No) 
10. Plasmid Transfer CDS 
11. Plasmid Transfer CDS % 
12. Toxin/Antitoxin System CDS 
13. Toxin/Antitoxin System CDS % 
14. Toxin/Antitoxin System Present (Yes/No) 
15. DNA Maintenance/Modification CDS 
16. DNA Maintenance/Modification CDS % 
17. DNA Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) 

Copy # 
18. DNA Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) 

Copy # % of DNA Maintenance/Modification 
19. DNA Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) 

Copy # % of Total 
20. DNA Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) 

Present (Yes/No) 
21. Mobile Genetic Elements CDS 
22. Mobile Genetic Elements CDS % 
23. Hypothetical Genes CDS 
24. Hypothetical Genes CDS % 
25. Other CDS 
26. Other CDS % 
27. Total CDS 
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This data, with the exception of the first column, will be copied into the plasmid csv file 
created later. Column number 6 will also be used to drop plasmids. 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" "_sorted_matches.tsv"` 

 

  python3 summarizePlasmidMatchInfo.py \ 

   "${ACCESSION}" \ 

   plasmid_matches 

 

done < <(ls -1 plasmid_matches/*_sorted_matches.tsv) 

 
 Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
 Python Script (summarizePlasmidMatchInfo.py 
 

This script has at least one line that is too long to represent in this document without 
sacrificing readability. Please view it in the freely-accessible online repository. 
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Step 16. Drop Plasmids 

Input: This script acts on all the plasmids directly (i.e., not calling on a subroutine in Python 
or AWK for each of the plasmids). It requires no user input directly as it ascertains the 
plasmid accession numbers from file names. It also relies on the directory structure to find 
the files named after the pattern ${ACCESSION}_matches-summary.tsv in a directory called 
plasmid_matches. 
 
Output: Two new directories in the groups directory: keep and discard. Inside the 
discard directory will be a file called discard.list. It will contain the accession numbers 
(one per line) that are to be excluded from the rest of the analysis. The same is true in the 
keep directory, except the accession numbers are the ones that will be retained for the rest of 
the analysis and the file will be called keep.list. Also in the keep directory is a new group 
list file for each of the groups found in groups directory. These lists are the same as the 
originals except that the discarded accessions have been removed. 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  GROUP=`basename "${ifn}" ".list"`   

 

  while read ACCESSION 

  do 

   COUNT=`tail -n 1 \ 

    "plasmid_matches/${ACCESSION}_matches-summary.tsv" \ 

    | cut -d '\t' -f 6 \ 

    | tr -d '"'` 

    

   if [ $COUNT -ge 1 ] && [ $COUNT -le 6 ] 

   then 

    printf "${ACCESSION}\n" >> "groups/keep/${GROUP}.list" 

    printf "${ACCESSION}\n" >> "groups/keep/keep.list" 

   else 

    printf "${ACCESSION}\n" >> "groups/discard/discard.list" 

   fi 

 

  done < "${ifn}" 

 

done < <(ls -1 groups/*.list) 
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Step 17. Create Plasmid BLAST Database 

Input: Fasta files for each plasmid. We assume they are in the directory plasmid_fasta and 
they are named after the pattern ${ACCESSION}.fasta. 
 
Output: One BLAST database. We are creating this so we can do pairwise BLAST between 
the plasmid fastas. The objective is to identify plasmids that are "identical". Identical will, for 
our purposes, be defined as >=98% percent identity and >=98% query and subject coverage. 
 
Code: 
 

Bash Command 
 

cat plasmid_fasta/*.fasta > plasmid_blast_results/plasmids.fasta 

 

cd plasmid_blast_results 

 

makeblastdb \ 

  -dbtype nucl \ 

  -in plasmids.fasta \ 

  -input_type fasta \ 

  -title plasmids \ 

  -parse_seqids \ 

  -hash_index \ 

  -out plasmids \ 

  -max_file_sz 2GB \ 

  -logfile makeBlastDB.log 

 
BLAST Software 

 
NCBI (United States National Center for Biotechnology Information) BLAST+ Suite 
version 2.4.0 (Altschul et al. 1990; Camacho et al. 2009). 
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Step 18. BLAST Plasmid 

Input: Fasta files. Each contains the sequence from a single accession. Assume they are in 
the directory plasmid_fasta and they are named after the pattern ${ACCESSION}.fasta. 
 
Input: The plasmids BLAST database created in step #12. It is named plasmids. 
 
Output: One tab-separated value file for each input file. Each file is a modified version of 
the BLAST output format 6. The format is specified as seen using the -outfmt option with 
blastn. The columns are as follows: qseqid, sseqid, pident, length, evalue, qframe, qlen, 
qstart, qend, sframe, slen, sstart, send, qseq, and sseq. The files will be in a directory called 
plasmid_blast_results and named after the pattern ${ACCESSION}_fmt6c.tsv. Note that 
a match was not included in the output if the percent identity was <98%. 
 
Code: 
 

Bash Command 
 

THREADS=8 

 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" ".fasta"`   

 

  blastn \ 

   -query "${ifn}" \ 

   -strand both \ 

   -task blastn \ 

   -db plasmids \ 

   -out plasmid_blast_results/${ACCESSION}_fmt6c.tsv \ 

   -outfmt "6 qseqid sseqid pident length evalue qframe qlen 

qstart qend sframe slen sstart send qseq sseq" \ 

   -num_threads ${THREADS} \ 

   -perc_identity 98 

 

done < <(ls -1 plasmid_fasta/*.fasta) 

 
BLAST Software 

 
NCBI (United States National Center for Biotechnology Information) BLAST+ Suite 
version 2.4.0 (Altschul et al. 1990; Camacho et al. 2009). 
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Step 19. Extract Identical Plasmids with BLAST Result Coverage Cutoff of 98% 

Input: Tab-separated value files. Each contains the results from blasting the sequence of a 
single accession against the plasmids BLAST database. Assume they are in the directory 
plasmids_blast_results and they are named after the pattern ${ACCESSION}_fmt6c.tsv. 
Note that these BLAST results all have >=98% sequence identity. 
 
Output: One file for each input file. Each file is a line-delimited list of accessions associated 
with "identical" plasmids. The files will be in a directory called plasmid_blast_results 
and named after the pattern ${ACCESSION}_identicalPlasmids.list. The BLAST results 
are further filtered based on the query and subject coverage; each must be >= 98%. Coverage 
is determined based on number of bases covered by the other sequence. This coverage can 
come from one or more BLAST hits, as long as the total number of covered bases is >=98% 
of the number of possible bases. 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" "_fmt6c.tsv"`   

 

  python3 queryAndSubCovCutoff98-multiHit.py \ 

   "${ifn}" \ 

   > 

"plasmid_blast_results/${ACCESSON}_identicalPlasmids.list" 

 

done < <(ls -1 blast_results/*_fmt6c.tsv) 

 
 Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
 Python Script (queryAndSubCovCutoff98.py 
 

This script has at least one line that is too long to represent in this document without 
sacrificing readability. Please view it in the freely-accessible online repository. 
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Step 20. Fix Identical Plasmid Non-concordance 

Input: This Python program requires 6 inputs. 1- the path of the coverage information files. 
2- the path of the identical plasmid files. Inputs 3-6 are suffixes to file names; the assumed 
base of the name is the accession number. 3- the suffix of the input coverage info file. 4- the 
suffix of the output coverage info file. 5- the suffix of the input identical plasmids file. 6- the 
suffix of the output identical plasmids file. 
 
Output: Two text files. The first will be the output coverage info file. It will be the 
concordant version of its respective input file. The second will be the output identical 
plasmids file. It will be the concordant version of its respective input file. We assume they 
are both in the plasmid_blast_results directory and have the suffixes 
_covInfo_concordant.tsv and _identicalPlasmids_concordant.list, respectively. 
Another term for concordance might be reciprocal. This step accounts for inconsistencies in 
BLAST outputs. One might get hits from sequence A to B with >=98% identity and >=98% 
query and subject coverage, yet get no hits from B to A. This non-concordance is “fixed” in 
this step to force reciprocity of the BLAST hits. These hits are not updated in the BLAST 
output file, though the outcome is affected in the two output files from this step. 
 
Code: 
 

Bash Command 
 

python3 fixIdenticalPlasmidsNonConcordance.py \ 

  plasmid_blast_results \ 

  plasmid_blast_results \ 

  "_covInfo.tsv" \ 

  "_covInfo_concordant.tsv" \ 

  "_identicalPlasmids.list" \ 

  "_identicalPlasmids_concordant.list" 

 
 Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
 Python Script (fixIdenticalPlasmidsNonConcordance.py 
 

This script has at least one line that is too long to represent in this document without 
sacrificing readability. Please view it in the freely-accessible online repository. 
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Step 21. Generate Plasmid CSVs 

Input: This Python program requires 8 inputs. 1- The accession number of the plasmid it will 
generate a CSV file for. 2- The directory where the output CSV file is to be placed. 3- The 
directory where the plasmid fasta file is located. We assume it is named after the pattern 
${ACCESSION}.fasta. 4- The directory where the input plasmid matches file is located. We 
assume it is named after the pattern ${ACCESSION}_matches-summary.tsv. 5- The directory 
where the input incompatibility groups (derived from the BLAST results) are located. We 
assume it is named after the pattern ${ACCESSION}_families.list. 6- The filename of the 
source info. We assume it is named sourceInfo.tsv in the plasmid_sourceInfo directory. 
7- The directory of the plasmid BLAST results. We assume it is called 
plasmid_blast_results. 8- The filename of the sequence technologies information. We 
assume it is at plasmid_seqTech/seqTech.tsv. 
 
Output: One comma-separated value file. It will be placed in the directory specified in the 
input position 2. We assume the output file will be named after the following pattern: 
${ACCESSION}.csv. The columns of the file are as follows: 
 

"Accession #","Identical Plasmids","Source: Organism","Source: Isolation 
Source","Source: Country","Source: Collection Date","Sequencing 
Technologies","Sequencing Technologies Count","Short Read Count","Long Read 
Count","Illumina Count","Roche 454 Count","ABI Solid Count","Sanger Count","Ion 
Torrent Count","PacBio Count","ONT Count","Plasmid Length","Antimicrobial 
Resistance CDS","Antimicrobial Resistance CDS %","Beta-lactamase CDS","Beta-
lactamase CDS %","Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy 
#","Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Beta-
lactamase","Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of 
Total","Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Absent 
(Yes/No)","Plasmid Transfer CDS","Plasmid Transfer CDS %","Toxin/Antitoxin System 
CDS","Toxin/Antitoxin System CDS %","Toxin/Antitoxin System Present 
(Yes/No)","DNA Maintenance/Modification CDS","DNA Maintenance/Modification 
CDS %","DNA Maintenance/Modification Special 
(mucA,mucB,polymerase,umuC,umuD) Copy #","DNA Maintenance/Modification 
Special (mucA,mucB,polymerase,umuC,umuD) Copy # % of DNA 
Maintenance/Modification","DNA Maintenance/Modification Special 
(mucA,mucB,polymerase,umuC,umuD) Copy # % of Total","DNA 
Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) Present 
(Yes/No)","Mobile Genetic Elements CDS","Mobile Genetic Elements CDS 
%","Hypothetical Genes CDS","Hypothetical Genes CDS %","Other CDS","Other CDS 
%","Total CDS","Incompatibility Groups" 

 
Code: 
 

Bash Command 
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while read ifn 

do 

  ACCESSION=`basename "${ifn}" ".fasta"`   

 

  python3 generatePlasmidCSV.py \ 

   "${ACCESSION}" \ 

   plasmid_csv \ 

   plasmid_fasta \ 

   plasmid_matches \ 

   blast_results \ 

   plasmid_sourceInfo/sourceInfo.tsv \ 

   plasmid_blast_results \ 

   plasmid_seqTech/seqTech.tsv 

 

done < <(ls -1 plasmid_fasta/*.fasta) 

 
 Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
 Python Script (generatePlasmidCSV.py 
 

This script has at least one line that is too long to represent in this document without 
sacrificing readability. Please view it in the freely-accessible online repository. 
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Step 22. Create Group CSVs from Plasmid CSVs 

Input: The inputs required are the group list files that contain the plasmids in each group 
(see step #4) and the individual plasmid CSVs (see step #12). The group list files are 
assumed to be in the directory groups and named after the pattern ${GROUP}.list. The 
plasmid CSVs are assumed to be in the plasmid_csv directory and named after the pattern 
${ACCESSION}.csv. 
 
Output: One comma-separated value file containing the same header line as all the plasmid 
CSVs and a concatenation of the non-header lines from the plasmid CSVs. We assume the 
output file will be in the directory group_csv and will be named after the following pattern: 
${GROUP}.csv. 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

  GROUP=`basename "${ifn}" ".list"` 

  ofn="group_csv/${GROUP}.csv" 

 

  # get and write a header 

  hfn=plasmid_csv/`head -q -n 1 "${ifn}"`".csv" 

  head -q -n 1 "${hfn}" > "${ofn}" 

 

  # get and write the non-headers lines 

  nhfns=`cat "${ifn}" | sed -r 's,^(.+)$,plasmid_csv/\1.csv,' | 

tr '\n' ' '` 

  tail -q -n +2 ${nhfns} >> "${ofn}" 

 

done < <(ls -1 groups/*.list) 

 
 sed Note 

 
sed must be GNU (https://www.gnu.org) sed. -r does not enable extended regular 
expression syntax with BSD (http://www.bsd.org) sed. 
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Step 23. Create Group Matches from Plasmid Matches 

Note that this step is not technically necessary to generate the desired output (the group CSV 
files (step #13) and the group statistics files (step #15)). This is really for convenience in 
inspecting results. 

 
Input: The inputs required are the group list files that contain the plasmids in each group 
(see step #4) and the individual plasmid matches (see step #11). The group list files are 
assumed to be in the directory groups and named after the pattern ${GROUP}.list. The 
plasmid matches are assumed to be in the plasmid_matches directory and named after the 
pattern ${ACCESSION}_matches.tsv. 
 
Output: One text file containing the matches for the group. We assume the output file will 
be in the directory group_matches and will be named after the following pattern: 
${GROUP}_matches.tsv. 
 
 
Code: 
 

Bash Command 
 

while read ifn 

do 

 GROUP=`basename "${ifn}" ".list"` 

 ofn="group_matches/${GROUP}_matches.tsv" 

 

 fns=`cat "${ifn}" \ 

  | sed -r 's,^(.+)$,plasmid_matches/\1_matches.tsv,' \ 

  | tr '\n' ' '` 

 head -q -n 1 ${fns} | head -n 1 > "${ofn}" 

 tail -q -n +2 ${fns} >> "${ofn}" 

 

done < <(ls -1 groups/*.list) 

 
 sed Note 

 
sed must be GNU (https://www.gnu.org) sed. -r does not enable extended regular 
expression syntax with BSD (http://www.bsd.org) sed. 
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Step 24. Calculate Group Statistics from Group CSV 

Input: This Python program requires 2 inputs. 1- The CSV file for a group. Here, we show 
the CSV files in the directory group_csv, named after the pattern ${GROUP}.csv. 2- The 
output statistics file for the group. Here, we show the statistics files in the directory 
group_stats, named after the pattern ${GROUP}.stats. 
 
Output: One text file named as described in position 2 of the input to the Python program. 
That file is formatted as follows: 
 

GROUP_NAME 

========== 

Total # of Plasmids: ## 

 

Incompatibility Groups Structure: 

 Inc.         Plasmid   Size         Size 

 Group        Count     Mean         St. Dev. 

 IncGrp1      #         #.###        #.### 

 IncGrp2      #         ######.###   #####.### 

 . 

 . 

 . 

 IncGrpN      #         #####.###    ####.### 

  

Plasmid Lengths Summary: 

      Min: #### 

      Max: ###### 

   Median: ##### 

     Mean: ######.### 

 St. Dev.: ######.### 

 

Key Words Structure: 

 Key                      Plasmid   Size         Size 

 Word                     Count     Mean         St. Dev. 

 anti_microb_resist       ##        ######.###   ######.### 

 anti_microb_resist_not   #         ######.###   ###### 

 beta_lact                ##        ######.###   ######.### 

 beta_lact_not            #         ######.###   ###### 

 plasmid_transfer         ##        ######.###   ######.### 

 plasmid_transfer_not     #         #####.###    #####.### 

 toxin                    ##        ######.###   #####.### 

 toxin_not                ##        #####.###    ######.### 

 dna_maint                ##        ######.###   ######.### 

 dna_maint_not            #         ######.###   ###### 

 mob_gen_elem             ##        ######.###   ######.### 

 mob_gen_elem_not         #         ######.###   ######.### 

 hypo_genes               ##        ######.###   ######.### 

 hypo_genes_not           #         ######.###   ###### 

 other                    ##        ######.###   ######.### 

 other_not                #         ######.###   ######.### 

 

Plasmid Structure: 

 This information is already reported in the CSV file: GROUP_NAME.csv 
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Sequencing Technologies: 

 Sequencing       Num        Occurances per   Percent Total   Percent 

Known 

 Technology       Plasmids   Plasmid          Plasmids        Plasmids 

 Known            ##         NA               ##.###          ###.### 

 Unknown          ##         NA               ##.###          #.### 

 Illumina         ##         #.###            ##.###          ##.### 

 Roche ###        #          #.###            #.###           ##.### 

 ABI Solid        #          #.###            #.###           #.### 

 Sanger           #          #.###            #.###           #.### 

 Ion Torrent      #          #.###            #.###           #.### 

 PacBio           #          #.###            ##.###          ##.### 

 ONT              #          #.###            #.###           #.### 

 Short            ##         #.###            ##.###          ##.### 

 Long             #          #.###            ##.###          ##.### 

 Multiple Short   #          #.###            #.###           #.### 

 Multiple Long    #          #.###            #.#             #.# 

 Short Only       ##         #.###            ##.###          ##.### 

 Long Only        #          #.###            #.###           #.### 

 Short & Long     #          #.###            #.###           ##.### 

 

Identical Plasmids Summary: 

                           Plasmids (GROUP_NAME): ## 

                               Discrete Plasmids: ## 

         Indiscrete Plasmids (inside GROUP_NAME): ## 

        Indiscrete Plasmids (outside GROUP_NAME): ## 

                             Indiscrete Plasmids: ## 

                   Groups of Indiscrete Plasmids: ## 

                          Group Member Count Min: ## 

                          Group Member Count Max: ## 

                       Group Member Count Median: ## 

                         Group Member Count Mean: ##.### 

                     Group Member Count St. Dev.: ##.### 

 

Identical Plasmids Groups: 

       Discrete (GROUP_NAME): 

   ########  ########  ######## 

   ########  ########  ######## 

   ########  ########  ######## 

   ########  ########  ######## 

   ########  ########  ######## 

   ########  ########  ######## 

   ########  ########  ######## 

   ########  ########  ######## 

    

         Indiscrete Group #1: 

   ########  ########  ######## 

   ########  ########  ######## 

   ########  ########  ######## 

   ######## 

 

  ... 

  ... 

  ... 
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         Indiscrete Group #n: 

                ########  ######## 

 
Code: 
 

Bash Command 
 

while read gfn 

do 

  GROUP=`basename "${gfn}" ".list"` 

 

  ifn="group_csv/${GROUP}.csv" 

  ofn="group_stats/${GROUP}.stats"   

 

  python3 calcGroupCSVstats.py \ 

   "${ifn}" \ 

   "${ofn}" 

 

done < <(ls -1 groups/*.list) 

 
 Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
 Python Script (calcGroupCSVstats.py 
 

This script has at least one line that is too long to represent in this document without 
sacrificing readability. Please view it in the freely-accessible online repository. 
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Step 25. Create Distance Matrix 

Input: This script acts on all the files directly (i.e., not calling on a subroutine in Python or 
AWK for each of the accession numbers). It requires no user input directly as it ascertains the 
plasmid accession numbers from file names. It also relies on the directory structure to find 
the files named after the pattern ${ACCESSION}_identicalPlasmids_concordant.list in 
a directory called plasmid_blast_results. 
 
Output: One file per each accession. Each file is effectively a single row in the distance 
matrix. Once they are all created, they are combined into an additional file, the full distance 
matrix. The distance matrix is a full matrix (not only the bottom or upper halves); it is a csv 
file. The format looks like this: 
 

Accession A B C D 
A 0 x y a 
B x 0 i j 
C y i 0 k 
D a j k 0 

 
 
Code: 
 

Bash Command 
 

This script is too long to reasonably represent in this document. Please view it in the 
freely-accessible online repository. 

 
Distance Metric Definition and Examples: 
 

Definition 
 
The distance metric is the sum of the query and subject covered bases divided by the sum 
of the query and subject sequences. A covered base is defined as a base covered by (i.e., 
included in) the alignment. Given that 𝑑 is the distance between a query and subject 
sequence, 𝑐 is the coverage (i.e., bases included in the alignment) from a given sequence, 
and 𝑙 is the length of a given sequence, the distance metric can be expressed in equation 
notation: 
 

𝑑 =
𝑐𝑞𝑢𝑒𝑟𝑦 + 𝑐𝑠𝑢𝑏𝑗𝑒𝑐𝑡

𝑙𝑞𝑢𝑒𝑟𝑦 +  𝑙𝑠𝑢𝑏𝑗𝑒𝑐𝑡
 

 
This metric is calculated for each pair of query and subject sequences; in other words, it 
is calculated in an all-vs-all fashion between the sequence for each plasmid. 
 
Example 
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Given a query sequence that is 10 bases long and a subject sequence that is 20 bases long, 
consider an alignment that has a length of 6 bases and looks like this: 
 

  Query: AAAAACGGGG 
Subject:     A-GGGGTTTTTGGGGGCCCCC 

 
The length of the alignment is 6. The number of covered bases (i.e., bases in the 
alignment) from the query sequence is 6. For the subject sequence, the number is 5. The 
distance can be found using the equation: 
 

𝑑 =
𝑐𝑞𝑢𝑒𝑟𝑦 + 𝑐𝑠𝑢𝑏𝑗𝑒𝑐𝑡

𝑙𝑞𝑢𝑒𝑟𝑦 +  𝑙𝑠𝑢𝑏𝑗𝑒𝑐𝑡
=  

6 + 5

10 +  20
=  

11

30
 ≅ 0.367 

 
This example is for a single pairwise comparison and would need to be repeated for every 
pair of plasmids. 
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Step 26. Create Distance Tree 

Input: The input is the distance matrix from the previous step. We assume it is called 
dist_matrix.csv in the tree directory. 
 
Output: One text file called dist_tree.newick in the tree directory. It is in the Newick 
tree format. 
 
Code: 
 

Bash Command 
 

makeNewick.py \ 

  -i "tree/dist_matrix.csv" \ 

  -o "tree/dist_tree.newick" 

 
 Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
 Python Script (makeNewick.py) 
 

This script is not part of this package. It must be downloaded and installed separately. 
The only substantive requirement is Python 3.5+. makeNewick.py comes from a software 
package called CAM - Codon Aversion Motifs for Alignment-free Phylogenies (Miller et 
al. 2019). CAM is freely-available on GitHub at https://github.com/ridgelab/cam. 
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Step 27. Add Leaf Labels to Tree 

Input: The input is the distance tree in Newick format from the previous step. We assume it 
is called dist_tree.newick in the tree directory. It also requires the location of source 
information (e.g., the country of origin of the plasmid) file and the name of the output file.  
 
Output: This step appends additional information to the accession numbers that are the leaf 
labels in the tree. It creates a new tree, also in Newick format. We assume the output tree is 
in the tree directory and is called dist_tree_labels.newick. 
 
Code: 
 

Bash Command 
 

python3 modifyLeafLabels.py \ 

  "plasmid_sourceInfo/sourceInfo.tsv" \ 

  "tree/dist_tree.newick" \ 

  "tree/dist_tree_labels.newick" 

 
 Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
 Python Script (modifyLeafLabels.py) 
 

This script has at least one line that is too long to represent in this document without 
sacrificing readability. Please view it in the freely-accessible online repository. 
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Step 28. Add Color to Leaf Labels 

Input: The input is the labeled distance tree in Newick format from the previous step. We 
assume it is called dist_tree_label.newick in the tree directory. Additional input is a 
colors mapping file. We assume it is called colors.tsv. The format is assumed to be one 
entry per line, where each entry has one column for the group and another column for the hex 
color (without the # symbol). The file we used is as follows: 
 

IMP FF0000 

KPC 0000FF 

NDM 00B600 

VIM 000000 

 
As you can see, we were looking for four groups for this tree figure in our analysis: IMP, 
KPC, NDM, and VIM. The final inputs required are a list of associated accession numbers 
for each group. We assume the files are named after the pattern ${GROUP}.list in the 
directory groups/keep. 
 
Output: This step includes the Newick-formatted tree from the input in a new Nexus file. It 
relies on a taxa block to specify colors for the leaf labels. As an example, the leaf label will 
have the label (e.g., \t'some label here' ) followed by the color specification (e.g., 
[&!color=#6789AB] ). This Nexus file will be available for directly opening with FigTree 
(https://github.com/rambaut/figtree) and, presumably, by other tree viewing/editing software. 
We assume the output tree is in the tree directory and is called 
dist_tree_labels_colors.nexus. 
 
Code: 
 

Bash Command 
 

python3 convertNewick2NexusAndAddColor.py \ 

  "tree/dist_tree_labels_colors.nexus" \ 

  "colors.tsv" \ 

  "tree/dist_tree_labels.newick" \ 

  "groups/keep/IMP.list" \ 

  "groups/keep/KPC.list" \ 

  "groups/keep/NDM.list" \ 

  "groups/keep/VIM.list" 

 
 Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
 Python Script (convertNewick2NexusAndAddColor.py) 
 

This script has at least one line that is too long to represent in this document without 
sacrificing readability. Please view it in the freely-accessible online repository. 
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A comment on data availability  

The version of the PlasmidFinder database that we downloaded is no longer available. 

Accordingly, we release the fasta file we downloaded for reproducibility purposes. However, we 

advise a fresh download for any new experiments. This file may be found in the repository at the 

following path: data/original_incompatibility_groups/incompatibility.fasta. 

Similarly, many GenBank files have been updated since our download on 1 March 2018. We 

likewise release the versions we downloaded here for reproducibility purposes. However, we 

recommend fresh downloads of these files for new analyses. A script (labelled as “Step 0”) is 

released with the online code repository for such a purpose. Please note that additional plasmids 

could now (and should) be included if the Entrez search strategy were to be re-done. The script 

would not reflect such changes as it downloads the specific GenBank groupings we used via 

accession numbers, completely ignoring the Entrez strategy. This is appropriate for reproducing 

our results, but it would probably not be ideal for a future study. 
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APPENDIX 8 

Chapter 7 – File S2 

 

SUPPLEMENTARY TABLES 
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Supplementary Table 1. Full Dataset. This dataset is available online at the journal website as a spreadsheet. It is 
too wide to display meaningfully in this document. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table 2. Percent of plasmids belonging to each incompatibility group. Note: IncHI2 and 
IncHI2A were always found together, IncY replicon was only found in conjunction with other replicons. 

Percent of plasmids Inc Group Percent of plasmids Inc Group 
0.22% IncA/C 0.67% IncN3 

10.08% IncA/C2 0.22% IncP1 
0.22% IncB/O/K/Z 0.90% IncP6 
0.67% Col 0.67% IncQ1 
1.12% Col440I 0.22% IncQ2 
1.12% ColRNAI 3.81% IncR 
2.02% IncFIA 2.24% repA 
8.74% IncFIB 1.12% IncU 

13.00% IncFII 12.11% IncX3 
0.22% IncHI1B 0.22% IncX4 
0.45% IncHI2,HI2A 0.90% IncX5 
0.22% IncI1 0.67% IncX6 
0.90% IncI2 0.00% IncY 
2.47% IncL/M 13.90% Multi-replicon 

12.56% IncN 7.62% NA 
0.67% IncN2     
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Supplementary Table 3. Relative abundance of incompatibility groups among carbapenemase-carrying plasmids. Note: IncHI2 and IncHI2A were always 
found together, IncY replicon was only found in conjunction with other replicons. 

Carbapenemase 
Family 

Incompatibility Groups (Percent of plasmids) 

IncA/C IncA/C2 IncB/O/K/Z IncCol IncCol440I IncColRNAI IncFIA IncFIB IncFII IncHI1B IncHI2/HI2A 

KPC 0.00% 3.10% 0.00% 0.00% 2.00% 2.60% 1.50% 15.80% 8.20% 0.00% 0.00% 
NDM 0.00% 15.10% 0.60% 0.00% 0.00% 0.00% 3.60% 4.20% 25.30% 0.60% 0.00% 
IMP 0.00% 22.40% 0.00% 0.00% 0.00% 0.00% 0.00% 2.00% 2.00% 0.00% 4.10% 
VIM 3.40% 16.10% 0.00% 9.70% 3.20% 0.00% 0.00% 6.50% 3.20% 0.00% 0.00% 

 
  

IncI1 IncI2 IncL/M IncN IncN2 IncN3 IncP1 IncP6 IncQ1 IncQ2 IncR 

KPC 0.00% 2.00% 2.60% 15.80% 0.00% 1.00% 0.50% 1.50% 1.50% 0.50% 5.60% 
NDM 0.00% 0.00% 1.20% 3.00% 1.80% 0.00% 0.00% 0.00% 0.00% 0.00% 1.80% 
IMP 2.00% 0.00% 8.20% 32.70% 0.00% 2.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
VIM 0.00% 0.00% 0.00% 13.80% 0.00% 0.00% 0.00% 3.40% 0.00% 0.00% 10.30% 

 
  

repA IncU IncX3 IncX4 IncX5 IncX6 IncY Multi-
replicon NA     

KPC 5.10% 1.00% 3.50% 0.00% 1.50% 1.50% 0.00% 17.30% 5.60%   
NDM 0.00% 0.00% 28.30% 0.60% 0.00% 0.00% 0.00% 11.40% 2.40%   
IMP 0.00% 6.10% 0.00% 0.00% 2.00% 0.00% 0.00% 6.10% 16.30%   

VIM 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 37.90%     
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Figure S1. Distribution of length for all 446 plasmid sequences in this study. 
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E  

 
Figure S2. Various characteristics of carbapenemase carrying plasmids. A) Average gene content of plasmids 
by gene ontology. B) Average length of plasmids by characteristic of interest (Presence or absence of toxin-antitoxin 
system, polymerase genes, and carbapenemase carried. C) Determination of species on plasmid length. D) 
Determination of replicon type on plasmid length. E) Determination of multi-replicon content on plasmid length. 
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